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Mean-field game models

Mean-field games

I Mean-field game (MFG) theory is the study of strategic
decision making in large populations of interacting agents.

I MFGs were introduced in 2006/07 in the Engineering
community by P. Caines and his co-workers and in the
Mathematics community by J. M. Lasry and P. L. Lions.



Mean-field game models

The measure-potential framework

Many problems with large populations, including MFG, fit the
following framework:

I A probability density m for the population distribution;
I A "potential", "pressure", or "value function" u that encodes

the effects of the population in the environment;
I A PDE for u that depends on m (typically, a nonlinear

elliptic or parabolic equation)
I An evolution PDE for m driven by the potential u.



Mean-field game models

Applications

I Crowd and population models;
I Chemotaxis, herding, and flocking;
I Economic growth and socio-economic models;
I Price formation and price impact;
I Traffic flow;
I Energy systems.



Mean-field game models

Mean-field models

A canonical MFG comprises:
I a Hamilton-Jacobi (HJ) equation
I a transport of Fokker-Planck (FP) equation
I The HJ and the FP equations are fully coupled and the FP

equation is the adjoint of the linearization of the HJ
equation.



Mean-field game models

Monotonicity

I Monotonicity properties for MFGs encode crowd aversion
behavior;

I As a consequence of crowd aversion, agents then to
spread in a uniform way.



Derivation of mean-field games

Deterministic optimal control

Fix a Lagrangian, L(x , v) : Td × Rd → R, and a terminal cost,
ψ : Td → R, and set

u(x , t) = inf
x

∫ T

t
L(x, ẋ)ds + ψ(x(T )),

where the infimum is taken over all Lipschitz trajectories with
x(t) = x .



Derivation of mean-field games

Fundamental questions

Under natural assumptions on L (e.g. strict or uniform convexity
in v ) and ψ (e.g. boundedness from below), can we:

I Prove the existence of optimal trajectories, x;
I Characterize the value function, u;
I Compute optimal trajectories.



Derivation of mean-field games

Existence of optimal trajectories

Existence of optimal trajectories can be proven by
semicontinuity arguments - the direct method in the calculus of
variations.
Furthermore, optimal trajectories solve the Euler-Lagrange
equation

d
dt
∂L
∂ẋ
− ∂L
∂x

= 0.

The value function solves a PDE - the Hamilton-Jacobi
equation.



Derivation of mean-field games

Hamilton-Jacobi equation

The Hamiltonian is

H(p, x) = sup
v∈Rd

−v · p − L(x , v).

If the value function u is smooth then it solves the
Hamilton-Jacobi equation

−ut + H(x ,Dxu) = 0

together with the terminal condition

u(x ,T ) = ψ(x).

In general, the value function is only a viscosity solution.



Derivation of mean-field games

Verification theorem

Verification Theorem

If L is convex and u is a smooth solution to the Hamilton-
Jacobi equation then

ẋ = −DpH(x,Dxu(x, t))

is an optimal trajectory.



Derivation of mean-field games

ODE flows

Consider the ODE
ẋ = b(x, t)

and the corresponding flow φt (x)

x(t) = φt (x(0)).



Derivation of mean-field games

Push-forward

The push-forward, φt]m0, of a probability measure m0(x)
through φt is the probability measure defined by∫

ψ(x)dm(x , t) =

∫
ψ(φt (x))dm0(x).



Derivation of mean-field games

Transport equation

Then, m(x , t) is a weak solution of the transport equation

mt + div(b(x , t)m) = 0.

In particular, if b = −DpH(Dxu(x , t), x),

mt − div(DpHm) = 0.



Derivation of mean-field games

Mean-field games

In a mean-field game, L depends on m. The value function is

u(x , t) = inf
v

E
∫ T

t
L(x, ẋ,m(·, s))ds + ψ(x(T )),

where the evolution of m is determined by the optimal
trajectories.



Derivation of mean-field games

Initial-terminal value problem

u solves the Hamilton-Jacobi equation

−ut + H(Dxu, x ,m) = 0,

and agents follow the optimal dynamics. Thus, m solves

mt − div(DpHm) = 0.

Additionally,

u(x ,T ) = ψ(x) m(x ,0) = m0(x).



Derivation of mean-field games

Stationary problem

Find u,m : Td → R, m probability, and H ∈ R solving{
H(x ,Du,m) = H
− div(DpHm) = 0.

Then, ũ(x , t) = u(x) + Ht and m̃(x , t) = m(x) solves the
time-dependent problem.



Derivation of mean-field games

Key questions

I Can we characterize uniqueness for a wide class of
mean-field games?

I Can we solve explicit examples?
I Can we prove existence?
I Can we develop effective numerical methods?



Derivation of mean-field games

Model Hamiltonians and Lagrangians

An agents in state x and moving at speed v incurs a cost, L, by
unit of time

L(x , v ,m) = mα |v |
γ′

γ′
− V (x) + g(m),

V periodic, smooth, α ≥ 0, γ > 1, 1
γ + 1

γ′ = 1.
The corresponding Hamiltonian is

H(x ,p,m) =
mα

γ

∣∣∣ p
mα

∣∣∣γ + V (x)− g(m).



