Probabilistic approach to Mean-Field Games

IPAM Conference (UCLA)

François Delarue (Nice – J.-A. Dieudonné)

August 28 2017

Based on joint works with R. Carmona, P. Cardaliaguet, D. Crisan, J.F. Chassagneux, D. Lacker, J.M. Lasry and P.L. Lions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Part I. Motivation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Part I. Motivation

a. General philosophy

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Basic purpose

• Interacting particles / players

• controlled players in mean-field interaction

◦ particles have dynamical states ↔ stochastic diff. equation

• mean-field symmetric interaction with whole population no privileged interaction with some particles

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Associate cost functional with each player

• find equilibria w.r.t. cost functionals

• shape of the equilibria for a large population?

Basic purpose

• Interacting particles / players

• controlled players in mean-field interaction

◦ particles have dynamical states ↔ stochastic diff. equation

 \circ mean-field $\leftrightarrow \rightarrow$ no 1

symmetric interaction with whole population no privileged interaction with some particles

• Associate cost functional with each player

• find equilibria w.r.t. cost functionals

• shape of the equilibria for a large population?

• Different notions of equilibria

 \circ players decide on their own \rightsquigarrow find a consensus inside the population \Rightarrow notion of Nash equilibrium

 \circ players obey a common center of decision \leadsto minimize the global cost to the collectivity

• Both cases \rightsquigarrow asymptotic equilibria as the number of players $\uparrow \infty$?

Asymptotic formulation

• Paradigm

◦ mean-field / symmetry ↔ propagation of chaos / LLN

• reduce the asymptotic analysis to one typical player with interaction with a theoretical distribution of the population?

 \circ decrease the complexity to solve asymptotic formulation first

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Asymptotic formulation

• Paradigm

◦ mean-field / symmetry ↔ propagation of chaos / LLN

• reduce the asymptotic analysis to one typical player with interaction with a theoretical distribution of the population?

 \circ decrease the complexity to solve asymptotic formulation first

• Program

• Existence of asymptotic equilibria ? Uniqueness? Shape?

• Use asymptotic equilibria as quasi-equilibria in finite-game

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Prove convergence of equilibria in finite-player-systems

Asymptotic formulation

• Paradigm

◦ mean-field / symmetry ↔ propagation of chaos / LLN

• reduce the asymptotic analysis to one typical player with interaction with a theoretical distribution of the population?

 \circ decrease the complexity to solve asymptotic formulation first

• Program

• Existence of asymptotic equilibria ? Uniqueness? Shape?

• Use asymptotic equilibria as quasi-equilibria in finite-game

• Prove convergence of equilibria in finite-player-systems

• Asymptotic formulation of Nash equilibria \rightsquigarrow Mean-field games! [Lasry-Lions (06), Huang-Caines-Malhamé (06), Cardaliaguet, Achdou, Gangbo, Gomes, Porreta (PDE), Bensoussan, Carmona, D., Kolokoltsov, Lacker, Yam (Probability)]

• Common center of decision ~>> optimal control of McKean-Vlasov SDEs

Part I. Motivation

b. Equilibria within a finite system

General formulation

• Controlled system of *N* interacting particles with mean-field interaction through the global state of the population

• dynamics of particle number $i \in \{1, ..., N\}$

$$\underbrace{dX_t^i}_{\in \mathbb{R}^d} = b(X_t^i, \text{global state of the collectivity}, \alpha_t^i)dt$$

$$+ \sigma(X_t^i, \text{global state}) \underbrace{dW_t^i}_{i\text{diosyncratic noises}}$$

$$+ \sigma^0(X_t^i, \text{global state}) \underbrace{dB_t}_{common/systemic noise}$$

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶ 厘 …

General formulation

• Controlled system of *N* interacting particles with mean-field interaction through the global state of the population

• dynamics of particle number $i \in \{1, \ldots, N\}$

$$\underbrace{dX_t^i}_{\in \mathbb{R}^d} = b(X_t^i, \text{global state of the collectivity}, \alpha_t^i)dt$$

$$\in \mathbb{R}^d$$

$$+ \sigma(X_t^i, \text{global state}) \underbrace{dW_t^i}_{i\text{diosyncratic noises}}$$

$$+ \sigma^0(X_t^i, \text{global state}) \underbrace{dB_t}_{common/systemic noises}$$

• Rough description of the probabilistic set-up

 $\circ (B_t, W^1, \ldots, W^N)_{0 \le t \le T}$ independent B.M. with values in \mathbb{R}^d

◦ $(\alpha_t^i)_{0 \le t \le T}$ progressively-measurable processes with values in *A* (closed convex ⊂ \mathbb{R}^k)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

∘ i.i.d. initial conditions ⊥ noises

Empirical measure

• Code the state of the population at time *t* through $\bar{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$ \rightsquigarrow probability measure on \mathbb{R}^d

 $\circ \mathcal{P}_2(\mathbb{R}^d) \rightsquigarrow$ set of probabilities on \mathbb{R}^d with finite 2nd moments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Empirical measure

• Code the state of the population at time *t* through $\bar{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$ \rightsquigarrow probability measure on \mathbb{R}^d

 $\circ \mathcal{P}_2(\mathbb{R}^d) \rightsquigarrow$ set of probabilities on \mathbb{R}^d with finite 2nd moments

• Express the coefficients as $\begin{array}{l} b: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \times A \to \mathbb{R}^d, \\ \sigma, \sigma^0: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}^{d \times d}, \end{array}$

• examples: $b(x, \mu, \alpha) = b(x, \int_{\mathbb{R}^d} \varphi d\mu, \alpha), \quad \int_{\mathbb{R}^d} b(x, \nu, \alpha) d\mu(\nu)$

o rewrite the dynamics of the particles

 $dX_t^i = b(X_t^i, \bar{\mu}_t^N, \alpha_t^i)dt + \sigma(X_t^i, \bar{\mu}_t^N)dW_t^i + \sigma^0(X_t^i, \bar{\mu}_t^N)dB_t$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Empirical measure

• Code the state of the population at time *t* through $\bar{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$ \rightsquigarrow probability measure on \mathbb{R}^d

 $\circ \mathcal{P}_2(\mathbb{R}^d) \rightarrow$ set of probabilities on \mathbb{R}^d with finite 2nd moments

• Express the coefficients as $b: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \times A \to \mathbb{R}^d, \\ \sigma, \sigma^0: \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}^{d \times d},$

• examples: $b(x, \mu, \alpha) = b(x, \int_{\mathbb{R}^d} \varphi d\mu, \alpha), \quad \int_{\mathbb{R}^d} b(x, \nu, \alpha) d\mu(\nu)$

o rewrite the dynamics of the particles

 $dX_t^i = b(X_t^i, \bar{\mu}_t^N, \alpha_t^i)dt + \sigma(X_t^i, \bar{\mu}_t^N)dW_t^i + \sigma^0(X_t^i, \bar{\mu}_t^N)dB_t$

• **Cost functional** to player $i \in \{1, ..., N\}$

$$J^{i}(\boldsymbol{\alpha}^{1},\boldsymbol{\alpha}^{2},\ldots,\boldsymbol{\alpha}^{N}) = \mathbb{E}\left[g(X_{T}^{i},\bar{\boldsymbol{\mu}}_{T}^{N}) + \int_{0}^{T} f(X_{t}^{i},\bar{\boldsymbol{\mu}}_{t}^{N},\boldsymbol{\alpha}_{t}^{i})dt\right]$$

• same (f, g) for all *i* but J^i depends on the others through $\overline{\mu}^N$

Nash equilibrium

• Each player is willing to minimize its own cost functional

 \circ need for a consensus \sim Nash equilibrium

Nash equilibrium

- Each player is willing to minimize its own cost functional
 need for a consensus → Nash equilibrium
- Say that a *N*-tuple of strategies (α^{1,★},..., α^{N,★}) is a consensus if

 no interest for any player to leave the consensus
 change α^{i,★} → αⁱ ⇒ Jⁱ ∧

$$J^{i}(\alpha^{1,\star},\ldots,\alpha^{i,\star},\ldots,\alpha^{N,\star}) \leq J^{i}(\alpha^{1,\star},\ldots,\alpha^{i},\ldots,\alpha^{N,\star})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Nash equilibrium

- Each player is willing to minimize its own cost functional
 need for a consensus → Nash equilibrium
- Say that a *N*-tuple of strategies (α^{1,★},..., α^{N,★}) is a consensus if

 no interest for any player to leave the consensus
 change α^{i,★} → αⁱ ⇒ Jⁱ ↗

$$J^{i}(\alpha^{1,\star},\ldots,\alpha^{i,\star},\ldots,\alpha^{N,\star}) \leq J^{i}(\alpha^{1,\star},\ldots,\alpha^{i},\ldots,\alpha^{N,\star})$$

