ESTIMATION OF RANDOM FIELDS

A.G. RaAMM

LMA/CNRS, Marseille 13402, cedex 20, France
and Mathematics Department, Kansas State
University, Manhattan, KS 66506, USA
ramm@math .ksu.edu
www.math.ksu.edu/ ramm

U(x) = s(x) + n(x), z€R", (1)
s(z) =n(z) =0, (2)

U*(x)U(y) :== R(z,y), U*(z)s(y) = f(z,y), (3)
Typeset by ApS-TEX




LY = /D Bz, y)U(y)dy, )

€ := (LU — As)? = min, (5)
Rhi= [ R@p)h(z9)dy = f(a.2),
D
z,z € D:=DUT, (6)

Rh = /D R(z,9)h(y)dy = f(z), z€D. (7)

The guestions are: in what functional space should
one look for the solution? Is the solution unique?
Does the solution to (7) provide the solution to the
estimation problem (5)? Does the solution depend
continuously on the data, e.g. on f and on R(z,y)?
How does one compute the solution analytically and
numerically? What are the properties of the solu-
tion, for example, what is the order of singularity
of the solution? What is the singular support of the
solution? What are the properties of the operator R
as an operator in L?(D) ? How does the solution of
singularly perturbed problem o?h + Rh = f in D
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behaves when o — 0, where 02 > 0 is a parame-
ter? This parameter has statistical meaning: it is a
variance of the white-noise component in the noise.

(Lass R & Kervels Rix,y):
R(z,y) = /A POQ (N &(z,9, Ndp(N).  (8)

Let R(z,y) € R, a:= 3s(¢—p), HYD) be the
Sobolev spaces and H (D) be its dual with re-
spect to H®(D) = L?(D). The space H ¢(D) con-
sists of distributions in H? (R") with support in the
closure of D .

Then the solution to equation (7) solves estima-
tion problem (5) if and only if h € H~*(D). The
operator R : H-*(D) — H*(D) 1is an isomor-
phism. The singular support of the solution h €
H~(D) of equation (7) is T = 8D . The analytic
formula for h is of the form h = Q(L)G, where
G s a solution to some interface elliptic boundary
value problem and the differentiation is taken in the
sense of distributions.




This theory can be used in many applications: in
signal and image processing, underwater acoustics,
geophysics, optics, etc, see [1]. In particular, the fol-
lowing question is answered by our theory: suppose
a random field (1) is observed in a ball B and one
wants to estimate s(zo), where x¢ is the center of
B . What is the optimal size of the radius of B?
If the radius is too small then the estimate is not
accurate. If it is too large then the estimate is not
better than the one obtained from the observations
in a ball of smaller radius, so that the efforts are
wasted.

II. FORMULATION OF BASIC RESULTS.

Let £ be an elliptic selfadjoint in H = L?(R")
operator of order s. Let A, ®(z,y,A), dp()) be
the spectrum, spectral kernel and spectral measure
of L, respectively. A function F(L) is defined as
an operator on H with the kernel

F(L)(z,y) = /A FO&(z, 5, Ndp()) (1)
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and
D(F(L)) = {ffGH/ |2 (Exf, f) < oo},

where

(Exf, f) /_;{//fb (z,y, ) f(y) f(y )dwdy} dp(p),
[=]. 2

R@y) = [ POQT 8@ 3 do(N), ()

where P(A) > 0 and Q(A\) >0, VA€ A, and A,
$ , dp correspond to an elliptic selfadjoint operator
L in H=L*R").

p=degP(\), ¢q=degQ()), s=ordl, (4)
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Lu := Z a;(z)0u, (5)

l7]<s

where j = (j1,j2...Jr) is a multiindex, &u =
050022...00ru |jl=51+j2+...9r, Jm =0 are
integers. The expression (5) is called elliptic if, for
any real vector t € R" , the equation

implies that ¢ = 0. The expression

Lru:= ) (-1)V187(a}(z)u) (6)

l71<s

is called the formal adjoint with respect to £. The
star in (6) stands for complex conjugate.

