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Outline

o Introduction to nonzero-sum stochastic differential games (NZS
SDGs) and Nash equilibrium: role of information structures

o Quick overview of risk-sensitive stochastic control (RS SC):
equivalence to zero-sum stochastic differential games

e Mean field game approach to RS NZS SDGs with local state
information—Problem 1 (P1)

o Mean field game approach to robust NZS SDGs with local state
information—Problem 2 (P2)

e Connections between P1 and P2, and e-Nash equilibrium

e Extensions and conclusions
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General NZS SDGs

o N-player state dynamics described by a stochastic differential equation (SDE)
dxt = f(t, x¢, ur)dt + D(t)dbs,  Xje—o = X0, Uz := (U1t,- -, UNt)
@ Could also be in partitioned form: x; = (x1¢, ..., Xnt)

dxie = fi(t, Xie, Ui; Ci(t, X_j¢, u_j¢))dt + Di(t)dby, i=1,...,N

Information structures (control policy of player i: ~; € T;):
Closed-loop perfect state for all players. uyp = ~i(t; %, 7 <t), i=1,...,N
Partial (local) state: up =vi(tixir, 7 < t), i=1,...,N
Measurement feedback: ui = i(t; Yir, 7 < t),
dyic = hi(t, Xje, x_i¢)dt + Ei(t)db;e, i =1,...,N

@ Loss function for player i (over [t, T]): .

Li(xe, 11 e, 17) == qi(xT) + gi(s,xs, us)ds

t
Take expectations (for horizon [0, T]) with u =~(-):  Ji(vi,v=i)
Nash equilibrium ~*

Ji(visvZi) = min Ji(vi,vZ;)
vi€l;
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Equilibrium solution

@ State dynamics and loss functions

dxt = f(t, x¢, up)dt + D(t)dby,  Xyje—o = X0, U := (ULt, ..., UNt)

.
Li(xe, 17> upe,77) = qi(xT) +/ gi(s,xs,us)ds, i=1,...,N
t

o Closed-loop perfect state for all players: assume DD’ is strongly positive
Nash equilibrium exists and is unique, if the coupled PDEs below admit a
unique smooth solution:

1
_Vi,t(t;x) = min[\/i,xf(t7xa v, Ui,‘) + g;(t,x, v, U*—i)] =+ ETr[\/",XX(t; X)DD/]

Vi(T:x) = qi(x),  ujp =7/ (t,x()), i=1,...,N

@ Other dynamic information structures (s.a. local state, decentralized,
measurement feedback): Extremely challenging! Possibly infinite-dimensional
(even if NE exists and is unique), even in linear-quadratic (LQ) NZS SDGs.
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LQ NZS SDGs with perfect state information

N
dx(t) = [Ax+ 3 B,-u,} dt + Ddb(t), i€ N ={1,2,...,N}

i=1

Ji(visv-i) = EbX(T)ﬁ/v, + /OT {|X o+ Z |uj(8)[, } ]

o The feedback Nash equilibrium: v (t, x(t)) = —R; ' B Zi(t)x(t), i € N
@ The coupled RDEs with Z; > 0 and Z;(T) = W;
_ N
~Zi=F'Z+ ZF+ Q+)Y_ZBR;'RjR;'B Z, i€ N
j=1
F=A-YY BR'BZ

@ When information is local state, or imperfect measurement (even if shared by
all players), existence and characterization an open problem

@ Any hope for N sufficiently large? MFG approach provides the answer!
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Risk-sensitive (RS) formulation of the NZS SDG

Replace J; with

2 0
Ji(visv=i) = 7] In E{ exp ELI(X[O,T]a up,17) }

where 0 > 0 is the risk sensitivity parameter, and as before

;
Li(xe, 1), Upe, 1) == qi(XT)+/ gi(s, xs, us)ds
t

and
uit:'-)/i(')v I:177N

Nash equilibrium is defined as before, and the same difficulties with regard to
information structures arise as before.
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Digression: Risk-sensitive (RS) stochastic control
State dynamics :

dxe = F(t, X, ur) dt + /e Ddby;  Xeje—o = X0

b, t > 0, standard Wiener process; ¢ > 0;

u€ U, t>0 (state FB control law p € M)
Objective : Choose ;. to minimize : (6 >0)

