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Metric space M = (V, d)

set V of points

y

z

symmetric distances d(x,y)

triangle inequality

d(x,y) ≤ d(x,z) + d(z,y)
x



doubling dimension of a metric space

Dimension dimD(M) is the smallest k such that

every ball B(x, 2R) with x in V

can be covered by 2k balls B(y, R) for y in V.

x

2R



facts about doubling

Euclidean space (ℜk ,|·|p) has doubling dimension ≈ k

The notion of doubling dimension behaves smoothly 
under metric distortion

definition (almost) closed under taking submetrics

Turns out to be super-useful as a notion of metric “complexity”

jargon: “doubling” = family of metrics with doubling dimension 
bounded by some absolute constant c independent of n.



Dimension dimD(M) is the smallest k such that

every set S with diameter DS

can be covered by 2k sets of diameter ½DS

the doubling dimension

D



Suppose a metric (X,d) has doubling dimension k.

If any subset S ⊆ X of points has 

all inter-point distances lying between δ and ∆

a property of doubling

then |S| ≤ (2∆/δ)k

Proof: recursively apply the definition…



Suppose a metric (X,d) has doubling dimension k.

If any subset S ⊆ X of points has 

all inter-point distances lying between δ and ∆

a property of doubling

then |S| ≤ (2∆/δ)k

δδδδ

∆/2∆/2∆/2∆/2

this 2-dim set 

has O(∆∆∆∆/δδδδ)2 points



Uniform metric: All non-zero distances equal to R

2-uniform metric: All non-zero distances in [R,2R]

alternate characterization

Doubling Dimension k

iff

largest 2-uniform submetric has ≈ 2O(k) points



graphs and metrics
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multiple representations…



two kinds of metric properties

intrinsic or “geometric” or simply “metric”

properties that depend merely on interpoint distances

e.g.:

the metric has doubling dimension at most 50.the metric has doubling dimension at most 50.

or the metric embeds isometrically into normed space N

or the metric satisfies the 4-point condition



two kinds of metric properties

intrinsic or “geometric” or simply “metric”

properties that depend merely on interpoint distances

representational or “graph theoretic” or “topological”

properties related to the graphs that generate the metricproperties related to the graphs that generate the metric

e.g., the metric can be generated by a tree

or generated by a planar graph…



their interplay

sometimes things work out perfectly:

a metric satisfies the 4-point condition

iff

it is representable by a (graph-theoretic) tree



their interplay

sometimes things work out perfectly:

any metric that is generated by an outerplanar graph

embeds into ℓ isometricallyembeds into ℓ1 isometrically



their interplay

sometimes the problems are harder:

can we find geometric properties that characterize

representability by planar graphs?

or:

given a planar graph, how well can it embed into ℓ1?



the high-level question

What are connections between graph structure and 

the properties of metrics generated by these graphs?the properties of metrics generated by these graphs?



a more specific question…

given a doubling metric, 

can it be represented as a graph

duh…

that is unweightedthat is unweighted

of course…

such that the doubling dimension 

of the resulting graph metric is also small?

hmm, let me think…



the q., rephrased

Given a metric (V,d) with doubling dimension k

Is there an unweighted graph (V’,E’) with V ⊆ V’ such that

a) its shortest-path metric d’(.,.) agrees with d(.,.) 

when restricted to V × Vwhen restricted to V × V

i.e.,    d’(x,y) = d(x,y) for all x,y in V × V

b) the doubling dimension of d’ is close to k



why do we care?

Unweighted graphs are simpler to argue about.

E.g., doubling tree metrics embed into constant-dimensional 

Euclidean space with constant distortion. [GKL ’03, LNP ‘06]

Proof for unweighted trees: 2 pages

Proof for weighted trees: 20 pages

Having this “reduction” theorem: priceless



the q., rephrased

Given a metric (V,d) with doubling dimension k

Is there an unweighted graph (V’,E’) with V ⊆ V’ such that

a) its shortest-path metric d’(.,.) agrees with d(.,.) 

when restricted to V × Vwhen restricted to V × V

i.e.,    d’(x,y) = d(x,y) for all x,y in V × V

b) the doubling dimension of d’ is close to k



simple answer: no
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how about a little distortion?