Derivation of mean-field games

Model interpretation

I Cost of moving: mα |v |γ
′
, 1
γ + 1

γ′ = 1.

I α > 0 – congestion
I large γ′ (small γ) – higher cost of moving at high speed

I −V (x) accounts for spatial preferences
I g(m) encodes interactions:

I Non-local: g(m) = G(η ∗m), η smooth mollifier;
I Power-like: g(m) = mα;
I Logarithm: g(m) = ln m;
I Inverse power g(m) = − 1

mα .



Derivation of mean-field games

Parabolic MFGs

By adding noise to the agent’s dynamics, we obtain parabolic
(or elliptic, for stationary problems) MFGs:{

−ut + H(x ,Du,m) = ∆u
mt − div(DpHm) = ∆m.



Derivation of mean-field games

Mean-field games with constraints

Constraints

I Agents can feel the effect of other agents either directly,
e.g. by looking at agents’s density in a neighborhood, or
indirectly, through constraints.

I Density constraints that may be imposed through location
surcharges.

I Integral constraints, e.g. supply or demand constraints,
can be imposed through a price.



Derivation of mean-field games

Mean-field games with constraints

Pointwise constraints

We look at a MFG with pointwise constraints

β(m) = 0,

where β is a convex function. A way to enforce the constraint is
to add Lagrange multiplier, λ(x). An example is the stationary
model 

H(x ,Du,m) = H + λ(x)β′(m)

− div(DpHm) = 0
β(m) = 0.



Derivation of mean-field games

Mean-field games with constraints

Density constraints

For β(m) = max(m − ϕ,0), the pointwise constraint β(m) = 0
becomes

m ≤ ϕ.

Formally, we obtain the MFG{
H(x ,Du,m) = H + λ(x)1m−ϕ=0

− div(DpHm) = 0.

λ(x) is a location surcharge at the places where the constraint
is saturated.



Derivation of mean-field games

Mean-field games with constraints

Integral constraints

I The actions agents can take can be constrained by global
production constraints;

I These global constraints determine a price agents need to
pay.



Derivation of mean-field games

Mean-field games with constraints

Example

Consider the Lagrangian

L(x , v , $) =
v2

2
+$v − V (x)

where
I The quadratic term represents non-linear costs faced by

agents;
I $v is the price paid by moving at speed v .

Given $ the corresponding MFG (which is uncoupled) is{
−ut + ($+ux )2

2 + V (x) = 0
mt − (m($ + ux ))x = 0.

Each agent moves at speed

v = −($ + ux ).



Derivation of mean-field games

Mean-field games with constraints

Global production constrains

We require an average production constraint∫
($ + ux )m = ζ(t)

where ζ(t) corresponds to an aggregate production constraint.



Derivation of mean-field games

Mean-field games with constraints

A MFG with integral constrains

Hence, the MFG with integral contraint problem is: find u, m,
and $ satisfying

−ut + ($+ux )2

2 + V (x) = 0
mt − (m($ + ux ))x = 0∫

($ + ux )m = ζ(t),

with initial-terminal conditions for u and m.



Monotone operators in MFGs

Monotone operators

Let H be a Hilbert space. A : D ⊂ H → H is a monotone
operator if

(A(w)− A(z),w − z) ≥ 0, ∀w , z ∈ D.

A variational inequality is the problem: find u ∈ D such that

(A(w), z − w) ≥ 0, ∀z ∈ D.



Monotone operators in MFGs

Examples of monotone operators

I For H = R, monotone operators are increasing functions
I Gradients of convex functions are monotone operators



Monotone operators in MFGs

Variational inequalities

If A : H → H is monotone, then A(w) = 0 if and only if w
satisfies

(A(w), z − w) ≥ 0, ∀z ∈ H.



Monotone operators in MFGs

Monotone building blocks - I

The operator

A
[
m
u

]
=

[
−u
m

]
monotone in L2(Td )× L2(Td ).
Proof: (

A
[
m
u

]
− A

[
m̃
ũ

]
,

[
m
u

]
−
[
m̃
ũ

])
=

∫
Td
−(u − ũ)(m − m̃) + (m − m̃)(u − ũ) = 0.



Monotone operators in MFGs

Monotone building blocks - II

The operator

A
[
m
u

]
=

[
ut
mt

]
monotone for (u,m) ∈ L2([0,T ])× L2([0,T ]) with m(0) = m0
and u(T ) = uT .
Proof: (

A
[
m
u

]
− A

[
m̃
ũ

]
,

[
m
u

]
−
[
m̃
ũ

])
=

∫ T

0
(u − ũ)t (m − m̃) + (m − m̃)t (u − ũ)

=

∫ T

0

d
dt

(u − ũ)(m − m̃)dt = 0,

due to the boundary conditions.