• Meaning of freezing $\alpha^{1,\star}, \ldots, \alpha^{i-1,\star}, \alpha^{i+1,\star}, \alpha^{N,\star}$

• freezing the processes \rightsquigarrow Nash equilibrium in open loop • $\alpha_t^i = \alpha^i(t, X_t^1, \dots, X_t^N) \rightsquigarrow$ each function α^i is a Markov feedback \rightsquigarrow Nash over of Markov loop

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 - の々で

• leads to different equilibria! but expect that there is no difference in the asymptotic setting

Part I. Motivation

c. Example

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Exhaustible resources [Guéant Lasry Lions]

• N producers of oil $\rightsquigarrow X_t^i$ (estimated reserve) at time t

$$dX_t^i = -\frac{\alpha_t^i}{dt} dt + \sigma X_t^i dW_t^i$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\circ \alpha_t^i \rightsquigarrow$ instantaneous production rate

- $\circ\,\sigma$ common volatility for the perception of the reserve
- should be a constraint $X_t^i \ge 0$

Exhaustible resources [Guéant Lasry Lions]

• N producers of oil $\rightsquigarrow X_t^i$ (estimated reserve) at time t

$$dX_t^i = -\frac{\alpha_t^i}{dt} dt + \sigma X_t^i dW_t^i$$

 $\circ \alpha_t^i \rightsquigarrow$ instantaneous production rate

• σ common volatility for the perception of the reserve • should be a constraint $X_t^i \ge 0$

• Optimize the profit of a producer

$$J^{i}(\alpha^{1},\ldots,\alpha^{N}) = \mathbb{E}\int_{0}^{\infty} \exp(-rt)(\alpha_{t}^{i}P_{t} - c(\alpha_{t}^{i}))dt$$

 $\circ P_t$ is selling price, c cost production

 \circ mean-field constraint \rightsquigarrow selling price is a function of the mean-production

$$P_t = P(\frac{1}{N}\sum_{i=1}^N \alpha_t^i)$$

o slightly different! → interaction through the law of the control
 → extended MFG [Gomes al., Carmona D., Cardaliaguet Lehalle]

Part II. From propagation of chaos to MFG

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Part II. From propagation of chaos to MFG

a. McKean-Vlasov SDEs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

General uncontrolled particle system

• Remove the control and the common noise!

$$dX_t^i = b(X_t^i, \bar{\mu}_t^N) dt + \sigma(X_t^i, \bar{\mu}_t^N) dW_t^i$$

$$\circ X_0^1, \dots, X_N^i$$
 i.i.d. (and \bot of noises), $\overline{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$

• \exists ! if the coefficients are Lipschitz in all the variables \rightsquigarrow need a suitable distance on space of measures

General uncontrolled particle system

• Remove the control and the common noise!

$$dX_t^i = b(X_t^i, \bar{\mu}_t^N) dt + \sigma(X_t^i, \bar{\mu}_t^N) dW_t^i$$

$$\circ X_0^1, \dots, X_N^i$$
 i.i.d. (and \bot of noises), $\bar{\mu}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$

- \exists ! if the coefficients are Lipschitz in all the variables \rightsquigarrow need a suitable distance on space of measures
- Use the Wasserstein distance on $\mathcal{P}_2(\mathbb{R}^d)$

$$\mu, \nu \in \mathcal{P}_2(\mathbb{R}^d), \quad W_2(\mu, \nu) = \left(\inf_{\pi} \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 d\pi(x, y)\right)^{1/2},$$

where π has μ and ν as marginals on $\mathbb{R}^d \times \mathbb{R}^d$

 $\circ X$ and X' two r.v.'s $\Rightarrow W_2(\mathcal{L}(X), \mathcal{L}(X')) \le \mathbb{E}[|X - X'|^2]^{1/2}$

• Example
$$W_2\left(\frac{1}{N}\sum_{i=1}^N \delta_{x_i}, \frac{1}{N}\sum_{i=1}^N \delta_{x'_i}\right) \le \left(\frac{1}{N}\sum_{i=1}^N |x_i - x'_i|^2\right)^{1/2}$$

McKean-Vlasov SDE

• Expect some decorrelation / averaging in the system as $N \uparrow \infty$

 \circ replace the empirical measure by the theoretical law

 $dX_t = b(X_t, \mathcal{L}(X_t))dt + \sigma(X_t, \mathcal{L}(X_t))dW_t$

• Cauchy-Lipschitz theory

 \circ assume *b* and σ Lipschitz continuous on $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \Rightarrow$ unique solution for any given initial condition in L^2

• proof works as in the standard case taking advantage of $\mathbb{E}\left[\left|(b,\sigma)(X_t,\mathcal{L}(X_t)) - (b,\sigma)(X'_t,\mathcal{L}(X'_t))\right|^2\right] \le C\mathbb{E}\left[|X_t - X'_t|^2\right]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

McKean-Vlasov SDE

• Expect some decorrelation / averaging in the system as $N \uparrow \infty$

o replace the empirical measure by the theoretical law

 $dX_t = b(X_t, \mathcal{L}(X_t))dt + \sigma(X_t, \mathcal{L}(X_t))dW_t$

• Cauchy-Lipschitz theory

 \circ assume *b* and σ Lipschitz continuous on $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \Rightarrow$ unique solution for any given initial condition in L^2

• proof works as in the standard case taking advantage of $\mathbb{E}\left[\left|(b,\sigma)(X_t,\mathcal{L}(X_t)) - (b,\sigma)(X'_t,\mathcal{L}(X'_t))\right|^2\right] \le C\mathbb{E}\left[|X_t - X'_t|^2\right]$

• Propagation of chaos

• each $(X_t^i)_{0 \le t \le T}$ converges in law to the solution of MKV SDE • particles get independent in the limit \rightsquigarrow for *k* fixed:

$$(X_t^1, \dots, X_t^k)_{0 \le t \le T} \xrightarrow{\mathcal{L}} \mathcal{L}(\mathrm{MKV})^{\otimes k} = \mathcal{L}((X_t)_{0 \le t \le T})^{\otimes k} \text{ as } N \nearrow \infty$$

$$\circ \lim_{N \nearrow \infty} \sup_{0 \le t \le T} \mathbb{E}[(W_2(\bar{\mu}_t^N, \mathcal{L}(X_t))^2] = 0$$

Part II. From propagation of chaos to MFG

b. Formulation of the asymptotic problems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ansatz

- Go back to the finite game
- Ansatz \rightsquigarrow at equilibrium

$$\alpha_t^{i,\star} = \alpha^N(t,X_t^i,\bar{\mu}_t^N) \approx \alpha(t,X_t^i,\bar{\mu}_t^N)$$

• particle system at equilibrium

$$dX_t^i \approx b\left(X_t^i, \bar{\mu}_t^N, \boldsymbol{\alpha}(t, X_t^i, \bar{\mu}_t^N)\right) dt + \sigma\left(X_t^i, \boldsymbol{\alpha}(t, X_t^i, \bar{\mu}_t^N)\right) dW_t^i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- \circ particles should decorrelate as $N\nearrow\infty$
- $\circ \bar{\mu}_t^N$ should stabilize around some deterministic limit μ_t

Ansatz

- Go back to the finite game
- Ansatz \rightsquigarrow at equilibrium

$$\alpha_t^{i,\star} = \alpha^N(t,X_t^i,\bar{\mu}_t^N) \approx \alpha(t,X_t^i,\bar{\mu}_t^N)$$

particle system at equilibrium

 $dX_t^i \approx b \Big(X_t^i, \bar{\mu}_t^N, \boldsymbol{\alpha}(t, X_t^i, \bar{\mu}_t^N) \Big) dt + \sigma \Big(X_t^i, \boldsymbol{\alpha}(t, X_t^i, \bar{\mu}_t^N) \Big) dW_t^i$

◦ particles should decorrelate as $N
imes \infty$

 $\circ \bar{\mu}_t^N$ should stabilize around some deterministic limit μ_t

• What about an intrinsic interpretation of μ_t ?

• should describe the global state of the population in equilibrium

• in the limit setting, any particle that leaves the equilibrium should not modify $\mu_t \rightarrow$ leaving the equilibrium means that the cost increases \rightarrow any particle in the limit should solve an optimal control problem in the environment $(\mu_t)_{0 \le t \le T}$

• Define the asymptotic equilibrium state of the population as the solution of a fixed point problem

• Define the asymptotic equilibrium state of the population as the solution of a fixed point problem

(1) fix a flow of probability measures $(\mu_t)_{0 \le t \le T}$ (with values in $\mathcal{P}_2(\mathbb{R}^d)$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Define the asymptotic equilibrium state of the population as the solution of a fixed point problem

(1) fix a flow of probability measures $(\mu_t)_{0 \le t \le T}$ (with values in $\mathcal{P}_2(\mathbb{R}^d)$)

(2) solve the stochastic optimal control problem in the environment $(\mu_t)_{0 \le t \le T}$

$$dX_t = b(X_t, \mu_t, \alpha_t)dt + \sigma(X_t, \mu_t)dW_t$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• with $X_0 = \xi$ being fixed on some set-up $(\Omega, \mathbb{F}, \mathbb{P})$ with a *d*-dimensional B.M.

