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Outline of talk

I The competitive binary MDP model (Huang and Ma’16, 17)

I The stationary MFG equation (with discount)

I Model features: monotone state dynamics, resetting action,
positive externality

I Check: ergodicity, existence, uniqueness, solution structure,
pure strategies, stable/unstable equilibria

I Exploit positive externality to prove uniqueness

I Extensions
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Model: Individual controlled state x it ∈ [0, 1], action ait ∈ {0, 1}.

Motivation for this class of competitive MDP models –

I Except for LQ cases, general nonlinear MFGs rarely have
closed-form solutions

I We introduce this class of MDP models which have simple
solution structures – threshold policy (see next page)

i) There is a long tradition of looking for threshold policies to
various decision problems in the operations research community

ii) A threshold policy is also studied in R. Johari’s ride sharing
problem

I Sometimes simple models tell more; the binary MDP modeling
is of interest in its own right

3 / 32



Competitive MDP model
Stationary equation with discount

Long-run average cost
Further extension

Motivation and background
Dynamics and cost
Finite horizon

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

state x
t
i

ac
ti

on
 a

ti

Figure : threshold is 0.6

4 / 32



Competitive MDP model
Stationary equation with discount

Long-run average cost
Further extension

Motivation and background
Dynamics and cost
Finite horizon

I Dynamic games of MDPs were initial introduced by L.
Shapley (1953) and called stochastic games.

I Literature on large population games with discrete states
and/or actions (or discrete time MDP)

I Weintraub et al. (2005, 2008), Huang (2012), Gomes et al.
(2013), Adlakha, Johari, and Weintraub (2015), Kolokoltsov
and Bensoussan (2016), Saldi, Basar and Raginsky (2017).
Also see anonymous games e.g. Jovanovic and Rosenthal
(1988)
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The MF MDP model:

I N players (or agents Ai , 1 ≤ i ≤ N) with states x it , t ∈ Z+,
as controlled Markov processes (no coupling)

I State space: S = [0, 1] Interpret state as unfitness
I Action space: A = {a0, a1}. a0: inaction, a1: active control

I Agents are coupled via the costs

(Huang and Ma, CDC’16, CDC’17)

Examples of binary action space (action or inaction)

I maintenance of equipment;

I network security games;

I wireless medium access control (channel shared by users; transmission or back
off; collisions possible)

I (flu) vaccination games, etc.
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Binary choice models are widely used in various decision problems

I Schelling, T. (1973), Hockey helmets, concealed weapons, and
daylight saving: a study of binary choices with externalities, J.
Conflict Resol.

I Brock, W. and Durlauf, S. (2001), Discrete choice with social
interactions, Rev. Econ. Studies.

I Schelling, T. (2006), Micromotives and Macrobehavior

I Babichenko, Y. (2013), Best-reply dynamics in large binary-choice
anonymous games, Games Econ. Behavior

I Lee, L., Li, J. and Lin, X. (2014), Binary choice models with social
network under heterogeneous rational expectations, Rev. Econ.
Statistics
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Dynamics:

The controlled transition kernel for x it . For t ≥ 0 and x ∈ S,

P(x it+1 ∈ B|x it = x , ait = a0) = Q0(B|x),
P(x it+1 = 0|x it = x , ait = a1) = 1,

I Q0(·|x): stochastic kernel defined for B ∈ B(S) (Borel sets).
I Q0([x , 1]|x) = 1. Under inaction a0, state gets worse.

I Transition of x it is not affected by other ajt , j ̸= i .

The stochastic deterioration is similar to hazard rate modelling in the maintenance

literature (Bensoussan and Sehti, 2007; Grall et al. 2002)
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The cost of Ai :

Ji = E
T∑
t=0

ρtc(x it , x
(N)
t , ait), 1 ≤ i ≤ N.

I 0 < T ≤ ∞; ρ ∈ (0, 1): discount factor.

I Population average state: x
(N)
t = 1

N

∑N
i=1 x

i
t .

I The one stage cost:

c(x it , x
(N)
t , ait) = R(x it , x

(N)
t ) + γ1{ait=a1}

I R ≥ 0: unfitness-related cost; γ > 0: effort cost
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The MFG equation system (MFG Eq[0,T ]):
V (t, x) = min

[
ρ
∫ 1
0 V (t + 1, y)Q0(dy |x) + R(x , zt),

ρV (t + 1, 0) + R(x , zt) + γ
]
, 0 ≤ t < T

V (T , x) = R(x , zT ),

zt = Ex it , 0 ≤ t ≤ T consistency condition in MFG

I Notation: bs,t = (bs , bs+1, . . . , bt). Find a solution (ẑ0,T , â
i
0,T ) such that

{x it , 0 ≤ t ≤ T} is generated by {âit(x), 0 ≤ t ≤ T} as best response.

I Fact: Given z0,T , the best response is a threshold policy

Theorem: i) Under technical conditions, (MFG Eq[0,T ]) has a
solution. ii) The resulting set of decentralized strategies for the N
players is an ϵ-Nash equilibrium.
Below we will focus on its stationary version.
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Action space {0, 1}. Threshold policy:

ait =

{
1 x it ≥ r
0 x it < r
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Stationary equation system for MFG

V (x) = min
[
ρ

∫ 1

0
V (y)Q0(dy |x) + R(x , z), ρV (0) + R(x , z) + γ

]
z =

∫ 1

0
xπ(dx) for probability measure π.