Monotone operators in MFGs

Monotone building blocks - III

If g is increasing, the operator

A
[
m
u

]
=

[
g(m)

0

]
monotone in D ⊂ L2(Td )× L2(Td ).
Proof: (

A
[
m
u

]
− A

[
m̃
ũ

]
,

[
m
u

]
−
[
m̃
ũ

])
=

∫
Td

(g(m)− g(m̃))(m − m̃) ≥ 0,

and the inequality is strict if g is strictly increasing and m 6= m̃.



Monotone operators in MFGs

Monotone building blocks - IV

If H(x ,p) is convex in p, the operator

A
[
m
u

]
=

[
−H(x ,Du)
− div(mDpH)

]
monotone in its domain D ⊂ L2(Td )× L2(Td ) for m > 0.
Proof: integration by parts...



Monotone operators in MFGs

∫
T

(
−u2

x
2

+
ũ2

x
2

)
(m − m̃) + (−(mux )x + (m̃ũx )x ) (u − ũ)

=

∫
T

m
(
−u2

x
2

+
ũ2

x
2
− ux (ux − ũx

)
+

∫
T

m̃
(
− ũ2

x
2

+
u2

x
2
− ũx (ũx − ux )

)
=

∫
T

m + m̃
2

(ux − ũx )2 ≥ 0.



Monotone operators in MFGs

Assembling the blocks - stationary

Then, if H(x ,p) is convex in p and g is increasing, the operator

A
[
m
u

]
=

[
−u − H(x ,Du) + g(m)

m − div(DpHm)− 1

]
monotone in its domain D ⊂ L2 × L2.



Monotone operators in MFGs

Assembling the blocks - time-dependent

Then, if H(x ,p) is convex in p and g is increasing, the operator

A
[
m
u

]
=

[
ut − H(x ,Du) + g(m)
mt − div(DpHm)− 1

]
monotone in its domain D ⊂ L2 × L2.



Monotone operators in MFGs

Other model monotone MFGs

Stationary {
∆u − H(x ,Du) + g(m) + H = 0
−∆m − div(DpHm) = 0.

Stationary congestion problem{
∆u −mαH(x , Du

mα ) + H = 0
−∆m − div(DpHm) = 0.

Here, g(m) is increasing (e.g. mγ or ln m), or non-local
monotone, H(x ,p) convex in p, 0 < α < 2.



Monotone operators in MFGs

Mean-field games with constraints

Pointwise constraints

For a convex function, β, and λ(x) ≥ 0, the operator

A

m
u
λ

 =

λβ′(m)
0

β(m)


is monotone in D ⊂ L2 × L2 × L2.



Monotone operators in MFGs

Mean-field games with constraints

Price models

For H(x ,p) convex in p, the operator

A

m
u
$

 =

 −H(x , $ + ux )
− div(mDpH(x , $ + ux ))∫

DpH(x , $ + ux )m


is monotone in D ⊂ L2 × L2 × R.
Proof: ...



Monotone operators in MFGs

Lasry-Lions uniqueness method

Uniqueness

Often, monotonicity gives uniqueness. Given two solutions
(m,u) and (m̃, ũ), we have

0 =

(
A
[
m
u

]
− A

[
m̃
ũ

]
,

[
m
u

]
−
[
m̃
ũ

])
≥ 0.



Monotone operators in MFGs

Lasry-Lions uniqueness method

Example

For

A
[
m
u

]
=

[
ut − u2

x
2 + m

mt − (mux )x

]
,

we get

0 =

∫ T

0

∫
(m + m̃)

(ux − ũx )2

2
+ (m − m̃)2 ≥ 0.

This implies m = m̃ and then, uniqueness of solution of

−ut +
u2

x
2

= m

gives u = ũ.



Mean-field games with a variational structure

Separated MFGs without congestion

Solve {
H(x ,Du) = g(m) + H
− div(mDpH(x ,Du)) = 0

for u,m : Td → R, m ≥ 0, and H ∈ R.
Let G : R+

0 → R, convex, and g = G′.



Mean-field games with a variational structure

Constrained minimization

Minimize
(m, v) 7→

∫
Td

m(x)L(x , v(x)) + G(m)

under the constraint

− div(m(x)v(x)) = 0,

m ≥ 0 and
∫
Td mdx = 1.



Mean-field games with a variational structure

Dual minimization

Minimize
u 7→

∫
Td

G∗(H(x ,Du))dx .



Mean-field games with a variational structure

Joint minimization

Minimize (or look for critical points)

(m,u) 7→ J[m,u] =

∫
Td
−m(x)H(x ,Dxu) + G(m(x))dx ,

m ≥ 0 and
∫
Td mdx = 1.



Mean-field games with a variational structure

MFG as a (pseudo) gradient

The preceding functional is convex in m and concave in u.
Hence [

m
u

]
7→
[

δJ
δm
− δJ
δu

]
is a monotone map.



Mean-field games with a variational structure

A functional for congestion problems

Let

J[u,m] =

∫
Td

(
|P + Du|γ

γ(α− 1)mα−1 − Vm + G(m)

)
dx .