• with
$$\boxed{\text{cost}} J(\alpha) = \mathbb{E} \Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \alpha_t) dt \Big]$$

• Define the asymptotic equilibrium state of the population as the solution of a fixed point problem

(1) fix a flow of probability measures $(\mu_t)_{0 \le t \le T}$ (with values in $\mathcal{P}_2(\mathbb{R}^d)$)

(2) solve the stochastic optimal control problem in the environment $(\mu_t)_{0 \le t \le T}$

$$dX_t = b(X_t, \mu_t, \alpha_t)dt + \sigma(X_t, \mu_t)dW_t$$

• with $X_0 = \xi$ being fixed on some set-up $(\Omega, \mathbb{F}, \mathbb{P})$ with a *d*-dimensional B.M.

• with
$$\boxed{\text{cost}} J(\alpha) = \mathbb{E}\Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \alpha_t) dt\Big]$$

(3) let $(X_t^{\star,\mu})_{0 \le t \le T}$ be the unique optimizer (under nice assumptions) \rightsquigarrow find $(\mu_t)_{0 \le t \le T}$ such that

$$\mu_t = \mathcal{L}(X_t^{\star, \mu}), \quad t \in [0, T]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Not a proof of convergence!

Part II. From propagation of chaos to MFG

c. Forward-backward systems

PDE point of view: HJB

- PDE characterization of the optimal control problem when σ is the identity
- Value function in environment $(\mu_t)_{0 \le t \le T}$

$$u(t,x) = \inf_{\alpha \text{ processes}} \mathbb{E} \Big[g(X_T, \mu_T) + \int_t^T f(X_s, \mu_s, \alpha_s) ds | X_t = x \Big]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

PDE point of view: HJB

• PDE characterization of the optimal control problem when σ is the identity

• Value function in environment $(\mu_t)_{0 \le t \le T}$

$$u(t,x) = \inf_{\alpha \text{ processes}} \mathbb{E} \Big[g(X_T, \mu_T) + \int_t^T f(X_s, \mu_s, \alpha_s) ds | X_t = x \Big]$$

• U solution Backward HJB

$$\left(\partial_t u + \frac{\partial_{xx}^2 u}{2}\right)(t,x) + \underbrace{\inf_{\alpha \text{ scalar}} [b(x,\mu_t,\alpha)\partial_x u(t,x) + f(x,\mu_t,\alpha)]}_{\text{standard Hamiltonian in HIB}} = 0$$

 $\bullet \; H(x,\mu,\alpha,z) = b(x,\mu,\alpha) \cdot z + f(x,\mu,\alpha)$

 $\circ \, \alpha^{\star}(x,\mu,z) = \mathrm{argmin}_{\alpha \in A} H(x,\mu,\alpha,z) \rightsquigarrow \alpha^{\star} = \alpha^{\star}(x,\mu_t,\partial_x u(t,x))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Terminal boundary condition: $u(T, \cdot) = g(\cdot, \mu_T)$
- Pay attention that *u* depends on $(\mu_t)_t!$
Fokker-Planck

- Need for a PDE characterization of $(\mathcal{L}(X_t^{\star,\mu}))_t$
- Dynamics of $X^{\star,\mu}$ at equilibrium

$$dX_t^{\star,\mu} = b(X_t^{\star,\mu},\mu_t,\alpha^{\star}(X_t^{\star,\mu},\mu_t,\partial_x u(t,X_t^{\star,\mu})))dt + dW_t$$

• Law $(X_t^{\star,\mu})_{0 \le t \le T}$ satisfies Fokker-Planck (FP) equation

$$\partial_t \mu_t = -\operatorname{div}(\underbrace{b(x, \mu_t, \alpha^{\star}(x, \mu_t, \partial_x u(t, x)))}_{b^{\star}(t, x)} \mu_t) + \frac{1}{2} \partial_{xx}^2 \mu_t$$

Fokker-Planck

- Need for a PDE characterization of $(\mathcal{L}(X_t^{\star,\mu}))_t$
- Dynamics of $X^{\star,\mu}$ at equilibrium

 $dX_t^{\star,\mu} = b(X_t^{\star,\mu}, \mu_t, \alpha^{\star}(X_t^{\star,\mu}, \mu_t, \frac{\partial_x u(t, X_t^{\star,\mu})))dt + dW_t$

• Law $(X_t^{\star,\mu})_{0 \le t \le T}$ satisfies Fokker-Planck (FP) equation

$$\partial_t \mu_t = -\operatorname{div}(\underbrace{b(x, \mu_t, \alpha^{\star}(x, \mu_t, \partial_x u(t, x)))}_{b^{\star}(t, x)} \mu_t) + \frac{1}{2} \partial_{xx}^2 \mu_t$$

• MFG equilibrium described by forward-backward in ∞ dimension

Fokker-Planck (forward) HJB (backward)

 $\circ \infty$ dimensional analogue of

$$\dot{x}_t = b(x_t, y_t)dt, \quad x_0 = x^0$$

$$\dot{y}_t = -f(x_t, y_t)dt, \quad y_T = g(x_T)$$

• Environment $(\mu_t)_{0 \le t \le T}$ is fixed and cost functional of the type

$$J(\boldsymbol{\alpha}) = \mathbb{E}\Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \boldsymbol{\alpha}_t)dt\Big]$$

 \circ assume f and g continuous and at most of quadratic growth

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Environment $(\mu_t)_{0 \le t \le T}$ is fixed and cost functional of the type

$$J(\boldsymbol{\alpha}) = \mathbb{E}\Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \boldsymbol{\alpha}_t)dt\Big]$$

 \circ assume f and g continuous and at most of quadratic growth

• Interpret optimal paths as the forward component of an FBSDE \rightsquigarrow On $(\Omega, \mathbb{F}, \mathbb{P})$ with \mathbb{F} generated by $(\xi, (W_t)_{0 \le t \le T})$

$$X_t = X_0 + \int_0^t b\left(X_s, \mu_s, \mathbf{Y}_s, \mathbf{Z}_s\right) ds + \int_0^t \sigma(X_s, \mu_s) dW_s$$
$$Y_t = G(X_T, \mu_T) + \int_t^T F\left(X_s, \mu_s, \mathbf{Y}_s, \mathbf{Z}_s\right) ds - \int_t^T Z_s dW_s$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• Environment $(\mu_t)_{0 \le t \le T}$ is fixed and cost functional of the type

$$J(\boldsymbol{\alpha}) = \mathbb{E}\Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \boldsymbol{\alpha}_t)dt\Big]$$

 \circ assume f and g continuous and at most of quadratic growth

• Interpret optimal paths as the forward component of an FBSDE \rightsquigarrow On $(\Omega, \mathbb{F}, \mathbb{P})$ with \mathbb{F} generated by $(\xi, (W_t)_{0 \le t \le T})$

$$X_t = X_0 + \int_0^t b\left(X_s, \mu_s, \mathbf{Y}_s, \mathbf{Z}_s\right) ds + \int_0^t \sigma(X_s, \mu_s) dW_s$$
$$Y_t = G(X_T, \mu_T) + \int_t^T F\left(X_s, \mu_s, \mathbf{Y}_s, \mathbf{Z}_s\right) ds - \int_t^T Z_s dW_s$$

 $\circ \sigma$ invertible, *H* strict convex in α and coeff. bounded in x ⇒ ((*G*, *F*) = (*g*, *f*)) ⇒ represent value function!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• Environment $(\mu_t)_{0 \le t \le T}$ is fixed and cost functional of the type

$$J(\boldsymbol{\alpha}) = \mathbb{E}\Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \boldsymbol{\alpha}_t)dt\Big]$$

 \circ assume f and g continuous and at most of quadratic growth

• Interpret optimal paths as the forward component of an FBSDE \rightsquigarrow On $(\Omega, \mathbb{F}, \mathbb{P})$ with \mathbb{F} generated by $(\xi, (W_t)_{0 \le t \le T})$

$$X_t = X_0 + \int_0^t b\left(X_s, \mu_s, \mathbf{Y}_s, \mathbf{Z}_s\right) ds + \int_0^t \sigma(X_s, \mu_s) dW_s$$
$$Y_t = G(X_T, \mu_T) + \int_t^T F\left(X_s, \mu_s, \mathbf{Y}_s, \mathbf{Z}_s\right) ds - \int_t^T Z_s dW_s$$

 $\circ \sigma$ invertible, *H* strict convex in α and coeff. bounded in x ⇒ ((*G*, *F*) = (*g*, *f*)) ⇒ represent value function!