(V , ẑ , π̂, âi ) is called a stationary equilibrium with discount if

i) the feedback policy âi is the best response with respect to ẑ (in the associated
infinite horizon control problem);

ii) The distribut’n of {x it , t ≥ 0} under âi converges to the stationary distribution
π̂;

iii) (ẑ, π̂) satisfies the second equation.

Note: This solution definition is different from that in anonymous games which only

deal with a fixed point equation for a measure (describe the continuum population)

without considering ergodicity

13 / 32



Competitive MDP model
Stationary equation with discount

Long-run average cost
Further extension

Existence, uniqueness
Pure strategy
Comparative statistic
Erratic equilibrium

What we want to study?

I Q1 – Existence (based on ergodicity)

I Q2 – Threshold policy exists?

I Q3 – Uniqueness

I Q4 – Under what condition can a pure equilibrium strategy
fail to exist?

I Q5 – How does the model parameter affect the solution?
Related to comparative statistics

I Q6 – Does the equilibrium have stability, or can this fail? Can
the model show oscillatory behaviors (as observed in
vaccination situations)?
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Assumptions:

(A1) {x i0, i ≥ 1} are independent random variables taking values in
S.

(A2) R(x , z) is a continuous function on S× S. For each fixed z ,
R(·, z) is strictly increasing.

(A3) i) Q0(·|x) satisfies Q0([x , 1]|x) = 1 for any x , and is strictly
stochastically increasing; ii) Q0(·|x) has a positive density for
all x < 1.

(A4) R(x , ·) is increasing for fixed x . (i.e. positive externality)

(A5) γ > βmaxz
∫ 1
0 [R(y , z)− R(0, z)]Q0(dy |0).

Remarks:

I Montonicity in (A2): cost increases when state is poorer.

I (A3)-i) means dominance of distributions

I (A5) Effort cost should not be too low; this prevents zero action threshold; this
condition can be refined if more information is known on R (such as
sub-modularity).
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Theorem (existence on Q1, Q2) Assume (A1)-(A5). Then

V (x) = min
[
ρ

∫ 1

0
V (y)Q0(dy |x) + R(x , z), ρV (0) + R(x , z) + γ

]
z =

∫ 1

0
xπ(dx)

has a solution (V , z , π, ai ) for which the best response ai is a
threshold policy.

Note:

I ai : x ∈ [0, 1] 7→ {a0, a1}, is implicitly specified by the first
equation

I On the right hand side, if the first term is smaller, then
ai (x) = a0 (otherwise, a1)
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Theorem (uniqueness on Q3)
In the previous theorem, if we further assume
R(x , z) = R1(x)R2(z) and R2 > 0 is strictly increasing on S, then

V (x) = min
[
ρ

∫ 1

0
V (y)Q0(dy |x) + R(x , z), ρV (0) + R(x , z) + γ

]
z =

∫ 1

0
xπ(dx)

has a unique solution (V , z , π, ai ) .

Remark: Monotonicity of R2 indicates positive externalities (crucial in uniqueness

analysis), i.e, a person benefits from the improving behaviour of the population.
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How to prove the existence theorem?

I Show ergodicity of the controlled Makov chain {x it} under an
interior threshold policy (so that π in the equation makes
sense); the case of threshold ≥ 1 is handled separately

I Further use Brouwer’s fixed point theorem to show existence

How to prove uniqueness?

I Use two comparison theorems
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Theorem (ergodicity, Q1) : For threshold θ ∈ (0, 1),

{x i ,θt , t ≥ 0} is uniformly ergodic with stationary probability
distribution πθ, i.e.,

sup
x∈S

∥Pt(x , ·)− πθ∥ ≤ Kr t

for some constants K > 0 and r ∈ (0, 1), where ∥ · ∥ is the total
variation norm of signed measures.

Proof. Show Doeblin’s condition by checking

inf
x∈S

P(x4 = 0|x0 = x) ≥ η > 0.

and aperiodicity. Here 4 is the magic number.
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The regenerative process:
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Numerics: Recall the MFG solution equation system

V (x) = min
[
ρ

∫ 1

0
V (y)Q0(dy |x) + R(x , z), ρV (0) + R(x , z) + γ

]
z =

∫ 1

0
xπ(dx)

Algorithm:

I Step 1. Initialize z(0)

I Step 2. Given z(k), solve V (k)(x) and associated threshold policy a(k) from the
DP Eqn

I Step 3. Use a(k) to find the mean field z̄(k+1) via π(k).

I Step 4. z(k+1) = 0.98z(k) + 0.02z̄(k+1) (cautious update!)

I Step 5. Go back to step 2 (until accuracy attained).
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The comparison theorems use very intuitive ideas. Used to answer
Q3.