Then, if (u,m), with u,m : Td → R and m > 0, is a smooth
enough minimizer of J under the constraint∫

Td
m dx = 1,

then (u,m) solves{
|P+Du|γ
γmα + V (x) = g(m) + H
− div(m1−α|P + Du|γ−2(P + Du)) = 0.



Mean-field games with a variational structure

MFGs as gradients

For 1 < α ≤ γ, the preceding functional is jointly convex in m
and u. Hence [

m
u

]
7→
[
δJ
δm
δJ
δu

]
is a monotone map.



Mean-field games with a variational structure

Set
J̄[u,m] =

∫
Td

[
f̄ (∇u,m)− Vm + G(m)

]
dx , (1)

where, for (p,m) ∈ Rd × R+
0 ,

f̄ (p,m) =


|P+p|γ

γ(α−1)mα−1 if m 6= 0,

+∞ if m = 0 and p 6= −P,
0 if m = 0 and p = −P.

(2)



Mean-field games with a variational structure

Existence of minimizers

Assume that V ∈ L∞(Td ) and that there exist positive con-
stants, θ and C, such that

G(z) ≥ 1
C

zθ+1 − C for all z > 0,

then the preceding minimization problem has a solution
(u,m) ∈W 1,γ(1+θ)/(α+θ) × L1+θ for all 1 < α ≤ γ.

Proof: Convexity and Coercivity.



Mean-field games with a variational structure

Proof - Convexity

Suppose that 1 < α ≤ γ. Then, the function f̄ is convex and
lower semi-continuous in Rd × R+

0 .



Mean-field games with a variational structure

Proof - Coercivity

Suppose
sup
n∈N

∣∣J̄[un,mn]
∣∣ ≤ C.

Let
Un = {x ∈ Td : ∇un 6= −P}.

Then ∫
Td

f̄ (∇un,mn) dx =

∫
Un

|P +∇un|γ

γ(α− 1)mα−1
n

dx ≤ C.



Mean-field games with a variational structure

Proof - Coercivity

Because q = γ
α , using the prior estimate and Young’s inequality,

we obtain∫
Td
|P +∇un|q dx =

∫
Un

|P +∇un|
γ
α dx =

∫
Un

|P +∇un|
γ
α

m
α−1
α

n

m
α−1
α

n dx

≤ 1
α

∫
Un

|P +∇un|γ

mα−1
n

dx +
α− 1
α

∫
Td

mn dx

≤ C.



Monotonicity and explicit solutions

First-order MFGs

I First-order mean-field games with logarithmic
nonlinearities: {

H(Du, x) = ln m + H
− div(DpHm) = 0,

have smooth solutions (Evans).
I However, this is not the general situation. Even simple

MFGs as {
u2

x
2 + λV (x) = m + H(λ),

−(mux )x = 0,

may fail to have smooth solutions.



Monotonicity and explicit solutions

In this case, m is given by

m(x , λ) =
(
λV (x)− H(λ)

)+
,

and
u2

x
2

=
(
λV (x)− H(λ)

)−
.

If λ is small, the condition
∫
T m = 1 gives

H(λ) = λ

∫
T

V − 1;

that is,

m(x , λ) = 1 + λ

(
V (x)−

∫
T

V
)
.

For |λ| large, the condition m > 0 fails.



Monotonicity and explicit solutions

Formation of regions with m = 0 as λ increases

V (x) = λ sin(2π(x + 1/4))


movie_m_monotone.avi
Media File (video/avi)



Monotonicity and explicit solutions

Monotonicity and the current method - 1d

Current formulation

Consider the MFG{
(ux+p)2

2 + V (x) = g(m) + H,
−(m(ux + p))x = 0.

(3)

From the preceding equation, j = m(ux + p) is constant. Next,
we solve for ux and replace it in the first equation. in the first
equation.



Monotonicity and explicit solutions

Monotonicity and the current method - 1d

Monotonicity and solvability

For j 6= 0, we have
j2

2m2 − g(m) = H − V (x),

m > 0,
∫
T

mdx = 1,∫
T

1
m dx = p

j .

If g is monotone, first equation above has a unique solution m
for each j , H, and x . Moreover, m > 0 and H is determined by
the normalization condition

∫
m = 1.



Monotonicity and explicit solutions

Monotonicity and the current method - 1d

The non-monotone case, g(m) = −m


j2

2m2 + m = H − V (x);

m > 0,
∫
T

mdx = 1;∫
T

1
m dx = p

j .

(4)
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Monotonicity and explicit solutions

Monotonicity and the current method - 1d

Explicit solutions for g(m) = −m, j > 0

A lower bound for H is

H ≥ H
cr
j = max

T
V +

3j2/3

2
. (5)

For any H satisfying (5), let m−
H

and m+
H

be the solutions of

j2

2(m±
H

(x))2
+ m±

H
(x) = H − V (x),

with 0 ≤ m−
H

(x) ≤ m+
H

(x).