∘ *H* strict convex in $(x, \alpha) \Rightarrow$ Pontryagin! $((G, F) = (\partial_x g, \partial_x H))$ (σ indep. of x) \Rightarrow represent gradient value function!

• Environment $(\mu_t)_{0 \le t \le T}$ is fixed and cost functional of the type

$$J(\boldsymbol{\alpha}) = \mathbb{E}\Big[g(X_T, \mu_T) + \int_0^T f(X_t, \mu_t, \boldsymbol{\alpha}_t)dt\Big]$$

 \circ assume f and g continuous and at most of quadratic growth

• Interpret optimal paths as the forward component of an FBSDE \rightsquigarrow On $(\Omega, \mathbb{F}, \mathbb{P})$ with \mathbb{F} generated by $(\xi, (W_t)_{0 \le t \le T})$

$$X_t = X_0 + \int_0^t b\left(X_s, \mu_s, \mathbf{Y}_s, \mathbf{Z}_s\right) ds + \int_0^t \sigma(X_s, \mu_s) dW_s$$
$$Y_t = G(X_T, \mu_T) + \int_t^T F\left(X_s, \mu_s, \mathbf{Y}_s, \mathbf{Z}_s\right) ds - \int_t^T Z_s dW_s$$

 $\circ \sigma$ invertible, *H* strict convex in α and coeff. bounded in x ⇒ ((*G*, *F*) = (*g*, *f*)) ⇒ represent value function!

∘ *H* strict convex in $(x, \alpha) \Rightarrow$ Pontryagin! $((G, F) = (\partial_x g, \partial_x H))$ (σ indep. of x) \Rightarrow represent gradient value function!

◦ choose $(\mu_t)_{0 \le t \le T}$ as the law of optimal path! ⇒ characterize by FBSDE of McKean-Vlasov type

MKV FBSDE for the value function

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{aligned} X_t &= \xi + \int_0^t b(X_s, \mathcal{L}(X_s), \alpha^*(X_s, \mathcal{L}(X_s), Z_s \sigma^{-1}(X_s, \mathcal{L}(X_s)))) ds \\ &+ \int_0^t \sigma(X_s, \mathcal{L}(X_s)) dW_s \\ Y_t &= g(X_T, \mathcal{L}(X_T)) \\ &+ \int_t^T f(X_s, \mathcal{L}(X_s), \alpha^*(X_s, \mathcal{L}(X_s), Z_s \sigma^{-1}(X_s, \mathcal{L}(X_s)))) ds - \int_t^T Z_s dW_s \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

MKV FBSDE for the value function

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{aligned} X_t &= \xi + \int_0^t b(X_s, \mathcal{L}(X_s), \alpha^*(X_s, \mathcal{L}(X_s), Z_s \sigma^{-1}(X_s, \mathcal{L}(X_s)))) ds \\ &+ \int_0^t \sigma(X_s, \mathcal{L}(X_s)) dW_s \\ Y_t &= g(X_T, \mathcal{L}(X_T)) \\ &+ \int_t^T f(X_s, \mathcal{L}(X_s), \alpha^*(X_s, \mathcal{L}(X_s), Z_s \sigma^{-1}(X_s, \mathcal{L}(X_s)))) ds - \int_t^T Z_s dW_s \end{aligned}$$

• Connection with PDE formulation

$$Y_s = u(s, X_s), \quad Z_s = \partial_x u(s, X_s) \sigma(X_s, \mu_s)$$

MKV FBSDE for the value function

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{aligned} X_t &= \xi + \int_0^t b(X_s, \mathcal{L}(X_s), \alpha^*(X_s, \mathcal{L}(X_s), Z_s \sigma^{-1}(X_s, \mathcal{L}(X_s)))) ds \\ &+ \int_0^t \sigma(X_s, \mathcal{L}(X_s)) dW_s \\ Y_t &= g(X_T, \mathcal{L}(X_T)) \\ &+ \int_t^T f(X_s, \mathcal{L}(X_s), \alpha^*(X_s, \mathcal{L}(X_s), Z_s \sigma^{-1}(X_s, \mathcal{L}(X_s)))) ds - \int_t^T Z_s dW_s \end{aligned}$$

• Connection with PDE formulation

$$Y_s = u(s, X_s), \quad Z_s = \partial_x u(s, X_s) \sigma(X_s, \mu_s)$$

• Unique minimizer for each $(\mu_t)_{0 \le t \le T}$ if

 $\circ b, f, g, \sigma, \sigma^{-1}$ bounded in (x, μ) , Lipschitz in x

 $\circ b$ linear in α and f strictly convex and loc. Lip in α , with Lip(f) at most of linear growth in α

MKV FBSDE for the Pontryagin principle

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{aligned} X_t &= \xi + \int_0^t b \Big(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Y_s) \Big) \, ds + \int_0^t \sigma(\mathcal{L}(X_s)) dW_s \\ Y_t &= \partial_x g(X_T, \mathcal{L}(X_T)) \\ &+ \int_t^T \partial_x H \Big(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Y_s), Y_s \Big) \, ds - \int_t^T Z_s dW_s \end{aligned}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣──

MKV FBSDE for the Pontryagin principle

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{aligned} X_t &= \xi + \int_0^t b \Big(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Y_s) \Big) \, ds + \int_0^t \sigma(\mathcal{L}(X_s)) dW_s \\ Y_t &= \partial_x g(X_T, \mathcal{L}(X_T)) \\ &+ \int_t^T \partial_x H \Big(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Y_s), Y_s \Big) \, ds - \int_t^T Z_s dW_s \end{aligned}$$

• Connection with PDE formulation

$$Y_s = \partial_x u(s, X_s), \quad Z_s = \partial_x^2 u(s, X_s) \sigma(\mu_s)$$

MKV FBSDE for the Pontryagin principle

• Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$\begin{aligned} X_t &= \xi + \int_0^t b \Big(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Y_s) \Big) \, ds + \int_0^t \sigma(\mathcal{L}(X_s)) dW_s \\ Y_t &= \partial_x g(X_T, \mathcal{L}(X_T)) \\ &+ \int_t^T \partial_x H \Big(X_s, \mathcal{L}(X_s), \alpha^{\star}(X_s, \mathcal{L}(X_s), Y_s), Y_s \Big) \, ds - \int_t^T Z_s dW_s \end{aligned}$$

• Connection with PDE formulation

$$Y_s = \partial_x u(s, X_s), \quad Z_s = \partial_x^2 u(s, X_s) \sigma(\mu_s)$$

• Unique minimizer for each $(\mu_t)_{0 \le t \le T}$ if

• σ indep. of x and $b(x, \mu, \alpha) = b_0(\mu) + b_1 x + b_2 \alpha$

$$\circ \partial_x f, \partial_\alpha f, \partial_x g$$
 L-Lipschitz in (x, α)

• g and f convex in (x, α) with f strict convex in α

Seeking a solution

• Any way \rightsquigarrow two-point-boundary-problem \Rightarrow

• Cauchy-Lipschitz theory in small time only

 \circ if Lipschitz coefficients (including the direction of the measure) \rightarrow existence and uniqueness in short time (see later on)

 \rightsquigarrow existence and uniqueness of MFG equilibria in small time

Seeking a solution

• Any way \rightsquigarrow two-point-boundary-problem \Rightarrow

• Cauchy-Lipschitz theory in small time only

 \circ if Lipschitz coefficients (including the direction of the measure) \rightarrow existence and uniqueness in short time (see later on)

 \sim existence and uniqueness of MFG equilibria in small time

• What about arbitrary time?

 \circ existence \rightsquigarrow fixed point over the measure argument by means of compactness arguments

Schauder's theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

 \circ uniqueness \rightsquigarrow require additional assumption

Seeking a solution

• Any way \rightsquigarrow two-point-boundary-problem \Rightarrow

• Cauchy-Lipschitz theory in small time only

 \circ if Lipschitz coefficients (including the direction of the measure) \rightarrow existence and uniqueness in short time (see later on)

 \rightsquigarrow existence and uniqueness of MFG equilibria in small time

• What about arbitrary time?

 \circ existence \rightsquigarrow fixed point over the measure argument by means of compactness arguments

Schauder's theorem

 \circ uniqueness \rightsquigarrow require additional assumption

• Other question \rightsquigarrow connection with social optimization?