2¢ 0
J(p; t,xe) = 7 In E{ exp ZL(X[L‘,TL uge,7)) }

T
Loy o) = alcr) + [ (5.5 s
t
¥(t; x) — value function associated with
0 T
E{exp 5 [aler) + [ (s ds] }
- t

. . 2 )
= V(t; x) = uIEan\A J(u; t, x) =: 7 Iny(t; x),
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DP and It6 differentiation rule —

—Vi(t; x) = Jgf/ {Vi(t; x) F(t,x, u) + g(t,x, u) }

1 5 €
V(T; x) = q(x) (v2:=10)
If U=R™, f linear in u, and g quadratic in v :
f(x,u) = fo(t,x) + B(t,x)u; g(t,x,u) = go(t, x) + |uf?
Optimal control law:
1
u*(t) = p*(t,x) = -5 B'(t,x) Vi(t;x), 0<t<t
= HJB equation :

1 _
—V, = Vi fo(t, x) + go(t, x) — Z[|BVX'|2 —v7%DV;?]

+§Tr[vxx(t;x)DD’] ; V(T;x) = q(x)
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A further special case : LEQG Problem

f(tx) = A(t)x,  go(t,x) = %X'Qx, Q>0

q(x) = (1/2) X' Qex

= Explicit solution:
V(t;x) = %x’Z(t)erzE(t), t>0
Z+AZ+ZA+Q—Z(BB —~72DD')Z =0
() = %/tTTr[Z(s) D(s)D'(s)] ds

= u(t)=p*(t,x) = -B'(t) Z(t)x, 0<t<t
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A class of stochastic differential games

Two Players :  Player 1: wu;; Player 2: w;

dx; = f(x¢, u) dt+Dw, dt + /e Ddb:; xo

.
J(p,vit,xe) == E{q(x7) +/ g(s,xs, us) ds
t

-
_72/ |Ws‘2 ds}
t
Upper-Value (UV) Function :
W(t; x) = inf sup J(u,v; t, x)
Hoy

HJI UV equation :

inf sup {W;+ W, (f+Dw)+g—~?lwf?

uelU weRrm

—|—§Tr[V_VXXDD’]} -0
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HJI UV equation :

inf  sup {VT/H— W, (f + Dw) + g — ?|w|?
uelU ,ecRrm

€ -
+§TI‘ [WXXDD/]} =0

Isaacs condition holds = Value Function :

—Wi(t;x) = JEE{ Wi (t; x) f(t,x, u) + g(t,x, u) }

e UACR S Tr[Wi(t; x)DD'] ;

W(T:x) = q(x)
e IDENTICAL with V for all permissible €,y

e  The same holds for the time-average case (LQ)
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LQ RS MFGs, Problem 1 (P1)

@ Stochastic differential equation (SDE) for agent /, 1 < i< N
dX,'(t) = (A(H,‘)X,‘(t) + B(G,-)u,-(t))dt + \/ﬁD(G,)db,(t)

@ The risk-sensitive cost function for agent i with § > 0

]
P1: J{Y,-(u,-, u_;) = limsup 7 IogE{e%‘b}(X’f"””)}

T—o0
T 1 N
7 (x, fu, u) = /0 Ixi(t) = & DXl + [lui(t) Izt
i=1
@ Risk-sensitive control: Robust control w.r.t. the risk parameter ¢
i, ) = limsup L [E{0}) + 55var{oh) +o(3)

o fy(t) := %Zf\lzl x;(t): Mean F|e|d term (mass behawor)
@ Agents are coupled with each other through the mean field term