Monotonicity and explicit solutions

Monotonicity and the current method - 1d

Explicit solutions for g(m) = −m, j > 0

The function m is agrees almost everywhere with m±. However,
because

p + ux =
j
m
,

the viscosity condition implies that m can only have upwards
jumps.



Monotonicity and explicit solutions

Monotonicity and the current method - 1d

Stationary solutions for different current levels

V (x) = sin(2π(x + 1/4)), each frame is a stationary solution for
some j > 0.


movie.avi
Media File (video/avi)



Monotonicity and explicit solutions

Monotonicity and the current method - 1d

Zero current unhappiness traps and non-uniqueness

V (x) = sin(2π(x + 1/4)), each frame is a solution for j = 0.


movie_unhappiness_m.avi
Media File (video/avi)
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Monotonicity and explicit solutions

Monotonicity and the current method - 1d

Lack of uniqueness of solutions

V (x) = sin(4π(x + 1/8)), each frame is a stationary solution for
j = 0.


movie_mult_sols.avi
Media File (video/avi)



Monotonicity and explicit solutions

Monotonicity and the current method - 1d

"Unhappiness traps"

I Our solutions suggest that when g(m) = −m agents prefer
to stick together, rather than be at a better place
(unhappiness traps).

I These results are consistent with the intuition that g
models the crowd seeking preference of the agents.



Monotonicity and explicit solutions

Monotonicity and the current method - 1d

Vanishing viscosity instability
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Stability (monotone) vs instability (anti-monotone) - no viscosity
dashed.



Existence

Prior results

Stationary, elliptic MFGs

Theorem (G., Patrizi, Voskanyan)
Suppose H has quadratic growth, g(m) = ln m or g(m) = mα,
0 < α < αd . Then, the MFG{

−∆u + H(x ,Du) = g(m) + H
−∆m − div(DpH(x ,Du)m) = 0,

has a unique classical solution u,m ∈ C∞(Td ), and H ∈ R.
This problem was examined first studied by G. and H.
Sanchez-Morgado. Later, Voskanyan and Pimentel who
considered a general growth Hamiltonian, and, afterwards, M.
Cirant developed improved value αd . Recently, Boccardo,
Orsina and Porretta examined stationary problems in the light
of weak solutions.
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Existence

Prior results

Congestion

Theorem (G., Mitake)
For 0 < α < 1, there exists a classical solution (u,m) to the
congestion MFG{

u + V (x) + |Du|2
2mα = ∆u + H

m − div(m1−αDu) = ∆m + 1.

Recently, G. and Evangelista proved the existence of solutions
for congestion with general subquadratic Hamiltonians
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Existence

Prior results

Time-dependent problems

I Initial-terminal problem{
−ut + H(x ,Du) = ∆u + g(m)

mt − div(DpH(x ,Du)m) = ∆m,

m(x ,0), u(x ,T ) given, g(m) = ln m or g(m) = mα, H sub
or superquadratic.
Weak sol.: Porretta; Smooth sol.: G., Pimentel, and
Morgado; First-order: Cardaliaguet, Graber; Cardaliaguet,
Porretta and Tonon. Log: G., Pimentel;

I Short-time congestion:{
−ut + mαH

(
x , Du

mα

)
= ∆u

mt − div(DpHm) = ∆m

with m(x ,0), u(x ,T ) given, 0 < α < 1, T small.
Weak sol.: Graber; Smooth sol.: G. and Voskanyan



Existence

Prior results

Additional models

I Logistic problems. Fokker-Planck equation becomes

−∆m − div(DpHm) = m(1−m) + 1.

A key difficulty is the lack of monotonicity.
G. and Ribeiro

I Obstacle-type problems:{
βε(u) + H(Du, x) = g(m)

β′(u)m − div(DpHm) = 1.

Here, βε is an increasing function such that

lim
ε→0

βε(x) =

{
+∞ if x > 0
0, otherwise.

G. and Patrizi - only first order. Similar techniques apply to
weakly coupled systems



Existence

Monotonicity and continuation method

Continuation method strategy

I Introduce a parameter, λ. For λ = 0, the model has an
explicit solution; λ = 1 corresponds to the desired problem.

I Prove a-priori estimates uniformly in λ.
I Show that the implicit function applies.



Existence

Monotonicity and continuation method

Monotonicity and a priori estimates

Energy estimates can be regarded as a consequence of the
monotonicity. For a solution (m,u) of

A
[
m
u

]
= 0

and any test function (m̄, ū)(
−A

[
m̄
ū

]
,

[
m
u

]
−
[
m̄
ū

])
=

(
A
[
m
u

]
− A

[
m̄
ū

]
,

[
m
u

]
−
[
m̄
ū

])
≥ 0.



Existence

Monotonicity and continuation method

Example

Consider the MFG {
−ut + u2

x
2 −m = 0

mt − (mux )x = 0,

with initial-terminal conditions m(x ,0) = m0 and
u(x ,T ) = uT (x).
The corresponding operator is

A
[
m
u

]
=

[
ut − u2

x
2 + m

mt − (mux )x

]
.