 \circ potential games \rightsquigarrow MFG solution is also a social optimizer (but for other coefficients)

Part III. Solving MFG

a. Schauder fixed point theorem without common noise

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Statement of the Schauder fixed point theorem

• Generalisation of Brouwer's theorem from finite to infinite dimension

• Let $(V, \|\cdot\|)$ be a normed vector space

 $\circ \emptyset \neq E \subset V \text{ with } E \text{ closed and convex}$

 $\circ \phi : E \to E$ continuous such that $\phi(E)$ is relatively compact

 $\circ \Rightarrow$ existence of a fixed point to ϕ

Statement of the Schauder fixed point theorem

• Generalisation of Brouwer's theorem from finite to infinite dimension

• Let $(V, \|\cdot\|)$ be a normed vector space

 $\circ \emptyset \neq E \subset V \text{ with } E \text{ closed and convex}$

 $\circ \phi : E \to E$ continuous such that $\phi(E)$ is relatively compact

 $\circ \Rightarrow$ existence of a fixed point to ϕ

• In MFG \rightsquigarrow what is *V*, what is *E*, what is ϕ ?

◦ recall that MFG equilibrium is a flow of measures $(\mu_t)_{0 \le t \le T}$ $E \subset C([0, T], \mathcal{P}_2(\mathbb{R}^d))$

o need to embed into a linear structure

 $C([0,T], \mathcal{P}_2(\mathbb{R}^d)) \subset C([0,T], \mathcal{M}_1(\mathbb{R}^d))$

• $\mathcal{M}_1(\mathbb{R}^d)$ set of signed measures ν with $\int_{\mathbb{R}^d} |x|d|\nu|(x) < \infty$

Compactness on the space of probability measures

Equip M₁(ℝ^d) with a norm || · || and restrict to P₁(ℝ^d) such that
 convergence of (v_n)_{n≥1} in P₁(ℝ^d) implies weak convergence

$$\forall h \in C_b(\mathbb{R}^d, \mathbb{R}), \quad \lim_{n \to \infty} \int_{\mathbb{R}^d} h d\nu_n = \int_{\mathbb{R}^d} h d\nu$$

• if $(v_n)_{n\geq 1}$ has uniformly bounded moments of order p > 2

Unif. square integrability $\Rightarrow W_2(v_n, v) \rightarrow 0$

• says that the input in the coefficients varies continuously!

 $b(x, v_n, y, z), \sigma(x, v_n), F(x, v_n, y, z), G(x, v_n)$

Compactness on the space of probability measures

Equip M₁(ℝ^d) with a norm || · || and restrict to P₁(ℝ^d) such that
 convergence of (v_n)_{n≥1} in P₁(ℝ^d) implies weak convergence

$$\forall h \in C_b(\mathbb{R}^d, \mathbb{R}), \quad \lim_{n \to \infty} \int_{\mathbb{R}^d} h d\nu_n = \int_{\mathbb{R}^d} h d\nu$$

• if $(v_n)_{n\geq 1}$ has uniformly bounded moments of order p > 2

Unif. square integrability $\Rightarrow W_2(v_n, v) \rightarrow 0$

• says that the input in the coefficients varies continuously!

$$b(x, v_n, y, z), \sigma(x, v_n), F(x, v_n, y, z), G(x, v_n)$$

Compactness →→ if (v_n)_{n≥1} has bounded moments of order p > 2
 (v_n)_{n≥1} admits a weakly convergent subsequence
 then convergence for W₂ by unif. integrability and for || · || also

Application to MKV FBSDE

• Choose *E* as continuous $(\mu_t)_{0 \le t \le T}$ from [0, T] to $\mathcal{P}_2(\mathbb{R}^d)$ $\sup_{0 \le t \le T} \int_{\mathbb{R}^d} |x|^4 d\mu_t(x) \le K \quad \text{for some } K$

Application to MKV FBSDE

- Choose *E* as continuous $(\mu_t)_{0 \le t \le T}$ from [0, T] to $\mathcal{P}_2(\mathbb{R}^d)$ $\sup_{0 \le t \le T} \int_{\mathbb{R}^d} |x|^4 d\mu_t(x) \le K \quad \text{for some } K$
- Construct $\phi \rightsquigarrow \text{fix } (\mu_t)_{0 \le t \le T}$ in *E* and solve

$$X_t = \xi + \int_0^t b\left(X_s, \mu_s, Y_s, Z_s\right) + \int_0^t \sigma(X_s, \mu_s) dW_s$$
$$Y_t = G(X_T, \mu_T) + \int_t^T F(X_s, \mu_s, Y_s, Z_s) \, ds - \int_t^T Z_s dW_s$$

• let
$$\phi(\mu = (\mu_t)_{0 \le t \le T}) = (\mathcal{L}(X_t^{\mu}))_{0 \le t \le T}$$

Application to MKV FBSDE

- Choose *E* as continuous $(\mu_t)_{0 \le t \le T}$ from [0, T] to $\mathcal{P}_2(\mathbb{R}^d)$ $\sup_{0 \le t \le T} \int_{\mathbb{R}^d} |x|^4 d\mu_t(x) \le K \quad \text{for some } K$
- Construct $\phi \rightsquigarrow \text{fix } (\mu_t)_{0 \le t \le T}$ in *E* and solve

$$X_t = \xi + \int_0^t b\left(X_s, \mu_s, Y_s, Z_s\right) + \int_0^t \sigma(X_s, \mu_s) dW_s$$
$$Y_t = G(X_T, \mu_T) + \int_t^T F(X_s, \mu_s, Y_s, Z_s) \, ds - \int_t^T Z_s dW_s$$

$$\circ \text{ let } \phi \left(\mu = (\mu_t)_{0 \le t \le T} \right) = (\mathcal{L}(X_t^{\mu}))_{0 \le t \le T}$$

• Assume bounded coefficients and $\mathbb{E}[|\xi|^4] < \infty$

• choose *K* such that $\mathbb{E}[|X_t^{\mu}|^4] \leq K$

 \Rightarrow *E* stable by ϕ

 $\circ W_2(\mathcal{L}(X^{\mu}_t), \mathcal{L}(X^{\mu}_s)) \leq C \mathbb{E} \big[|X^{\mu}_t - X^{\mu}_s|^2 \big]^{1/2} \leq C |t - s|^{1/2}$

Conclusion

• Consider continuous $\mu = (\mu_t)_{0 \le t \le T}$ from [0, T] to $\mathcal{P}_2(\mathbb{R}^d)$

• for any $t \rightsquigarrow (\phi(\boldsymbol{\mu}))_t$ in a compact subset of $\mathcal{P}_2(\mathbb{R}^d)$

◦ [0, T] ∋ $t \mapsto (\phi(\mu))_t$ is uniformly continuous in μ

• by Arzelà-Ascoli \Rightarrow output lives in a compact subset of $E \subset C([0, T], \mathcal{P}_2(\mathbb{R}^d))$ (and thus of $C([0, T], \mathcal{M}_1(\mathbb{R}^d))$)

• Continuity of ϕ on $E \rightarrow$ stability of the solution of FBSDEs with respect to a continuous perturbation of the environment

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusion

• Consider continuous $\mu = (\mu_t)_{0 \le t \le T}$ from [0, T] to $\mathcal{P}_2(\mathbb{R}^d)$

• for any $t \rightsquigarrow (\phi(\boldsymbol{\mu}))_t$ in a compact subset of $\mathcal{P}_2(\mathbb{R}^d)$

◦ [0, T] ∋ $t \mapsto (\phi(\mu))_t$ is uniformly continuous in μ

• by Arzelà-Ascoli \Rightarrow output lives in a compact subset of $E \subset C([0, T], \mathcal{P}_2(\mathbb{R}^d))$ (and thus of $C([0, T], \mathcal{M}_1(\mathbb{R}^d))$)

• Continuity of ϕ on $E \rightarrow$ stability of the solution of FBSDEs with respect to a continuous perturbation of the environment

• Refinements to allow for unbounded coefficients

• for the Value-Function FBSDE $\rightarrow b$ linear in α , f strictly convex in α , with derivatives in α at most of linear growth in α

• Pontryagin principle

 $\rightsquigarrow b$ linear in (x, α) and f convex in (x, α) with derivatives at most of linear growth with weak-mean reverting conditions

 $\langle x, \partial_x f(0, \delta_x, 0) \rangle \ge -c(1 + |x|)$ and $\langle x, \partial_x g(0, \delta_x) \rangle \ge -c(1 + |x|)$

200

Linear-quadratic in d = 1

• Apply previous results with

$$\circ \ b(t,x,\mu,\alpha) = a_t x + a_t' \mathbb{E}(\mu) + b_t \alpha_t$$

 $\circ g(x,\mu) = \frac{1}{2} [qx + q' \mathbb{E}(\mu)]^2 \iff (\text{mean-reverting}) \ qq' \ge 0$

 $\circ f(t, x, \mu, \alpha) = \frac{1}{2} \left[\alpha^2 + \left(m_t x + m_t' \mathbb{E}(\mu) \right)^2 \right] \longleftrightarrow \text{(mean-rev.)} \ m_t m_t' \ge 0$