Given a metric (V,d) with doubling dimension k

Is there an unweighted graph (V’,E’) with V ⊆ V’ such that

a) its shortest-path metric d’(.,.) almost agrees with d(.,.) a) its shortest-path metric d’(.,.) almost agrees with d(.,.) 

when restricted to V × V

i.e.,    d’(x,y) ≈≈≈≈ d(x,y) for all x,y in V × V

b) the doubling dimension of d’ is close to k



our results(1)

Given a metric (V,d) with doubling dimension k

there is an unweighted graph (V’,E’) with V ⊆ V’ such that

– Distances in (V’,E’) are within (1+ǫ) of d– Distances in (V’,E’) are within (1+ǫ) of d

– Doubling dimension of (V’,E’) is O(k log ǫ -1)



“completing” a metric

Given a graph, view each edge of length ℓe as a 

continuous segment of length ℓe

We find a graph G = (V’,d’) representing metric (V,d) such that 

even when we complete it to get Conv(G), we still have the 

bound on the dimension.



our results(1)

Theorem 1:

Given a metric (V,d) with doubling dimension k

there is a weighted graph G’ = (V’,E’) with V ⊆ V’ such that

– Distances in G’ are within (1+ǫ) of d– Distances in G’ are within (1+ǫ) of d

– Doubling dimension of Conv(G’) is O(k log ǫ -1)



our results(2)

Theorem 2:

Given a tree metric T = (V,d) with doubling dimension k

there is a weighted tree T’ = (V’,E’) with V ⊆ V’ such that

– Distances in T’ are within (1+ǫ) of d– Distances in T’ are within (1+ǫ) of d

– Doubling dimension of Conv(T’) is O(k + log log ǫ -1)



our results(3)

Lower bounds: 

Dimension increase of loglog ǫ -1 for trees is tight.

Dimension blowup of log ǫ-1 for general metrics (sort of) tight.*

q: what is the correct bound for general metrics?

* if we restrict ourselves to metrics that don’t have extra “Steiner” points 



in the rest of the talk…

The lower bound for trees.

A structure theorem.

The upper bound for trees.

Outline of the general upper bound.



the lower bound example

2

22 23

This metric has doubling dimension O(1).

Any unweighted graph representing this metric to within 

distortion (1+ǫ) has doubling dimension Ω(loglog ǫ -1)

1 2n



the lower bound example

1

2

22 23

2n



in the rest of the talk…

The lower bound for trees.

A structure theorem.

The upper bound for trees.

Outline of the general upper bound.



a structure theorem

Long edge: Given a weighted graph H=(VH,EH),  a vertex x ∈ VH
and a radius R>0, an edge {v,w} is long w.r.t. x,R if

– d(x,v) ≤ R

– ℓ(e) > R

2

22 23

Structure Theorem:

the convex completion conv(H) has doubling dimension Θ(k)

iff at most 2k long edges for any x,R.   (Assume dim(H) ≤ k.)
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2n



the proof (sketch)

the convex completion conv(H) has doubling 

dimension Θ(k) iff at most 2k long edges for 

any x,R.   (Assume dim(H) ≤ k.)



the proof (sketch)

the convex completion conv(H) has doubling 

dimension Θ(k) iff at most 2k long edges for 

any x,R.   (Assume dim(H) ≤ k.)



so, can now redefine goal

Goal: Find a weighted graph H= (VH,EH) with V ⊆ VH such that

– Shortest path metric of H within (1+ ) of d– Shortest path metric of H within (1+ǫ) of d

– H has only a few long edges for any node x, radius R



in the rest of the talk…

The lower bound for trees.

A structure theorem.

The upper bound for trees.

Outline of the general upper bound.



recall the result…

Theorem 2:

Given a tree metric T = (V,d) with doubling dimension k

there is an weighted tree T’ = (V’,E’) with V ⊆ V’ such that

– Distances in T’ are within (1+ǫ) of d– Distances in T’ are within (1+ǫ) of d

– Doubling dimension of Conv(T’) is O(k + log log ǫ -1)

equivalently, number of long edges in T’ is  2O(k) × O(log ǫ-1)



e.g.: exponential weighted star 
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“exponential tail”



standard tool: nets

Nets: A set of points N is an r-net of V if

– d(u,v) ≥ r for any u,v ∈ N

– For every w ∈ V \ N, there is a u ∈ N with d(u,w) < r

r



standard tool: nets

Nets: A set of points N is an r-net of V if

– d(u,v) ≥ r for any u,v ∈ N

– For every w ∈ V \ N, there is a u ∈ N with d(u,w) < r

Fact: If a metric has doubling dim k and N is an r-net

⇒ B(x,2r) � N ≤ O(1)k



recursive nets

2
4

8

16

so you take a 2-net N1 of these points

Now you can take a 4-net N2 of this net

And so on…

Suppose all the points were at least unit distance apart



recursive nets

N2

N3

N4

N0 = V

Nt is a 2t-net of the set Nt-1

N1

N2

⇒ Nt is a 2t+1-net of the set V (almost)



Algorithm for trees

Algorithm for Trees

Construct the recursive nets {Nt} for the tree metric.

For each value of t

Attach an exponential tail with t nodes to vertices in N \ NAttach an exponential tail with t nodes to vertices in Nt \ Nt+1
Move edges of length 2t/ǫ to tails of “parent” nodes in Nt
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the process in cartoons

Fact 1: no distortion between T and T’’

Fact 2: distortion between T’’ and T’ is at most (1+O(ǫ))



the process in cartoons

Fact 1: no distortion between T and T’’

Fact 2: distortion between T’’ and T’ is at most (1+O(ǫ))

Fact 3: doubling dimension of T’’ = O(dim(T))

⇒ dim(T’) = O(dim(T)) using fact 2.



the final fact

Lemma: For any node x, radius R, 

the number of long edges in T’ is 2O(k) × O(log ǫ-1)

Proof sketch. (for interesting case when x in original point set V)

No edge of length > R/ǫ has endpoint in B(x,R) any more.

Recall: these are the edges that have

a) one endpoint within B(x,R)

b) length > R.
No edge of length > R/ǫ has endpoint in B(x,R) any more.

Hence long edges have length between R and R/ǫ

Need to show at most 2O(k) edges of each length scale.

Since log 1/ǫ relevant length scales, we’ll be done.

b) length > R.



so finally… (proof by picture)



so finally… (proof in words)

consider all long edges {ui, vi} of length ~2t with ui in B(x,R)

all these vi’s contained within B(x,R+2t+1)⊆ B(x,2t+2)

the path x → up has length R, cannot contain long edges

same for x → uqsame for x → uq

tree path up → uq is the symmetric difference of these paths

Hence vp → vq contains both the long edges, distance at least 2.2t. 

Now all the vi’s are in a ball of radius 2t+2

and are at least 2t+1 apart.

So only 2O(k) of them. 



last part of the talk now

The lower bound for trees.

A structure theorem.

The upper bound for trees.

Outline of the general upper bound.



the theorem for general metrics

Theorem 2:

Given a metric (V,d) with doubling dimension k

there is an weighted graph G’ = (V’,E’) with V ⊆ V’ such that

– Distances in G’ are within (1+ ) of d– Distances in G’ are within (1+ǫ) of d

– Doubling dimension of Conv(G’) is O(k log ǫ -1)

equivalently, number of long edges in G’ is 2O(k log ǫǫǫǫ-1)



General Graphs

[Chan G. Maggs Zhou ’05] gave bounded-degree spanners

for doubling metrics.

This is a (sparse) graph G’ = (V, E’) such that

a) degree of each node in G’ is (1/ǫ)O(k)a) degree of each node in G’ is (1/ǫ)O(k)

b) distances in (V,d) are maintained to within (1+ǫ)

We can show that this spanner G’ has few long edges

Thus taking conv(G’) suffices to prove the theorem.



the idea of the construction

N2

N3

N4

N0 = V

N1

N2

Add edges between all pairs in Nt at distance at most O(2t/ǫ)

This gives a sparse spanner (not constant degree, though)



the idea of the construction(2)



summary

Given a doubling metric, we show there is a nearby 

graph which can be made ‘convex’ without increasing 

the doubling dimension.the doubling dimension.

Similar result for doubling tree metrics

Allows us to reason about unweighted graphs/trees.



and two questions

Q. Improve bounds for general graphs?

(need to have Steiner points to get better, remember.)

Q. Greater understanding of the interplay between topology of 

graphs and properties of the metrics generated on them…



thanks!