Existence

Monotonicity and continuation method

First, (
A
[
m
u

]
− A

[
m0
u0

]
,

[
m
u

]
−
[
m̄
ū

])
=

∫ T

0

∫
T

(m0 + m)
u2

x
2

+ (m −m0)(m −m0).

Second (
−A

[
m0
uT

]
,

[
m
u

]
−
[
m0
uT

])
is linear on (m,u).
Then, reorganizing the terms∫ T

0

∫
T

(m0 + m)
u2

x
2

+ m2 ≤ C(m0,uT ).



Existence

Monotonicity and continuation method

Monotonicity and the implicit function theorem

I To use the implicit function theorem, we need the linearized
operator to be an isomorphism and in particular injective.

I Formally, the monotonicity of the original operator gives
monotonicity of the linearized operator and hence
injectivity.



Existence

Monotonicity and continuation method

Monotonicity of the linearized operator

Let A be a monotone operator.

(A(w + εz)− A(w), z) ≥ 0)

Divide the preceding inequality by ε > 0 and we get

(Lz, z) ≥ 0

where L is the linearization of A around w . Often, this inequality
is strict for z 6= 0 and combined with Lz = 0 implies z = 0.



Existence

Monotonicity and continuation method

Example

Let

A
[
m
u

]
=

[
−u2

x
2 + m

−(mux )x

]
.

The linearized operator is

L
[
η
ϕ

]
=

[
−uxϕx + η

−(mϕx )x − (ηux )x

]
,

and (
L
[
η
ϕ

]
,

[
η
ϕ

])
=

∫
η2 + mϕ2

x ≥ 0.



Weak solutions for monotone MFGs

Weak solutions to variational inequalities

w is a weak solution of the variational inequality if

(A(z), z − w) ≥ 0

for all z ∈ D.
Solutions of the variational inequality are weak solutions.
Under continuity assumptions and if D is large enough, weak
solutions are solutions.



Weak solutions for monotone MFGs

Weak solutions - an example

If H = R, a montone operator, A, is an increasing function. If A
is continuous,

A(0) = 0

if and only if
A(z)(z − 0) = A(z)z ≥ 0

for all z.



Weak solutions for monotone MFGs

MFGs and variational inequalities

Consider the MFG{
u −∆u + H(x ,Du) = g(m)

m −∆m − div(DpHm) = 1.

Then, if H(x ,p) is convex in p and g is increasing, the operator

A
[
m
u

]
=

[
−u + ∆u − H(x ,Du) + g(m)

m −∆m − div(DpHm)− 1

]
is monotone in its domain D ⊂ L2 × L2.



Weak solutions for monotone MFGs

Weak solutions

A weak solution of the MFG is a pair (m,u), m ≥ 0, such that〈[
η
v

]
−
[
m
u

]
,A
[
η
v

]〉
D′(Td )×D′(Td ),C∞(Td )×C∞(Td )

≥ 0

for all (η, v) ∈ C∞(Td ;R+)× C∞(Td ).



Weak solutions for monotone MFGs

Existence of weak solutions

Main Theorem (Ferreira, G.)

Under suitable but general Assumptions, there exists a weak
solution, (m,u) ∈ D′(Td )×D′(Td ), m ≥ 0, to the MFG

A
[
m
u

]
=

[
0
0

]
.

Moreover, (m,u) ∈Mac×W 1,γ for some γ > 1 and
∫
Td m dx =

1.

Scope

First-order, second-order, degenerate elliptic, and conges-
tion problems satisfying monotonicity conditions.



Weak solutions for monotone MFGs

Existence of weak solutions

Main Theorem (Ferreira, G.)

Under suitable but general Assumptions, there exists a weak
solution, (m,u) ∈ D′(Td )×D′(Td ), m ≥ 0, to the MFG

A
[
m
u

]
=

[
0
0

]
.

Moreover, (m,u) ∈Mac×W 1,γ for some γ > 1 and
∫
Td m dx =

1.

Scope

First-order, second-order, degenerate elliptic, and conges-
tion problems satisfying monotonicity conditions.



Weak solutions for monotone MFGs

Proof - Minty method

Suppose Aε is a monotone approximation to A and wε a
solution of

Aε(wε) = 0.

Then
(Aε(z), z − wε) ≥ 0.

If wε ⇀ w in H and Aε(z)→ A(z) in H, then

(A(z),w − z) ≥ 0.



Weak solutions for monotone MFGs

Proof - regularization

To build solutions, we consider the regularized operator

Aε

[
η
v

]
= A

[
η
v

]
+ ε

[
η + ∆2pη

v + ∆2pv

]
+

[
βε(η)

0

]
,

where p is large enough, and βε(s) = 0 if s ≥ ε and
βε(s) = − 1

sq if 0 < s ≤ ε
2 .



Weak solutions for monotone MFGs

Proof - solutions to the regularized problem

Because p is large, mild growth conditions on H ensure the
existence of a unique classical solution with mε > 0 to

Aε

[
mε

uε

]
=

[
0
0

]
.