Linear-quadratic in d = 1

• Apply previous results with

$$\circ b(t, x, \mu, \alpha) = a_t x + a'_t \mathbb{E}(\mu) + b_t \alpha_t$$

$$\circ g(x, \mu) = \frac{1}{2} [qx + q' \mathbb{E}(\mu)]^2 \iff (\text{mean-reverting}) \ qq' \ge 0$$

$$\circ f(t, x, \mu, \alpha) = \frac{1}{2} [\alpha^2 + (m_t x + m'_t \mathbb{E}(\mu))^2] \iff (\text{mean-rev.}) \ m_t m'_t \ge 0$$

• Compare with direct method \sim Pontryagin

$$dX_t = [a_t X_t + a'_t \mathbb{E}(X_t) - b_t^2 Y_t] dt + \sigma dW_t$$

$$dY_t = -[a_t Y_t + m_t(m_t X_t + m'_t \mathbb{E}(X_t))] dt + Z_t dW_t$$

$$Y_T = q[qX_T + q' \mathbb{E}(X_T)]$$

o take the mean

$$d\mathbb{E}(X_t) = [(a_t + a'_t)\mathbb{E}(X_t) - b_t^2\mathbb{E}(Y_t)]dt$$

$$d\mathbb{E}(Y_t) = -[a_t\mathbb{E}(Y_t) + m_t(m_t + m'_t)\mathbb{E}(X_t)]dt$$

$$\mathbb{E}(Y_T) = q(q + q')\mathbb{E}(X_T)$$

Linear-quadratic in d = 1

• Apply previous results with

$$\circ b(t, x, \mu, \alpha) = a_t x + a'_t \mathbb{E}(\mu) + b_t \alpha_t$$

$$\circ g(x, \mu) = \frac{1}{2} [qx + q' \mathbb{E}(\mu)]^2 \iff (\text{mean-reverting}) qq' \ge 0$$

 $\circ f(t, x, \mu, \alpha) = \frac{1}{2} \left[\alpha^2 + \left(m_t x + m'_t \mathbb{E}(\mu) \right)^2 \right] \iff (\text{mean-rev.}) \ m_t m'_t \ge 0$

• Compare with direct method \sim Pontryagin

$$dX_t = [a_t X_t + a'_t \mathbb{E}(X_t) - b_t^2 Y_t] dt + \sigma dW_t$$

$$dY_t = -[a_t Y_t + m_t(m_t X_t + m'_t \mathbb{E}(X_t))] dt + Z_t dW_t$$

$$Y_T = q[qX_T + q' \mathbb{E}(X_T)]$$

o take the mean

$$d\mathbb{E}(X_t) = [(a_t + a'_t)\mathbb{E}(X_t) - b_t^2\mathbb{E}(Y_t)]dt$$

$$d\mathbb{E}(Y_t) = -[a_t\mathbb{E}(Y_t) + m_t(m_t + m'_t)\mathbb{E}(X_t)]dt$$

$$\mathbb{E}(Y_T) = q(q + q')\mathbb{E}(X_T)$$

• existence and uniqueness if $q(q + q') \ge 0$, $m_t(m_t + m'_t) \ge 0$

Part III. Solving MFG

b. Uniqueness criterion

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A counter-example to uniqueness

• Consider the MKV FBSDE

$$dX_t = b(\mathbb{E}(Y_t))dt + dW_t, \quad X_0 = x_0$$

$$dY_t = -f(\mathbb{E}(X_t))dt + Z_t dW_t, \quad Y_T = g(\mathbb{E}(X_T))$$

 \circ take bounded and Lipschitz coefficients \rightsquigarrow existence of a solution

• uniqueness may not hold!

 \circ completely different of the system with $b(Y_t)$, $f(X_t)$ and $g(X_T)$ for which uniqueness holds true!

<ロト <回ト < 注ト < 注ト = 注

A counter-example to uniqueness

• Consider the MKV FBSDE

$$dX_t = b(\mathbb{E}(Y_t))dt + dW_t, \quad X_0 = x_0$$

$$dY_t = -f(\mathbb{E}(X_t))dt + Z_t dW_t, \quad Y_T = g(\mathbb{E}(X_T))$$

 \circ take bounded and Lipschitz coefficients \rightsquigarrow existence of a solution

• uniqueness may not hold!

• completely different of the system with $b(Y_t)$, $f(X_t)$ and $g(X_T)$ for which uniqueness holds true!

• $\boxed{\text{Proof}} \rightsquigarrow \text{take the mean}$

 $d\mathbb{E}(X_t) = b(\mathbb{E}(Y_t))dt, \quad \mathbb{E}(X_0) = x_0$ $d\mathbb{E}(Y_t) = -f(\mathbb{E}(X_t))dt, \quad \mathbb{E}(Y_T) = g(\mathbb{E}(X_T))$

◦ led back to counter-example for FBSDE \rightarrow choose *b*, *f* and *g* equal to the identity on a compact subset

Lasry Lions monotonicity condition

- Recall following FBSDE result
 - $\circ \exists !$ may hold for the Pontryagin system if convex g and H

 \circ convexity \leftrightarrow monotonicity of $\partial_x g$ and $\partial_x H$

• what is monotonicity condition in the direction of the measure?

Lasry Lions monotonicity condition

- Recall following FBSDE result
 - $\circ \exists !$ may hold for the Pontryagin system if convex g and H
 - \circ convexity \leftrightarrow monotonicity of $\partial_x g$ and $\partial_x H$
 - what is monotonicity condition in the direction of the measure?
- Lasry Lions monotonicity condition
 - \circ *b*, σ do not depend on μ

 $\circ f(x, \mu, \alpha) = f_0(x, \mu) + f_1(x, \alpha)$ (μ and α are separated)

 \circ monotonicity property for f_0 and g w.r.t. μ

$$\int_{\mathbb{R}^d} (f_0(x,\mu) - f_0(x,\mu')) d(\mu - \mu')(x) \ge 0$$
$$\int_{\mathbb{R}^d} (g(x,\mu) - g(x,\mu')) d(\mu - \mu')(x) \ge 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Lasry Lions monotonicity condition

- Recall following FBSDE result
 - $\circ \exists !$ may hold for the Pontryagin system if convex g and H
 - \circ convexity \leftrightarrow monotonicity of $\partial_x g$ and $\partial_x H$
 - what is monotonicity condition in the direction of the measure?
- Lasry Lions monotonicity condition
 - b, σ do not depend on μ

 $\circ f(x, \mu, \alpha) = f_0(x, \mu) + f_1(x, \alpha)$ (μ and α are separated)

 \circ monotonicity property for f_0 and g w.r.t. μ

$$\int_{\mathbb{R}^d} (f_0(x,\mu) - f_0(x,\mu')) d(\mu - \mu')(x) \ge 0$$
$$\int_{\mathbb{R}^d} (g(x,\mu) - g(x,\mu')) d(\mu - \mu')(x) \ge 0$$

• Example: $h(x,\mu) = \int_{\mathbb{R}^d} L(z,\rho \star \mu(z))\rho(x-z)dz$ where *L* is \nearrow in second variable and ρ is even

Monotonicity restores uniqueness

• Assume that for any input $\mu = (\mu_t)_{0 \le t \le T}$ unique optimal control $\alpha^{\star,\mu}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 \circ + existence of an MFG for a given initial condition
• Assume that for any input $\mu = (\mu_t)_{0 \le t \le T}$ unique optimal control $\alpha^{\star,\mu}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• + existence of an MFG for a given initial condition

• Lasry Lions \Rightarrow uniqueness of MFG equilibrium!

- Assume that for any input $\mu = (\mu_t)_{0 \le t \le T}$ unique optimal control $\alpha^{\star,\mu}$ • + existence of an MFG for a given initial condition
 - • existence of an ivit o for a given initial conditi
- Lasry Lions \Rightarrow uniqueness of MFG equilibrium!

• if two different equilibria μ and $\mu' \rightarrow \alpha^{\star,\mu} \neq \alpha^{\star,\mu'}$

$$\underbrace{J^{\mu}(\alpha^{\star,\mu})}_{\text{cost under }\mu} < J^{\mu}(\alpha^{\star,\mu'}) \quad \text{and} \quad \underbrace{J^{\mu'}(\alpha^{\star,\mu'})}_{\text{cost under }\mu'} < J^{\mu'}(\alpha^{\star,\mu})$$

- Assume that for any input $\mu = (\mu_t)_{0 \le t \le T}$ unique optimal control $\alpha^{\star,\mu}$ • + existence of an MFG for a given initial condition
- Lasry Lions \Rightarrow uniqueness of MFG equilibrium!

