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General NZS SDGs
N-player state dynamics described by a stochastic differential equation (SDE)

dxt = f (t, xt , ut)dt + D(t)dbt , xt|t=0 = x0 , ut := (u1t , . . . , uNt)

Could also be in partitioned form: xt = (x1t , . . . , xNt)

dxit = fi (t, xit , uit ; ci (t, x−i,t , u−i,t))dt + Di (t)dbit , i = 1, . . . ,N

Information structures (control policy of player i : γi ∈ Γi ):
Closed-loop perfect state for all players: uit = γi (t; xτ , τ ≤ t) , i = 1, . . . ,N
Partial (local) state: uit = γi (t; xiτ , τ ≤ t) , i = 1, . . . ,N
Measurement feedback: uit = γi (t; yiτ , τ ≤ t) ,

dyit = hi (t, xit , x−i,t)dt + Ei (t)dbit , i = 1, . . . ,N

Loss function for player i (over [t,T ]):

Li (x[t,T ], u[t,T ]) := qi (xT ) +

∫ T

t

gi (s, xs , us)ds

Take expectations (for horizon [0,T ]) with u = γ(·): Ji (γi , γ−i )

Nash equilibrium γ∗

Ji (γ
∗
i , γ
∗
−i ) = min

γi∈Γi

Ji (γi , γ
∗
−i )
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Equilibrium solution

State dynamics and loss functions

dxt = f (t, xt , ut)dt + D(t)dbt , xt|t=0 = x0 , ut := (u1t , . . . , uNt)

Li (x[t,T ], u[t,T ]) := qi (xT ) +

∫ T

t

gi (s, xs , us)ds , i = 1, . . . ,N

Closed-loop perfect state for all players: assume DD ′ is strongly positive

Nash equilibrium exists and is unique, if the coupled PDEs below admit a
unique smooth solution:

−Vi,t(t; x) = min
v

[Vi,x f (t, x , v , u∗−i ) + gi (t, x , v , u
∗
−i )] +

1

2
Tr [Vi,xx(t; x)DD ′]

Vi (T ; x) = qi (x) , u∗it = γ∗i (t, x(t)) , i = 1, . . . ,N

Other dynamic information structures (s.a. local state, decentralized,
measurement feedback): Extremely challenging! Possibly infinite-dimensional
(even if NE exists and is unique), even in linear-quadratic (LQ) NZS SDGs.
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LQ NZS SDGs with perfect state information

dx(t) =
[
Ax +

N∑
i=1

Biui
]
dt + Ddb(t), i ∈ N = {1, 2, . . . ,N}

Ji (γi , γ−i ) = E

[
|x(T )|2Wi

+

∫ T

0

[
|x(t)|2Qi (t) +

N∑
j=1

|uj(t)|2Rij

]
dt

]

The feedback Nash equilibrium: γ∗i (t, x(t)) = −R−1
ii B>i Zi (t)x(t), i ∈ N

The coupled RDEs with Zi ≥ 0 and Zi (T ) = Wi

−Żi = F>Zi + ZiF + Qi +
N∑
j=1

ZjBjR
−1
jj RijR

−1
jj B>j Zj , i ∈ N

F := A−
∑N

j=1 BiR
−1
ii B>i Zi

When information is local state, or imperfect measurement (even if shared by
all players), existence and characterization an open problem

Any hope for N sufficiently large? MFG approach provides the answer!
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Risk-sensitive (RS) formulation of the NZS SDG

Replace Ji with

Ji (γi , γ−i ) =
2

θ
lnE

{
exp

θ

2
Li (x[0,T ], u[0,T ])

}
where θ > 0 is the risk sensitivity parameter, and as before

Li (x[t,T ], u[t,T ]) := qi (xT ) +

∫ T

t

gi (s, xs , us)ds

and
uit = γi (·) , i = 1, . . . ,N

Nash equilibrium is defined as before, and the same difficulties with regard to
information structures arise as before.
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Digression: Risk-sensitive (RS) stochastic control
State dynamics :

dxt = f (t, xt , ut) dt +
√
εD dbt ; xt|t=0 = x0

bt , t ≥ 0, standard Wiener process; ε > 0;

ut ∈ U, t ≥ 0 (state FB control law µ ∈M)

Objective : Choose µ to minimize : ( θ > 0 )

J(µ; t, xt) =
2ε

θ
lnE

{
exp

θ

2ε
L(x[t,T ], u[t,T ])