Tembine-Zhu-TB, TAC (59, 4, 2014); Moon-TB, CDC (2014), TAG (62,3, 2017)
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LQ Robust MFGs, Problem 2 (P2)

@ Stochastic differential equation (SDE) for agent /, 1 < i< N
dX,'(t) = (A(0,-)x,-(t) + B(Q;)U;(t) + D(G;)v,-(t))dt + ﬁD(g,)db,(t)

@ The worst-case risk-neutral cost function for agent i

P2: Jz’\f,-(u,-, u_;) = sup limsup —IE{¢, (x, fn, u, v)}

vieV;, T—oo
N

;
G (x fuyu,v) = [ [lxi(t Z )l + lui()l —~*lvi(t)]*dt
0

@ v; can be viewed as a fictitious player (or adversary) of agent /i, which strives
for a worst-case cost function for agent i

@ Agents are coupled with each other through the mean field term
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Mean Field Analysis for P1 and P2
@ Solve the individual local robust control problem with g instead of fy
_ . 1) 17 2 2
P1: h(u,g) = lim sup = |og]E{exp[5 Ix(t) — g(t)lg + llu(t)|[zdt]}
—00

P2: J(u, v g) = limsup —E{/ Ix(t) — g()lIg + lu(t)Ik — ?[Iv(2)*dt}
—

Mass /o

influenc AN ™ o Characterize g* that is a best estimate of
i) the mean field fy

\
. \
@ Play against | > need to construct a mean field system
the mass |
|
I
]

1
1
behavior :‘ g(t) i T(g)(t)
L » obtain a fixed point of T(g)(t), i.e.,
- "=T(g")

\ ~N 7 =
v C D g =
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Robust Tracking Control for P1 and P2

Proposition: Individual robust control problems for P1 and P2

Suppose that (A, B) is stabilizable and (A, @'/?) is detectable. Suppose that for a
fixed v = /0/2p > 0, there is a matrix P > 0 that solves the following GARE

1
ATP+PA+ Q- P(BR™'BT — =DD")P =0
¥

Then
e H=A—-BR1B"TP+ W%DDTP and G := A— BR™!BTP are Hurwitz
@ The robust decentralized controller: @(t) = —R™!BT Px(t) — R~1B7s(t)
where dsd(tt) = —HTs(t) + Qg(t)
@ The worst-case disturbance (P2): ¥(t) = v 2D Px(t) +~v2DT"s(t)
o 5(t) has a unique solution in Cb: s(t) = — [ e~ "' (t-9) Qg(s)ds

Remark
@ The two robust tracking problems are identical
@ Related to the robust (H*®) control problem w.r.t. v

4
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Mean Field Analysis for P1 and P2

o Xy(t) = E{xy(t)} and we use h € CE for P2
@ Mean field system for P1 (with the robust decentralized controller)

T(g)(t) = / %(£)dF (6, x)

€0, xeX

t
%o(t) = eC@tx 4 / eCOE=TB(HRIBT(0)
0

X / e_H(‘g)T(T_S)Qg(s)ds dr

@ Mean field system for P2 (with the robust decentralized controller and the
worst-case disturbance)

L(h)(8) = /ge@ S0 (0.5)

Zo(t) = eMDtx ¢ /0 t eMO)(t=7) (B(e)R—lBT(e) - 7—20(9)0(9)7)

X (/ e‘HT(G)(T_S)Qh(s)ds> dr
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Mean Field Analysis for P1 and P2

e T(g)(t) and L(h)(t) capture the mass behavior when N is large
@ Simplest case

N—oo N—>oo N

lim fy(t) = lim —Z =E{x(t)} = T(g)(t), SLLN

We need to seek g* and h* such that g* = T(g*) and h* = L(h*)

Sufficient condition (due to the contraction mapping theorem)

1Rl [ 1BOR([ 15 lar) ([ 1eHOrjar)dre) <1
6co 0 0

P2 /9 | /0 " e 2ae) " (IBOIRIR | + 52 1D(6) ) dF (8) < 1

limk_00 T(g0) = g* for any go € C?
g*(t) and h*(t) are best estimates of fy(t) when N is large
o Generally g* # h*. But when 7 — o0, g* = h*
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Main Results for P1 and P2