• if two different equilibria μ and $\mu' \rightsquigarrow \alpha^{\star,\mu} \neq \alpha^{\star,\mu'}$

$$\underbrace{J^{\mu}(\alpha^{\star,\mu})}_{\text{cost under }\mu} < J^{\mu}(\alpha^{\star,\mu'}) \quad \text{and} \quad \underbrace{J^{\mu'}(\alpha^{\star,\mu'})}_{\text{cost under }\mu'} < J^{\mu'}(\alpha^{\star,\mu})$$

so that

(

$$J^{\mu'}(\alpha^{\star,\mu}) - J^{\mu'}(\alpha^{\star,\mu'}) + J^{\mu}(\alpha^{\star,\mu'}) - J^{\mu}(\alpha^{\star,\mu}) > 0$$

$$J^{\mu'}(\alpha^{\star,\mu}) - J^{\mu}(\alpha^{\star,\mu}) - [J^{\mu'}(\alpha^{\star,\mu'}) - J^{\mu}(\alpha^{\star,\mu'})] > 0$$

- Assume that for any input $\mu = (\mu_t)_{0 \le t \le T}$ unique optimal control $\alpha^{\star, \mu}$ \circ + existence of an MFG for a given initial condition
- Lasry Lions \Rightarrow uniqueness of MFG equilibrium!

• if two different equilibria μ and $\mu' \rightarrow \alpha^{\star,\mu} \neq \alpha^{\star,\mu'}$

$$\underbrace{J^{\mu}(\alpha^{\star,\mu})}_{\text{cost under }\mu} < J^{\mu}(\alpha^{\star,\mu'}) \quad \text{and} \quad \underbrace{J^{\mu'}(\alpha^{\star,\mu'})}_{\text{cost under }\mu'} < J^{\mu'}(\alpha^{\star,\mu})$$

 $J^{\mu'}(\alpha^{\star,\mu}) - J^{\mu'}(\alpha^{\star,\mu'}) + J^{\mu}(\alpha^{\star,\mu'}) - J^{\mu}(\alpha^{\star,\mu}) > 0$ $J^{\mu'}(\alpha^{\star,\mu}) - J^{\mu}(\alpha^{\star,\mu}) - [J^{\mu'}(\alpha^{\star,\mu'}) - J^{\mu}(\alpha^{\star,\mu'})] > 0$

so that

(

$$\mathbb{E}\bigg[\underbrace{g(X_T^{\star,\mu},\mu_T') - g(X_T^{\star,\mu},\mu_T)}_{\int_{\mathbb{R}^d} (g(x,\mu_T') - g(x,\mu_T)) d\mu_T(x)} - \underbrace{\left(g(X_T^{\star,\mu'},\mu_T') - g(X_T^{\star,\mu'},\mu_T)\right)}_{\int_{\mathbb{R}^d} (g(x,\mu_T') - g(x,\mu_T)) d\mu_T'(x)} + \dots \bigg] > 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◦ same for f_0 ⇒ LHS must be ≤ 0

Part IV. Solving MFG with a Common Noise

a. Formulation

MFG with a common noise

• Mean field game with common noise *B*

 \circ asymptotic formulation for a finite player game with

 $dX_t^i = b(X_t^i, \bar{\mu}_t^N, \alpha_t^i)dt + \sigma(X_t^i, \bar{\mu}_t^N)dW_t^i + \sigma^0(X_t^i, \bar{\mu}_t^N)dB_t$

• uncontrolled version \rightarrow asymptotic SDE with $\bar{\mu}_t^N$ replaced by $\mathcal{L}(X_t|(B_s)_{0 \le s \le T}) = \mathcal{L}(X_t|(B_s)_{0 \le s \le t})$

 \circ particles become independent conditional on B and converge to the solution

 $dX_t = b(X_t, \mathcal{L}(X|B))dt + \sigma(X_t, \mathcal{L}(X|B))dW_t + \sigma^0(X_t, \mathcal{L}(X|B))dB_t$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

MFG with a common noise

• Mean field game with common noise *B*

• asymptotic formulation for a finite player game with $A = \mathbb{R}^k$ and

 $dX_t^i = \left(b(X_t^i, \bar{\mu}_t^N) + \alpha_t^i\right)dt + \sigma dW_t^i + \eta dB_t$

• uncontrolled version $\rightsquigarrow \overline{\mu}_t^N$ replaced by $\mathcal{L}(X_t|B)$

• Equilibrium as a fixed point \rightsquigarrow time [0, *T*], state in \mathbb{R}^d

• candidate $\rightsquigarrow (\mu_t)_{t \in [0,T]} \mathbb{F}^B$ prog-meas with values in space of probability measures with a finite second moment $\mathcal{P}_2(\mathbb{R}^d)$

 \circ representative player with control α

$$dX_t = (b(X_t, \mu_t) + \alpha_t)dt + \sigma dW_t + \eta dB_t$$

 $\rightsquigarrow X_0 \sim \mu_0, \sigma, \eta \in \{0, 1\}, W \text{ and } B \mathbb{R}^d \text{-valued } \bot B.M.$

$$\circ \operatorname{cost} \operatorname{functional} J(\alpha) = \mathbb{E} \Big[g(X_T, \mu_T) + \int_0^T \Big(f(X_t, \mu_t) + \frac{1}{2} |\alpha_t|^2 \Big) dt \Big]$$

• find $(\mu_t)_{t \in [0,T]}$ such that $\mu_t = \mathcal{L}(X_t^{\text{optimal}}|(B_s)_{0 \le s \le T})$

MFG with a common noise

• Mean field game with common noise *B*

 \circ asymptotic formulation for a finite player game with

 $dX_t^i = \left(b(X_t^i, \bar{\mu}_t^N) + \alpha_t^i\right)dt + \sigma dW_t^i + \eta dB_t$

• uncontrolled version $\rightsquigarrow \bar{\mu}_t^N$ replaced by $\mathcal{L}(X_t|B)$

• Equilibrium as a fixed point \rightsquigarrow time [0, T], state in \mathbb{R}^d

• candidate $\rightsquigarrow (\mu_t)_{t \in [0,T]} \mathbb{F}^B$ prog-meas with values in space of probability measures with a finite second moment $\mathcal{P}_2(\mathbb{R}^d)$

 \circ representative player with control α

$$dX_t = (b(X_t, \mu_t) + \alpha_t)dt + \sigma dW_t + \eta dB_t$$

 $\rightsquigarrow X_0 \sim \mu_0, \sigma, \eta \in \{0, 1\}, W \text{ and } B \mathbb{R}^d \text{-valued } \bot B.M.$

$$\circ \operatorname{cost} \operatorname{functional} J(\alpha) = \mathbb{E} \Big[g(X_T, \mu_T) + \int_0^T (f(X_t, \mu_t) + \frac{1}{2} |\alpha_t|^2) dt \Big]$$

• find $(\mu_t)_{t \in [0,T]}$ such that $\mu_t = \mathcal{L}(X_t^{\text{optimal}}|(B_s)_{0 \le s \le t})$

• Forward-backward formulation must account for $(\mu_t)_{0 \le t \le T}$ random

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• systems of two forward-backward SPDEs [Carmona D, Cardaliaguet D Lasry Lions]

Forward-backward formulation must account for (μ_t)_{0≤t≤T} random
 ∘ systems of two forward-backward SPDEs

↔ one backward stochastic HJB equation [Peng]

$$d_{t}u(t,x) + \underbrace{\left(b(x,\mu_{t}) \cdot D_{x}u(t,x) + \frac{\sigma^{2}+\eta^{2}}{2}\Delta_{x}u(t,x)\right)}_{\text{Laplace generator}} + \underbrace{f(x,\mu_{t}) - \frac{1}{2}|D_{x}u(t,x)|^{2}}_{\text{standard Hamiltonian in HJB}} \\ + \underbrace{\eta \text{div}[v(t,x)]}_{\text{Ito Wentzell cross term}} \underbrace{\right)dt - \underbrace{\eta v(t,x) \cdot dB_{t}}_{\text{backward term}} = 0 \\ \text{Ito Wentzell cross term}} \\ \text{with boundary condition: } u(T, \cdot) = g(\cdot,\mu_{T}) \\ \rightsquigarrow \\ \text{one forward stochastic Fokker-Planck equation} \\ due_{t} \left(- \operatorname{div}(u|th(u,u)) - D_{t}u(t,u) \right) dt + \underbrace{\sigma^{2}+\eta^{2}}_{\sigma^{2}+\eta^{2}} \operatorname{trage}(2^{2},u) \right) dt$$

$$d_t \mu_t = \left(-\operatorname{div}(\mu_t[b(x,\mu_t) - D_x u(t,x)])dt + \frac{\sigma^2 + \eta^2}{2}\operatorname{trace}(\partial_{xx}^2 \mu_t)\right)dt - \eta \operatorname{div}(\mu_t dB_t)$$