}
L(x[t,T ], u[t,T ]) := q(xT ) +

∫ T

t

g(s, xs , us)ds

ψ(t; x) – value function associated with

E
{

exp
θ

2ε

[
q(xT ) +

∫ T

t

g(s, xs , us) ds
] }

⇒ V (t; x) := inf
µ∈M

J(µ; t, x) =:
2ε

θ
lnψ(t; x) ,
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DP and Itô differentiation rule ⇒

−Vt(t; x) = inf
u∈U

{
Vx(t; x) f (t, x , u) + g(t, x , u)

}
+

1

4γ2
|DV ′x(t; x)|2 +

ε

2
Tr
[
Vxx DD

′]
V (T ; x) ≡ q(x)

(
γ−2 := θ

)
If U = Rm1 , f linear in u, and g quadratic in u :

f (x , u) = f0(t, x) + B(t, x)u ; g(t, x , u) = g0(t, x) + |u|2

Optimal control law:

u∗(t) = µ∗(t, x) = −1

2
B ′(t, x)V ′x(t; x) , 0 ≤ t ≤ tf

⇒ HJB equation :

−Vt = Vx f0(t, x) + g0(t, x)− 1

4

[
|BV ′x |2 − γ−2|DV ′x |2

]
+
ε

2
Tr
[
Vxx(t; x)DD ′

]
; V (T ; x) ≡ q(x)
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A further special case : LEQG Problem

f0(t, x) = A(t)x , g0(t, x) =
1

2
x ′Qx , Q ≥ 0

q(x) = (1/2) x ′Qf x

⇒ Explicit solution:

V (t; x) =
1

2
x ′Z (t)x + `ε(t) , t ≥ 0

Ż + A′Z + ZA + Q − Z (BB ′ − γ−2DD ′ )Z = 0

`ε(t) =
ε

2

∫ T

t

Tr [Z (s)D(s)D ′(s) ] ds

⇒ u∗(t) = µ∗(t, x) = −B ′(t)Z (t) x , 0 ≤ t ≤ tf

Tamer Başar (ECE/CSL, UIUC) IPAM Workshop on “Mean Field Games” August 31, 2017 9 / 1



A class of stochastic differential games

Two Players : Player 1: ut ; Player 2: wt

dxt = f (xt , ut) dt+Dwt dt +
√
εD dbt ; x0

J(µ, ν; t, xt) := E
{
q(xT ) +

∫ T

t

g(s, xs , us) ds

− γ2

∫ T

t

|ws |2 ds
}

Upper-Value (UV) Function :

W̄ (t; x) = inf
µ

sup
ν

J(µ, ν; t, x)

HJI UV equation :

inf
u∈U

sup
w∈Rm2

{
W̄t + W̄x ( f + Dw ) + g − γ2|w |2

+
ε

2
Tr
[
W̄xxDD

′]
}

= 0
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HJI UV equation :

inf
u∈U

sup
w∈Rm2

{
W̄t + W̄x ( f + Dw ) + g − γ2|w |2

+
ε

2
Tr
[
W̄xxDD

′]
}

= 0

Isaacs condition holds ⇒ Value Function :

−Wt(t; x) = inf
u∈U

{
Wx(t; x) f (t, x , u) + g(t, x , u)

}
+

1

4γ2
|DW ′x(t; x)|2 +

ε

2
Tr
[
Wxx(t; x)DD ′

]
;

W (T ; x) ≡ q(x)

• IDENTICAL with V for all permissible ε, γ

• The same holds for the time-average case (LQ)
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LQ RS MFGs, Problem 1 (P1)

Stochastic differential equation (SDE) for agent i , 1 ≤ i ≤ N

dxi (t) = (A(θi )xi (t) + B(θi )ui (t))dt +
√
µD(θi )dbi (t)

The risk-sensitive cost function for agent i with δ > 0

P1: JN1,i (ui , u−i ) = lim sup
T→∞

δ

T
logE

{
e

1
δφ

1
i (x,fN ,u)

}
φ1
i (x , fN , u) :=

∫ T

0

‖xi (t)− 1

N

N∑
i=1

xi (t)‖2
Q + ‖ui (t)‖2

Rdt

Risk-sensitive control: Robust control w.r.t. the risk parameter δ

JN1,i (ui , u−i ) = lim sup
T→∞

1

T

[
E
{
φ1
i

}
+

1

2δ
var{φ1

i }+ o(
1

δ
)
]

fN(t) := 1
N

∑N
i=1 xi (t): Mean Field term (mass behavior)