A

= LU := /D he Uy, (1)

€:= | — As|? =min. (8)
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The kernel h(z,y) in (7) is a distribution, so that,
by L. Schwartz’s theorem about kernels, estimate
(7) is the most general linear estimate. The operator
A in (8) is assumed to be known. It is an arbitrary
operator not necessarily linear. In the case when
AU = U, that is A = I, where I is the identity
operator, the estimation problem (8) is called the
filtering problem. From (8) and (7) one obtains

e=/ h(a:,y)L{(y)dy/ h*(z, z)U*(2)dz
D D

_ 2Re / h(z, 2)U(2)dz(As)* (z) + [As(@)]

=/D[Dh(x,y)h*(w,Z)R(Z,y)dZdy

— 2Re/h*(m, 2)f(z,z)dz + |As(z)|? = min.
(9)

Here

fy,z) == U*(y)(As(z)) = f"(z,9), (10)



the bar stands for the mean value and the star
stands for complex conjugate. By the standard pro-
cedure one finds that a necessary condition for the
minimum in (9) is:

/D R(z,9)h(z,y)dy = f(2,3), z,2€D:=DUT.
(11)
Rhi= [ Rayh)dy=f@), z€D (12

D

is basic for estimation theory.

We have suppressed the dependence on z in (11)
and have written z in place of z in (12).

Let us show that the class R of kernels, that
is the class of random fields that we introduced,
is a natural one. To see this, recall that in the
one-dimensional case, studied analytically in the lit-

erature, the covariance functions are of the form
R(z,y) = R(z —y), z,y € R,

R()) := foo R(z) exp(—idz)dz = P(A\)Q1()),

— OO



where P(\) and Q(A) are positive polynomials.
This case is a very particular case of the kernels in
the class R . Indeed, take r=1, L = —i% :

A =(-00,00), dp(A) =d\, ®(z,y,A) =
(27)~Yexp{iX(z — y)}. Then formula (3) gives the
above class of convolution covariance functions with
rational Fourier transforms. If p = ¢, where p and
q are defined in (4), then the basic equation (12)
can be written as

Rh :=02h(z) + /D Ri(z, 9)h(y)dy = f(2),

r €D, o°>0, (13)
where

P(NQTI(N) = o*+P(N)Q7 (N, p1:=deg Py <7,

(14)
and o2 > 0 is interpreted as the variance of the
white noise component of the observed signal U(x) .



If p <gq, then the noise in U(zx) is colored, it does
not contain a white noise component.

§2. Formulation of the results.
1. Basic results.

Theorem 1. If R(x,y) € R then the operator
R in (1.12) is an isomorphism between the spaces

H™2 and H*. The solution to (1.12) of minimal
order of singularity, ordh < o, can be calculated by
the formula:

h@)=QU)G, )

where

g(z) +v(z) in D,

u(x) in Q:=R"\ D, (2)

G(z) = {

g(z) € H*Pt9/2 45 an arbitrary fivred solution to
the equation

P(L)g=f i D, (3)
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and the functions u(x) and v(z) are the unique
solution to the following transmission problem (4)-

(6):
Q(Lu=0 in Q, wu(oco)=0, (4)
P(Lyv=0 in D, (5)
65\,u=8fv(v+g) on T, 0§j_<_3(p2+q)—1.
(6)

By u(o0) =0 we mean limu(z) =0 as |z| = 0.

Corollary 1. If f s smooth, then

sing supph =T . (7)

Corollary 2. If P()\) = 1, then the transmission
problem (4)-(6) reduces to the Dirichlet problem in
Q:

Q(Lu=0 in Q, wu(oco)=0, (8)

3{;,u=3fvf on T, OS]’S%—I, (9)
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and (1) takes the form

f mD,

10

h = Q(L)F, F={

Corollary 1 follows immediately from formulas
(1) and (2) since g(z)+v(z) and u(x) are smooth
inside D and 2 respectively. Corollary 2 follows
immediately from Theorem 1: if P(A) = 1 then
g=f,v=0,and p=0.

Let w(A) >0, w(A) € C(RY), w(oo) =0,

W= Iileaicw()\), (11)

R(z,y) = /A w(N®(z,5, Ndp(Y),  (12)

A;j = A;(D) be the eigenvalues of the operator R :
L?(D) — L?(D) with kernel (12), arranged so that

M > A>3 > > 0. (13)

12



Theorem 2. If D C D' then A\; < X}, where
o= X(D'). If

sup [ IR@yldyi=A<oo, (19
z€RT
then
)\100 = W, (15)
where
Dll)rﬁr )\1 (D) = )\100, (16)

and w := maxyep w(A).