I First comparison theorem (with R(x , z) = R1(x)R2(z)): If
z ↓ (i.e., decreasing population threat), best response’s
threshold θ ↑

I Second comparison theorem: If the threshold θ ∈ (0, 1) ↑,
the resulting regenerative process x i θt ’s long term mean ↑
(since more chance to “grow”; lawn, say, under biweekly cut)
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Method to prove the second comparison theorem: Take the
threshold θ ∈ (0, 1). Set x i ,θ0 = 0, and the Markov chain x i ,θt

evolves under inaction until τθ:

τθ = inf{t|x i ,θt ≥ θ}.

Reset x i ,θτθ+1 = 0, and the Markov chain restarts at τθ + 1.

Denote Sk =
∑k

t=0 x
i ,θ
t . Let S ′

k be defined with θ′ ∈ (θ, 1). Then

λθ := lim
k→∞

1

k

k−1∑
t=0

x i ,θt =
ESτθ

1 + Eτθ
, similarly define λθ′ .

The second comparison theorem: For 0 < θ < θ′ < 1, then

i)
ESτθ
1+Eτθ

≤
ES ′

τθ′
1+Eτθ′

ii) So λθ ≤ λθ′
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A useful lemma for proving the second comparison theorem.
Let 0 < r < r ′ < 1. Consider a Markov process {Yt , t ≥ 0} with
state space [0, 1], and transition kernel QY (·|y) which satisfies
QY ([y , 1]|y) = 1 for any y ∈ [0, 1], and is stochastically monotone.
Suppose Y0 ≡ y0 < r . Define the stopping time

τ = inf{t|Yt ≥ r}

Lemma If Eτ < ∞, then E
∑τ

t=0 Yt < ∞ and

E
∑τ

t=0 Yt

1 + Eτ
=

EY0 + EY1 +
∑∞

k=1 E (Yk+11{Yk<r})

2 +
∑∞

k=1 P(Yk < r)

Facts:

I Apply the lemma to the regenerative process x i ,θt for one cycle.

I Show that increasing r = θ to r ′ = θ′ increases the ratio in
the lemma.
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Example (to answer Q4): Assume R(x , z) = x(c + z) where
c > 0. Q0(·|x) has the same distribution as x + (1− x)ξ where ξ
has uniform distribution on [0, 1]. Consider all γ > 0. Denote
c∗ = Eξ

2 = 1
4 .

Then

I If γ ∈ (0, ρc2 ] ∪ (ρ(c+c∗)
2 ,∞), there exists a unique pure

strategy as a stationary equilibrium with discount

I If γ ∈ (ρc2 ,
ρ(c+c∗)

2 ], there exists no pure strategy as a
stationary equilibrium with discount

This result can be extended to

I the general model for R(x , z)

I the long run average cost case
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Q5: Check the dependence of equilibrium solution (z , θ) on γ.

This is actually a question on comparative statistics formalized by
J. R. Hicks (1939) and P. A. Samuelson (1947)

I It studies how a change of the model parameters affects the
equilibrium

I Important in the economic literature, game theory and optimization;
however, most literature considered static models

I Example of dynamic models: D. Acemoglu, M. K. Jensen (2015) J.
Political Econ. (on large dynamic economies)
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Theorem (monotone comparative statistic, Q5). Suppose

I both γ1 and γ2 (effort cost) satisfy (A5), and γ1 < γ2;

I (γi , zi , θi ) is solved from the MFG equation system.

Then
θ1 < θ2, z1 < z2.

Interpretation:
Effort being more expensive → less willing to act → worse average
state of the population
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Q6. Instability of the equilibrium solution can occur

I Take R(x , z) = x(c + R0(z)) where R0(z) has a quick leap
from a near 0 value to nearly 1 around some value zc

I Such R0 is not purely artificial; similar phenomena appear in

vaccination models where group risk has sharp decrease toward 0 when the

vaccination coverage exceeds a certain critical level.
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Figure : Iteration of threshold in best response w.r.t. mean field; swing
back and forth

I θ = 1+(= 1.1) means inaction
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Game with long-run average costs: Define

J i (x10 , . . . , x
N
0 , π1, . . . , πN) = lim sup

T→∞

1

T
E

T−1∑
t=0

c(x it , x
(N)
t , ait),

where c(x it , x
(N)
t , ait) = R(x it , x

(N)
t ) + γ1{ait=a1}

The solution equation system of the MFG:{
λ+ h(x) = min{

∫ 1
0 h(y)Q0(dy |x) + R(x , z), R(x , z) + γ},

z =
∫ 1
0 xν(dx),

where ν is the limiting distribution of the closed-loop state X i
t .

Idea:

I Consider discount factor ρ and denote value function Vρ(x).

I Define hρ(x) = Vρ(x)− Vρ(0). Try to get a subsequence of {hρ} converging to
h when ρ ↑ 1 under an additional concavity condition on R(·, z) for each fixed z.
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Further possible extensions:

I Unbounded state space (such as half line)

I Pairwise coupling in the cost

I Continuous time modeling (example, compound Poisson process
with impulse control; CDC’17, with Zhou); a Levy process with
one-sided jumps (such as a subordinator) also fits the monotone
state modeling
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Thank you!
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