Agents are coupled with each other through the mean field term

Tembine-Zhu-TB, TAC (59, 4, 2014); Moon-TB, CDC (2014), TAC (62, 3, 2017)
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LQ Robust MFGs, Problem 2 (P2)

Stochastic differential equation (SDE) for agent i , 1 ≤ i ≤ N

dxi (t) = (A(θi )xi (t) + B(θi )ui (t) + D(θi )vi (t))dt +
√
µD(θi )dbi (t)

The worst-case risk-neutral cost function for agent i

P2: JN2,i (ui , u−i ) = sup
vi∈Vi

lim sup
T→∞

1

T
E{φ2

i (x , fN , u, v)}

φ2
i (x , fN , u, v) :=

∫ T

0

‖xi (t)− 1

N

N∑
i=1

xi (t)‖2
Q + ‖ui (t)‖2

R − γ2‖vi (t)‖2dt

vi can be viewed as a fictitious player (or adversary) of agent i , which strives
for a worst-case cost function for agent i

Agents are coupled with each other through the mean field term
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Mean Field Analysis for P1 and P2

Solve the individual local robust control problem with g instead of fN

P1: J̄1(u, g) = lim sup
T→∞

δ

T
logE

{
exp[

1

δ

∫ T

0

‖x(t)− g(t)‖2
Q + ‖u(t)‖2

Rdt]
}

P2: J̄2(u, v , g) = lim sup
T→∞

1

T
E
{∫ T

0

‖x(t)− g(t)‖2
Q + ‖u(t)‖2

R − γ2‖v(t)‖2dt
}

Characterize g∗ that is a best estimate of
the mean field fN

I need to construct a mean field system
T (g)(t)

I obtain a fixed point of T (g)(t), i.e.,
g∗ = T (g∗)

Tamer Başar (ECE/CSL, UIUC) IPAM Workshop on “Mean Field Games” August 31, 2017 14 / 1



Robust Tracking Control for P1 and P2

Proposition: Individual robust control problems for P1 and P2

Suppose that (A,B) is stabilizable and (A,Q1/2) is detectable. Suppose that for a
fixed γ =

√
δ/2µ > 0, there is a matrix P ≥ 0 that solves the following GARE

ATP + PA + Q − P(BR−1BT − 1

γ2
DDT )P = 0

Then

H := A− BR−1BTP + 1
γ2 DD

TP and G := A− BR−1BTP are Hurwitz

The robust decentralized controller: ū(t) = −R−1BTPx(t)− R−1BT s(t)

where ds(t)
dt = −HT s(t) + Qg(t)

The worst-case disturbance (P2): v̄(t) = γ−2DTPx(t) + γ−2DT s(t)

s(t) has a unique solution in Cbn : s(t) = −
∫∞
t

e−H
T (t−s)Qg(s)ds

Remark
The two robust tracking problems are identical

Related to the robust (H∞) control problem w.r.t. γ
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Mean Field Analysis for P1 and P2
x̄θ(t) = E{xθ(t)} and we use h ∈ Cbn for P2
Mean field system for P1 (with the robust decentralized controller)

T (g)(t) :=

∫
θ∈Θ,x∈X

x̄θ(t)dF (θ, x)

x̄θ(t) = eG(θ)tx +

∫ t

0

eG(θ)(t−τ)B(θ)R−1BT (θ)

×

(∫ ∞
τ

e−H(θ)T (τ−s)Qg(s)ds

)
dτ

Mean field system for P2 (with the robust decentralized controller and the
worst-case disturbance)

L(h)(t) :=

∫
θ∈Θ,x∈X

x̄θ(t)dF (θ, x)

x̄θ(t) = eH(θ)tx +

∫ t

0

eH(θ)(t−τ)
(
B(θ)R−1BT (θ)− γ−2D(θ)D(θ)T

)
×

(∫ ∞
τ

e−H
T (θ)(τ−s)Qh(s)ds

)
dτ
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Mean Field Analysis for P1 and P2

T (g)(t) and L(h)(t) capture the mass behavior when N is large

Simplest case

lim
N→∞

fN(t) = lim
N→∞

1

N

N∑
i=1

xi (t) = E{xi (t)} = T (g)(t), SLLN

We need to seek g∗ and h∗ such that g∗ = T (g∗) and h∗ = L(h∗)

Sufficient condition (due to the contraction mapping theorem)

P1 : ‖R−1‖‖Q‖
∫
θ∈Θ

‖B(θ)‖2
(∫ ∞

0

‖eG(θ)τ‖dτ
)(∫ ∞

0

‖eH(θ)τ‖dτ
)
dF (θ) < 1

P2 :