Theorem 3. If w(A) = [A\|7%(14+0(1)) as |A] =
00, and a > 0, then the asymptotics of the eigen-
values of the operator R with kernel (12) is given
by the formula:

Aj ~ cj~/™  as j =00, c=const>0, (17)
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where ¢ =~*/" and

y = (2n) /D n(z)de, (18)
with

n(z) := meas{t : t € R", Z aap(x)t*TP < 1}.

ol =18]=s/2
(19)

Here the form anp(x) generates the principal part
of the selfadjoint elliptic operator L :

Lu = Z 0% (aas(x))0Pu + L1, ordly < s.
|a|=|B|=5/2

Corollary 3. If w(\) = PAN)Q™Y()\) ther a =
q—p, where ¢ = degQ), p = degP, and A\, ~
en—(@=P)s/T aphere N\, are the eigenvalues of the
operator in equation (1.12).
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Theorem 4. Let A and @ be linear compact op-
erators in a Hilbert space H, B := A(I + Q),
N(I + Q) = {0}, dimRanA = oo . Then

lim $n(B)

n—oo 8, (A) =1

If s,(A) =cen"P[14+O(n"P1)] and
Qs < NNAFIIENfIIF2, 0<a<1, then
pa
1+ pa

sn(B) =cen"P[14+0(n"7)], ¢ = min(p;, ).

If 55 21, then g=p; .

2. Generalizations.

First, let us consider a generalization of the class
R of kernels for the case when there are several
commuting differential operators. Let L;,...L,,
be a system of commuting selfadjoint differential
operators in L?(R"). There exists a spectral mea-
sure du(¢) and a spectral kernel ®(z,y,€), &€ =
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(&1,... ,&m) such that a function F(Ly,...Ly) is
given by the formula

F(L1,... L) = /M F©)$(©)du(E)  (20)

where ®(£) is the operator with kernel ®(z,y,§).
The domain of definition of the operator
F(Ly,...Ly) is the set of all functions u € L#(R")
for which [,, |F(¢)[*(®(&)u,u)dp < 0o, M is the
support of the spectral measure dy, and the paren-
theses denote the inner product in L*(R").

For example, let m=r, £, = —i-g% . Then

¢E=(&,...&), dp=d& ... d&,,
¢(z,y,8) = (2m) " exp{il - (z —y)},

where the dot denotes the inner product in R" .

If F(§) = P(§)Q'(E), where P({) and Q(¢)

are positive polynomials and the operators P(L) :=

P(Ly,...L;) and Q(L) := Q(L4,...L,) are ellip-

tic of orders m and n respectively, m < n, then

theorems analogous to Theorems 1-2 in section 1
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hold with sp = m and sq = n. Theorem 3 has
also an analogue in which as = n — m in formula
(17).

Another generalization of the class R of ker-
nels is the following one. Since the kernel R is
a covariance function, it must be a non-negative-
definite kernel, that is, the quadratic form (Rh,h)
must be non-negative. Here (-,-) is the extension of
L?— inner product to the pairing between H* and
its dual space H~%. Let Q(«,8) and P(x,8) be
elliptic differential operators and

QR=P§(z—y) in R (21)

Note that the kernels R € R satisfy equation (21)
with Q@ = Q(L), P = P(L), so that if R € R,
then Q and P are selfadjoint commuting elliptic
operators. We wish to generalize the class of kernels
R so that nonselfadjoint and non-commuting ellip-
tic operators can be considered also. Let ord@ = n,
ordP = m, n > m. Under suitable assumptions ei-
ther on the quadratic form (Rh,h) or on the formal
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differential elliptic operators ¢) and P, one can es-
tablish an analog of Theorem 1. For example, if
there exist positive constants ¢; and cp such that

Cl||h||2—a < (Rha h) < C2l|h||2—a Vh € C(())o(]Rr)’
(22)
then the operator with the non-negative definite ker-
nel R, satisfying (21) is an isomorphism of H~%(D)
onto H*(D) .