Weak solutions for monotone MFGs

Proof - structural hypothesis on H

To prove convergence of the regularized problem, we need
structural hypothesis on H. These are quite involved, but boil
down to monotonicity together with the identity

0 =

∫ [
mε − ε− 1 uε

]
Aε

[
mε

uε

]
implying weak pre-compactness of (mε,uε) as ε→ 0.



Weak solutions for monotone MFGs

Example

Theorem (Ferreira, G.)

Let κ be a standard mollifier, α > 0. Then, there exists a
weak solution u ∈ H1, m ∈ Lα+1, m ≥ 0 to{

u + |Du|2
2 + V (x) = mα + κ ∗m

m − div(mDu) = 1.

That is, for all (η, v) ∈ C∞, η > 0, we have∫
(v +

|Dv |2

2
+ V (x)− ηα − κ ∗m)(η −m)

+

∫
(η − div(ηDv)− 1)(v − u) ≥ 0.



Weak solutions for monotone MFGs

Example - further properties

Theorem (Ferreira, G.)

There exists a weak solution (u,m) such that−u − |Du|2

2
+ V (x) + mα + κ ∗m ≥ 0, in D′

m − div(mDu)− 1 = 0,a.e..

Moreover, if α > max
(d−4

2 ,0
)

(
− u − |Du|2

2
+ V (x) + mα + κ ∗m

)
m = 0

almost everywhere.



Weak solutions for monotone MFGs

Weak-strong uniqueness

Recently, V. Voskanyan proved a weak-strong uniqueness
result for monotone MFGs; that is, if a MFG admits a strong
solution then weak solutions are unique and agree with the
strong solution.



Boundary conditions

Singular stationary problems

A natural application of monotonicity methods is the study of
obstacle-type problems such as the second-order problem{

βε(u)−∆u + H(Du, x) = g(m)

β′(u)m −∆m − div(DpHm) = 1

or systems of variational inequalities (such as the ones arising
in switching problems).



Boundary conditions

Stationary problems with boundary conditions

We examine the problem
−u + m − ux

2

2 = 0 in (0,1),

m − (mux )x − 1 = 0 in (0,1),

u(0) = 0,u(1) = u1,

Given arbitrary u1 do we always have a solution? or are the
boundary conditions satisfied in viscosity sense?



Boundary conditions

Boundary conditions in viscosity sense
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u (left) and m right with boundary condition (in the viscosity sense)
u(1) = 2



Boundary conditions

Solutions that satisfy the boundary conditions

We introduce the regularization
−u + m − ux

2

2 + ε(m + mxxxx ) = 0 in (0,1),

m − (mux )x − φ+ ε(u + uxxxx ) = 0 in (0,1),

mxx (0) = mxx (1) = mxxx (0) = mxxx (1) = 0,
u(0) = 0,u(1) = u1,uxx (0) = uxx (1) = 0.



Boundary conditions

Then, we have the following a-priori estimate:

Theorem (Ferreira, G., Tada)

There exits a positive constant, that depends only on the
problem data such that∫ 1

0
[(mε)2 +

mε(uε)2

2
+

(uεx )2

2
]dx

+ ε

∫ 1

0
[(mε)2 + (mε

xx )2 + (uε)2 + (uεxx )2]dx ≤ C.



Boundary conditions

I From the preceding theorem, u is uniformly continuous in ε
and converges to a function that satisfies the boundary
conditions.

I This limit is a weak solution of the MFG.



Boundary conditions

Extensions: time-dependent problems

For time-dependent problems, we use an elliptic regularization{
−ut + |Du|2

2 = ∆u + ε(∂2
t + ∆)2qm + βε(m)

mt − div(mDu) = ∆m − ε(∂2
t + ∆)2qu

with suitable boundary conditions.



Long-time convergence

Long-time convergence for Hamilton-Jacobi equations

For convex Hamiltonians, the solutions of

−εut +
|Du|2

2
+ V (x) = 0

are known to converge as ε→ 0 (long-time limit) to stationary
solutions

|Dū|2

2
+ V (x) = 0.



Long-time convergence

Monotonicity estimates

The original proof is due to Fathi. An approach based on ideas
closely resembling MFGs was developed by Cagnetti, G.,
Mitake, and Tran. The key ingredient in the proof is the
monotonicity estimate∫ 1

0

∫
|Du − Dū|2m→ 0,

where m solves
mt − div(mDu) = 0.



Long-time convergence

Long-time convergence for MFGs

I For finite-state MFGs, monotonicity was used to establish
the long-time convergence by G., Mohr, and Souza.

I For continuous time MFG, the convergence was
established by Cardaliaguet, Lasry, Lions, and Porretta,
also using monotonicity.



Long-time convergence

Long-time convergence

Consider the MFG{
−εut + |Du|2

2 = ∆u + m
εmt − div(mDu) = ∆m

with initial-terminal conditions{
u(x ,1) = u1(x)

m(x ,0) = m0(x).