∫
θ∈Θ

(∫ ∞
0

‖eH(θ)t‖2dt
)2(
‖B(θ)‖2‖R−1‖+ γ−2‖D(θ)‖2

)
dF (θ) < 1

limk→∞ T k(g0) = g∗ for any g0 ∈ Cbn
g∗(t) and h∗(t) are best estimates of fN(t) when N is large

Generally g∗ 6≡ h∗. But when γ →∞, g∗ ≡ h∗
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Main Results for P1 and P2

Existence and Characterization of an ε-Nash equilibrium

There exists an ε-Nash equilibrium with g∗ (P1), i.e., there exist
{u∗i , 1 ≤ i ≤ N} and εN ≥ 0 such that

JN1,i (u
∗
i , u
∗
−i ) ≤ inf

ui∈Uc
i

JN1,i (ui , u
∗
−i ) + εN ,

where εN → 0 as N →∞. For the uniform agent case, εN = O(1/
√
N)

The ε-Nash strategy u∗i is decentralized, i.e., u∗i is a function of xi and g∗

Law of Large Numbers: g∗ satisfies

lim
N→∞

∫ T

0

∥∥∥ 1

N

N∑
i=1

x∗i (t)− g∗(t)
∥∥∥2

dt = 0, ∀T ≥ 0, a.s.

lim
N→∞

lim sup
T→∞

1

T

∫ T

0

∥∥∥ 1

N

N∑
i=1

x∗i (t)− g∗(t)
∥∥∥2

dt = 0, a.s.

g∗: deterministic function and can be computed offline
The same results also hold for P2 with the worst-case disturbance
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Main Results for P1 and P2

Proof (sketch): Law of large numbers (first part)

∫ T

0

‖f ∗N (t)− g∗(t)‖2dt ≤ 2

∫ T

0

∥∥∥ 1

N

N∑
i=1

(x∗i (t)− E{x∗i (t)})
∥∥∥2

dt

+ 2T sup
t≥0

∥∥∥E{x∗i (t)} − g∗(t)
∥∥∥2

The second part is zero (due to the fixed-point theorem)

e∗i (t) = x∗i (t)− E{x∗i (t)} is a mutually orthogonal random vector with
E{e∗i (t)} = 0 and E{‖e∗i (t)‖2} <∞ for all i and t ≥ 0

Strong law of large numbers ⇒ limN→∞ ‖(1/N)
∑N

i=1 e
∗
i (t)‖ = 0 for all

t ∈ [0,T ]

‖(1/N)
∑N

i=1 e
∗
i (t)‖2, N ≥ 1, is uniformly integrable on [0,T ] for all T ≥ 0,

we have the desired result
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Partial Equivalence and Limiting Behaviors of P1 and P2

Partial
LQ-RMFG (P2)LQ-RSMFG (P1)LQ-MFG

 

, for fixed

( )

 







P1 and P2 share the same robust decentralized controller

Partial equivalence: the mean field systems (and their fixed points) are
different

Limiting behaviors
I Large deviation (small noise) limit (µ, δ → 0 with γ =

√
δ/2µ > 0): The same

results hold under this limit (SDE ⇒ ODE)
I Risk-neutral limit (γ →∞): The results are identical to that of the

(risk-neutral) LQ mean field game (g∗ ≡ h∗)
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Simulations (N = 500)
Ai = θi is an i.i.d. uniform random variable with the interval [2, 5],
B = D = Q = R = 1, µ = 2 ⇒ γ∗θ = γ∗ = 1,
g∗(t) = 5.086e−8.49t , h∗(t) = 5.1e−3.37t

ε2(N) := lim supT→∞
1
T E
∫ T

0
‖f ∗N (t)− g∗(t)‖2dt

γ determines robustness of the equilibrium (due to the individual robust
control problems)
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Conclusions

Decentralized (local state-feedback) ε-Nash equilibria for LQ risk-sensitive
and LQ robust mean field games

The equilibrium features robustness due to the local robust optimal control
problem parametrized by γ

LQ risk-sensitive and LQ robust mean field games
I are partially equivalent (g∗ 6≡ h∗)
I hold the same limiting behaviors as the one-agent case

Extensions to heterogenous case and nonlinear dynamics are possible, but
results are not as explicit; see, Tembine, Zhu, Başar, IEEE-TAC (59, 4, 2014)
for RSMFG

Imperfect state measurements

RSMFGs on networks with agents interacting only with their neighbors

Leader-Follower MFGs
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