Theorem 5. Inequality (22) holds if (21) and the
following two inequalities hold Vh € C§°(R") :

c3||hl|—atn < |Q*h|| < C4||h||-—a+n, (23)

CSHhH——a+n < (PQ*ha h) < c6||h”—oz+n . (24)

III. EXAMPLES.

Some examples of one-dimensional equations of
estimation theory are also included.
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1. fr=1, L=—id, 8=d/dx, ®(z,y,\) =
(2m) texp{iX(z —y)}, dp=d\, then R(z,y) € R
if

R(z,y) = (21)"" / R(\) exp{iA(z — v)}dA, (1)

-0

where

R(\) = PN)Q™(N), (2)
and P()\), Q()\) are positive polynomials.
2. f r > 1, L = (L4,...L), L = —i0p,

Op = 0/0z,, ®(z,y,\) = (27) "exp{ir- (z —y)},
A= (A1,...Ar), dp(A) =dX =dA;1...d)\,, then

R(z,y) = (2m)™" / RO\ explir- (z —9)}dA, (3)

where R()\) is given by (2), and

PO) =P\, M) >0, QA) =Q(\1... A) >0,
(4)
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are polynomials. For the operators P(£) and Q(L)
to be elliptic of orders p and g respectively, one has
to assume that, for any |A\| > 0, one has:

0<c1 S PA)ATP < e,

0<c3<QMANT<ecs, VAER]  (5)
where Al = W24+ -+ 232 and ¢;, 1 <5 <
4 , are positive constants, independent of A\ in the

region |[A| > ¢ > 0, where ¢ > 0 is an arbitrary
fixed constant.

3.Ifr=1,£——£27, D(L) = {u:ué€
H?(0,00), u'(0) =0}, D(L£) = domain of £, then

R(z,y) = 3lA(ls+y) +AQz—3)], 2,y20, (6)
where

Az) =71 /0 ” PN)Q () cos(VAz)ATY/2d),
(7)
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and P(\) >0, @Q()\) >0 are polynomials.
Indeed, one has for £

d(z,y,\)dp(A)

3 { 71 cos(vVAz) cos(VAy)A"/2dx, A >0,
Lo A <0,

0<z, y<oo. Since

cos(kx) cos(ky) =%[cos(ka: — ky) + cos(kz + ky)],

k=),

one obtains (6) and (7).
If one puts VA =k in (7), one gets

A(z) = z /0 ” P(k)Q1(k?) cos(kz)dk,  (8)

™

which is a cosine transform of a positive rational
function of k. The eigenfunctions of £, normal-

ized in L?(0,00), are (%)1/2 cos(kz) and dp = dk
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in the variable k. If £ = —ﬁg 1s determined in
L?(0,00) by the boundary condition u(0) = 0, then

R(z,y) = 5[4z~ 3)) - A +y), 2,520, (9)

where A(z) is given by (8), the eigenfunctions of
L with the Dirichlet boundary condition u(0) =0

are \/; sin(kzx) , dp = dk in the variable k, and

®(z,y,k)dp(k) = £ sin(kz) sin(ky)dk .
For the Neumann boundary condition »'(0) =0,
one gets: ®(z,y,k)dp(k) =
2 cos(kz) cos(ky)dk .
4. If L = —di:g+(1/2—%)x_2, v>0, x>0, then

VAT, (ZA) VYA, (yA)dA, if X >0,

®(x,y, \)dp(\) =

(10)
so that

R(z,y) = V&7 / " PO (), (02)Jy ) A,
(11)
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where P()\) and Q()\) are positive polynomials on
the semiaxis A > 0.

5. Let R(z,y) = exp(—alz — y|)(4rl|z —y|)~",
z,y € R®, a = const > 0. Notethat (—A+a?)R =
§(z —y) in R3. The kernel R(z,y) € R. One has
E - (£1,£2,£3), Ej — —z'(?j, P(/\) — 1, Q(/\) -
AN +a?, 2 =X224+)02+)2, ®dp = (27) 3 exp{iX-
(ZE — y)}d>‘ )

R(z,y) = (27)~3 / xplid @9} )y (1)

R3 )\2 + a2

6. Let R(z,y) = R(zy). Put z =.exp(§), Yy =

exp(—n) . Then R(zy) = R(exp(§ —¥)) := Ri(§ —
y). If Ry € R with £ = —i0, then one can solve
the equation

b
/R(wy)h(y)dy=f(w), a<z<b  (13)
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analytically.

7. Let Ko(a|z|) be the modified Bessel function

which can be defined by the formula
exp(iA - x
K()(CLlSU') = (27‘(‘) 1 [Rz )\I;(+ i )d/\, a > 0,
(14)

where \-z = A\1z1+ X222 . Then the kernel R(z,y):=
Ko(alr — y|) € R, £ = (=i61,—182), T = 2,
P(A) =1, Q) = 3 +a?, &(z,y,\)dp(}) =
(2m) "L exp{iX- (z — y)}dA.