Long-time convergence

Uniform bounds

We have the following a-priori bound∫ 1

0

∫
Td

|Duε|2

2
(m0 + mε) + (mε)2 ≤ C,

where C is independent of ε.
Thus, through a subsequence uε ⇀ u in L2([0,1], Ḣ1) and
mε ⇀ m in L2.
A simple argument shows that for almost every 0 ≤ t ≤ 1,
(u(x , t),m(x , t)) is a weak solution of{

−∆u + |Du|2
2 = m + H(t)

−∆m − div(mDu) = 0.



Long-time convergence

Failure of long-time convergence

Traveling waves

Consider the following non-monotonic MFG with congestion{
−ut + u2

x
2mα + Kmα = 0

mt − (m1−αux )x = 0.

Set α = 1, v = ux , and differentiate the first equation{
vt +

(
v2/(2m) + Km

)
x = 0

mt − vx = 0.

The following are traveling-wave solutions

m(t , x) = m0(x +
√

2K t) and v(t , x) = v0(x +
√

2K t)

for v0 =
√

2K m0.



Numerical methods

Stationary problems

The contracting flow

If A is a monotone operator in a Hilbert space, then the flow

ẇ = −A(w)

is a contraction in H.



Numerical methods

Stationary problems

Monotone flow

We introduced the dynamic approximation{
ṁ = u2

x
2 + V (x)− ln m

u̇ = (mux )x .

If (u,m) and (ũ, m̃) are solutions of the previous flow, then

d
dt

∫
|m − m̃|2 + |u − ũ|2 ≤ 0,

provided m, m̃ ≥ 0.



Numerical methods

Stationary problems

u and m evolution by monotone flow. V (x) = sin(2πx).
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Numerical methods

Stationary problems

The congestion problem

{
ṁ = − |ux |2

m1/2 − sin(2πx) + ln m
u̇ = div(m1/2ux ).

m error evolution.
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Numerical methods

Stationary problems

A two-dimensional example

u and m error - monotone flow. V (x , y) = sin(2πx) + sin(2πy).
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Numerical methods

Application to the computation of effective Hamiltonians

Effective Hamiltonian

In homogenization theory, it is important to find the constant
H(P) such that the Hamilton-Jacobi equation

H(P + Dxu, x) = H(P)

has periodic solutions.
The number H is called the effective Hamiltonian.



Numerical methods

Application to the computation of effective Hamiltonians

Here, for illustration, we consider

(P + ux )2

2
+ V (x) = H(P).



Numerical methods

Application to the computation of effective Hamiltonians

Modified flow

We introduced the flow{
ṁ = m

(
(P+ux )2

2 + V (x)− λ(t)
)

u̇ = (m(P + ux ))x ,

where

λ(t) =

∫
( (P+ux )2

2 + V (x))m∫
m

.



Numerical methods

Application to the computation of effective Hamiltonians

Formally, we have
I Flow is a contraction
I m(x , t) converges to a Mather measure
I the limit of u(x , t) solves the stationary problem on m > 0
I λ(t)→ H.



Numerical methods

Application to the computation of effective Hamiltonians

Evolution by the flow

Evolution of u (left) and m (right)



Numerical methods

Application to the computation of effective Hamiltonians

Computation of H
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Effective Hamiltonian



Numerical methods

Time-dependent problems

Flows with boundary conditions

In general, the monotone flow

d
ds

[
m
u

]
= −A

[
m
u

]
may not preserve boundary conditions.



Numerical methods

Time-dependent problems

Conjugation of monotone operators

If A is a monotone operator and P is a self-adjoint projection
then

AP = PAP

is a monotone operator.
For time-dependent MFGs, we can consider the H1 projection
on initia-terminal conditions and consider the modified flow

d
ds

[
m
u

]
= −AP

[
m
u

]
.

This flow is still a contraction.



Numerical methods

Time-dependent problems

Initial-terminal conditions preserving flows

Of the density of distribution of players, θ(·, s), and the difference of
the value functions, (u1 − u2)(·, s), for a two-state MFG.



Numerical methods

Time-dependent problems

Collaborators and students

I Stationary MFGs - H. Morgado (UNAM), V. Voskanyan
(KAUST), S. Patrizi (UT Austin), G. Pires (IST), R. Ribeiro
(U. F. Londrina), M. Cirant (Padova).

I Time-dependent MFGs - E. Pimentel (PUC), H. Morgado
(UNAM);

I Congestion - H. Mitake (Hiroshima), V. Voskanyan
(KAUST), D. Evangelista (KAUST), L. Nurbekyan (KAUST),
R. Ferreira (KAUST).

I Monotonicity - R. Ferreira (KAUST), T. Tada (KAUST).;
I Numerics - Noha AlMullah (Dammam U.), R. Ferreira

(KAUST), J. Saude (IST and CMU);
I 1d MFGs - Nurbekyan (KAUST), M. Prazeres (KAUST), M.

Sedjro (KAUST).
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