Existence and Characterization of an «-Nash equilibrium

@ There exists an e-Nash equilibrium with g* (P1), i.e., there exist
{uf,1 < i< N} and ey > 0 such that

J{\,Ii(u;'k, uZ;) < u.ienzf{,c J:{\,Ii(uia uZ;) + en,
where ey — 0 as N — oo. For the uniform agent case, ey = O(1/V'N)
@ The e-Nash strategy u is decentralized, i.e., u} is a function of x; and g*

@ Law of Large Numbers: g* satisfies

N— oo

T 1 N )
i /0 “N;Xf(t)—g (t)H dt=0, VT >0, as.
L 1 M1 & . e
g 7 [ 250 g0 =0, 05

g*: deterministic function and can be computed offline
@ The same results also hold for P2 with the worst-case disturbance

vy
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Main Results for P1 and P2

Proof (sketch): Law of large numbers (first part)

[ 1w - @rpase [ H— B ()| d

+2T§;gHE{xi"(t)} —g*(t)\F

@ The second part is zero (due to the fixed-point theorem)

o ef(t) = x(t) — E{x(t)} is a mutually orthogonal random vector with
E{ef(t)} = 0 and E{||e}(t)||*} < oo for all i and t >0

@ Strong law of large numbers = limy_.o [|(1/N) E,N:l ef(t)|| = 0 for all
te|0, T]

e |[(1/N) Z,N:l e (t)||>, N > 1, is uniformly integrable on [0, T] for all T >0,
we have the desired result
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Partial Equivalence and Limiting Behaviors of P1 and P2

5— o, for fixed 1

LQ-RSMFG (P1) LQ-RMFG (P2)

@ P1 and P2 share the same robust decentralized controller
@ Partial equivalence: the mean field systems (and their fixed points) are
different
@ Limiting behaviors
» Large deviation (small noise) limit (12,6 — 0 with v = /§/2u > 0): The same
results hold under this limit (SDE = ODE)

> Risk-neutral limit (7 — o0): The results are identical to that of the
(risk-neutral) LQ mean field game (g* = h™)
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Simulations (N = 500)

e A; =0, is an i.i.d. uniform random variable with the interval [2,5],
B=D=Q=R=1p=2=v=vy"=1,
g*(t) = 5.086e 7849 h*(t) = 5.1le 33"

. T * *

o A(N) = lmsupy_, LE [T I1fi(t) — g (&) 2de

@ 7 determines robustness of the equilibrium (due to the individual robust
control problems)

y=15(P1)

state

state

state
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Simulations (N = 500)

@ A; =0;is an i.i.d. uniform random variable with the interval [2, 5],
B=D=Q=R=1p=2=y=v"=1,
g*(t) = 5.086e 849 h*(t) = 5.1e-33

. T * *

o &(N):=limsupr_o +E [y [fi(t) — g"(t)|?dt

@ -y determines robustness of the equilibrium (due to the individual robust
control problems)

35

150 (P1 and P2
- = =y=15(F2)

» Q
b 8

8
8

number of agents

[ .
state value N
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Conclusions

@ Decentralized (local state-feedback) e-Nash equilibria for LQ risk-sensitive
and LQ robust mean field games

@ The equilibrium features robustness due to the local robust optimal control
problem parametrized by

@ LQ risk-sensitive and LQ robust mean field games

> are partially equivalent (g* # h™)
> hold the same limiting behaviors as the one-agent case

@ Extensions to heterogenous case and nonlinear dynamics are possible, but
results are not as explicit; see, Tembine, Zhu, Basar, IEEE-TAC (59, 4, 2014)
for RSMFG

@ Imperfect state measurements
@ RSMFGs on networks with agents interacting only with their neighbors
@ Leader-Follower MFGs
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