8. Comnsider the equation |
exp(—alz — y|)
h(y)dy = f(x),
[ S Eh)dy = f(a)
reDCR, a>0, (15)

with kernel (12). By Theorem 1, one obtains the
unique solution to equation (15) in H~1(D):

o f ou

h(z) = (—A+a®)f + (8_]\—7 — 8_N> ér, (16)
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where u is the unique solution to the Dirichlet prob-
lem in the exterior domain Q:=R3\ D:

(—A+a2)u=0 in 2, ’u,|[‘=f|1", (17)

I' = 0D = 91 1is the boundary of D, and dr is
the delta function with support I'.

Let us derive formula (16). For kernel (12) one
has p =0, ¢ = 2, P(’\) =1, Q(A) = >\2+02,
s=1,a=3=1,and

h(z) = (=A + a*)G, (18)
with - .
G={ffn’ (19)
u in (Q,

and u is the solution to (17). Indeed, since P()\) =
1,one has v=0 and g = f. In order to compute
h by formula (18) one uses the definition of the
derivative in the sense of distributions.
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For any ¢ € Cg°(R") one has:
(A +4d*G,¢) = (G,(-A +a%)9)
= / f(=A + a?)gdz + / u(—A + a?)pdz
D Q
= / (-A + a®) fodz + / (—A + a®)uddz
D Q
op Of 0¢ ou
- [ s =ave) o+ | (vay —ean)

of ou
= | (-A+a®)fed (———> ds,
/D( +a°)f¢o :v+/r 5N N Pds 0

where the condition v = f on I' was used. Formula
(20) is equivalent to (16).

9. Consider the equation

o /D Ko(ale — y)h(y)dy = f(z),

re€DCR? a>0, (21)
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where D = {z : =z € R?,|z|] < b}, and Kpy(z)
is given by formula (14). The solution to (21) in

H~1(D) can be calculated by formula (16) in which
u(z) can be calculated explicitly

SRS

where z = (r,¢), (r,¢) are polar coordinates in
R?

n=—o~oo

27

foi=(2m)7" [ f(b,¢)exp(—ing)dp,  (23)

0
K, (r) is the modified Bessel function of order n,
which decays as » — +00. One can easily calculate

g—;\‘, r in formula (16):

ou | _ Ou L exp(ing) K] (ab)
ON = or 'r=b— Z afn K, (ab) '

B (24)
Formulas (16) and (24) give an explicit analytical
formula for the solution to equation (21) in H (D).
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IV.NUMERICAL SOLUTION OF THE BA-
SIC INTEGRAL EQUATION.

We illustrate the ideas using the following simple
equation:

Rh := / exp(-lz ~ uDh(y)dy = (@)

~1<z<1. (1)

Here r=1, p=0, ¢g=2, s=1, a=1, and the
solution to (1) is:

SRS AR IS (SRS E)

ST URT )] )

It is not possible to solve (1) by a regularization
method: (1) does not have integrable solutions, in
general.
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Look for the solution of the form:
hn= ) (), (3)
j=-2

where

#i(z)=cos|j = (@ +1)], 0< j < 00, ¢-1=d(z — 1)

b_o=06(z +1). (4)

Find the coefficients from the condition:
| Rhy — f |l1=min. . (5)

I have proved that (5) defines uniquely the coeffi-
cients, and

| hn —h||-1—0 as n— 0. (6)

The approximate solution is stable in the following
sense
| hn — B ||-1< ¢ || Rhn = f |1, (7)
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where ¢ > 0 is a constant which does not depend on
n and f € H!', it depends on the kernel R(z,y).
An explicit bound on c¢ is given in terms of the
quantity:

inf {(1+ )/ P(NQTI N =7 >0,

c=|| R lgig1<1
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V. SINGULAR PERTURBATION.

Rh.+¢h.=f, fe H, . :==H%, R:H_— Hy,

(1)
where H_ :=H . Let Rh=f.

Theorem 1. One has h. ~h in H_ as e > 0.

Proof. One has
c||he||2 < (Rhe, he) < || fll+1lhell-
Thus

|he||l- < ¢, and he—g n H_,
where >0 stamds for mrous estimation constan®.
Claim1l: g=h.

Proof of Claim 1: (Rh.,p) + €(he,p) = (f,p)
for all p € H, . Since (Rhe,p) = (he, Rp), and
because €(he,p) — 0 as € — 0, one gets: (Rg —
f,p)=0,Vpe Hy, so Rg=f,and g=~h by the
injectivity of R. U
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