• Forward-backward formulation must account for $(\mu_t)_{0 \le t \le T}$ random

• systems of two forward-backward SPDEs

• systems of two forward-backward McKV SDEs [Carmona D, Buckdahn (al.), Lacker]

- Forward-backward formulation must account for (μ_t)_{0≤t≤T} random
 ∘ systems of two forward-backward SPDEs
 - systems of two forward-backward McKV SDEs

 \sim two ways: represent the value function or optimal control

• Representation of the value function $\sigma = 1$

$$dX_t = b(X_t, \mathcal{L}(X_t|B))dt - Z_t dt + dW_t + \eta dB_t$$

$$dY_t = -f(X_t, \mathcal{L}(X_t|B))dt - \frac{1}{2}|Z_t|^2 dt + Z_t dW_t + \zeta_t dB_t$$

$$Y_T = g(X_T, \mathcal{L}(X_T|B))$$

• Representation of the optimal control (Pontryagin)

 $dX_{t} = b(X_{t}, \mathcal{L}(X_{t}|B))dt - Y_{t}dt + \sigma dW_{t} + \eta dB_{t}$ $dY_{t} = -\frac{\partial_{x}H(X_{t}, \mathcal{L}(X_{t}|B), Y_{t})}{H(x,\mu,y) = b(x,\mu) \cdot y + f(x,\mu,y)}dt + Z_{t}dW_{t} + \zeta_{t}dB_{t}$ $Y_{T} = \partial_{x}g(X_{T}, \mathcal{L}(X_{T}|B))$

- Forward-backward formulation must account for (μ_t)_{0≤t≤T} random
 ∘ systems of two forward-backward SPDEs
 - systems of two forward-backward McKV SDEs

 \rightarrow two ways: represent the value function or optimal control

• Representation of the value function $\sigma = 1$

 $dX_t = b(X_t, \mathcal{L}(X_t|B))dt - Z_t dt + dW_t + \eta dB_t$ $dY_t = -f(X_t, \mathcal{L}(X_t|B))dt - \frac{1}{2}|Z_t|^2 dt + Z_t dW_t + \zeta_t dB_t$ $Y_T = g(X_T, \mathcal{L}(X_T|B))$

• Representation of the optimal control (Pontryagin)

 $dX_t = b(X_t, \mathcal{L}(X_t|B))dt - Y_t dt + \sigma dW_t + \eta dB_t$ $dY_t = -\partial_x H(X_t, \mathcal{L}(X_t|B), Y_t)dt + Z_t dW_t + \zeta_t dB_t$ $Y_T = \partial_x g(X_T, \mathcal{L}(X_T|B))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Analysis of these equations?

Part IV. Solving MFG with a Common Noise

b. Strong solutions

Implementing Picard theorem

• Easiest way to construct solutions is to implement Picard theorem

 \circ shall see next how to make use of Schauder's theorem

• Forward-backward system of McKean-Vlasov type

$$dX_t = \left(b(X_t, \mathcal{L}(X_t|B)) - Z_t\right)dt + dW_t + \eta dB_t$$

$$dY_t = -\left(f(X_t, \mathcal{L}(X_t|B)) + \frac{1}{2}|Z_t|^2\right)dt + Z_t dW_t + \zeta_t dB_t$$

$$Y_T = g(X_T, \mathcal{L}(X_T|B))$$

∘ Z_t should be $\partial_x u(t, X_t)$ → bounded and *x*-Lipschitz coefficients ⇒ L^{∞} bound

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 \rightsquigarrow replace quadratic term by general bounded f

Implementing Picard theorem

- Easiest way to construct solutions is to implement Picard theorem • shall see next how to make use of Schauder's theorem
- Forward-backward system of McKean-Vlasov type

$$dX_t = \left(b(X_t, \mathcal{L}(X_t|B)) - Z_t\right)dt + dW_t + \eta dB_t$$

$$dY_t = -f(X_t, \mathcal{L}(X_t|B), Z_t)dt + Z_t dW_t + \zeta_t dB_t$$

$$Y_T = g(X_T, \mathcal{L}(X_T|B))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• Cauchy-Lipschitz theory in small time only!

- Theorem If *K*-Lipschitz coefficients $\Rightarrow \exists ! \text{ for } T \leq c(K)$ • for any initial condition $X_0 \in L^2(\Omega, \mathcal{F}_0, \mathbb{P}; \mathbb{R}^d)$
- Question How to go further?

Decoupling field $(T \le c(K))$

• Recall non MKV case $\rightsquigarrow \exists U : [0, T] \times \mathbb{R}^d \to \mathbb{R}$ such that

 $Y_t = U(t, X_t) \quad \Leftrightarrow \quad U(t, x) = Y_t^{t, x} \text{ (with } X_t^{t, x} = x)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• keep fact for extending solutions is to bound $\operatorname{Lip}_{x}(U)$

Decoupling field $(T \le c(K))$

• Recall non MKV case $\rightsquigarrow \exists U : [0, T] \times \mathbb{R}^d \to \mathbb{R}$ such that

$$Y_t = U(t, X_t) \quad \Leftrightarrow \quad U(t, x) = Y_t^{t, x} \text{ (with } X_t^{t, x} = x)$$

• MKV setting \rightsquigarrow state variable is in $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$

 \rightsquigarrow need to construct $U(t, x, \mu)$ $t \in [0, T], x \in \mathbb{R}^d, \mu \in \mathcal{P}_2(\mathbb{R}^d)$

• Two-step procedure [Crisan Chassagneux D, Buckdahn (al.)]

• 1st step \rightsquigarrow MKV FBSDE with $X_t \sim \mu, X_t \perp (W, B)$

 $dX_s = \left(b(X_s, \mathcal{L}(X_s|B)) - Z_s\right)ds + dW_s + \eta dB_s$

 $dY_s = -f(X_s, \mathcal{L}(X_s|B), Z_s)ds + Z_s dW_s + \zeta_s dB_s, \quad Y_T = g(X_T, \mathcal{L}(X_T|B))$

▲ロト ▲団ト ▲ヨト ▲ヨト 三回 - のへの

 $\rightsquigarrow (\mathcal{L}(X_s|B))_{t \le s \le T}$ only depends on X_t through μ

Decoupling field $(T \le c(K))$

• Recall non MKV case $\rightsquigarrow \exists U : [0, T] \times \mathbb{R}^d \to \mathbb{R}$ such that

$$Y_t = U(t, X_t) \quad \Leftrightarrow \quad U(t, x) = Y_t^{t, x} \text{ (with } X_t^{t, x} = x)$$

• MKV setting \rightsquigarrow state variable is in $\mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$

 \rightsquigarrow need to construct $U(t, x, \mu)$ $t \in [0, T], x \in \mathbb{R}^d, \mu \in \mathcal{P}_2(\mathbb{R}^d)$

• Two-step procedure [Crisan Chassagneux D, Buckdahn (al.)]

• 1st step \rightsquigarrow MKV FBSDE with $X_t \sim \mu, X_t \perp (W, B)$

$$dX_s = (b(X_s, \mathcal{L}(X_s|B)) - Z_s)ds + dW_s + \eta dB_s$$

$$dY_s = -f(X_s, \mathcal{L}(X_s|B), Z_s)ds + Z_s dW_s + \zeta_s dB_s, \quad Y_T = g(X_T, \mathcal{L}(X_T|B))$$

• 2nd step \rightarrow non-MKV FBSDE with $x_t = x$ and 1st step input

Controlling the Lipschitz constant

• Non-MKV setting \rightarrow may control the Lipschitz constant by monotonicity or ellipticity conditions

 \rightsquigarrow start with monotonicity $\rightsquigarrow B$ has no role \Rightarrow simplify $\eta = 0$

• Come back to cost structure \rightarrow monotonicity of f (same with g)

$$\int_{\mathbb{R}^d} [f(x,\mu) - f(x,\mu')] d(\mu - \mu')(x) \ge 0 \quad [\text{Lions}]$$

• Theorem [L, C C D, Cardaliaguet (al.)] If $b \equiv 0, f$ and g bounded, monotone and Lipschitz \Rightarrow bound on Lip_uU and \exists ! on any [0, T]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Controlling the Lipschitz constant

• Non-MKV setting \rightarrow may control the Lipschitz constant by monotonicity or ellipticity conditions

 \rightsquigarrow start with monotonicity $\rightsquigarrow B$ has no role \Rightarrow simplify $\eta = 0$

• Come back to cost structure \rightsquigarrow monotonicity of f (same with g)

$$\int_{\mathbb{R}^d} [f(x,\mu) - f(x,\mu')] d(\mu - \mu')(x) \ge 0 \quad [\text{Lions}]$$

• Theorem [L, C C D, Cardaliaguet (al.)] If $b \equiv 0, f$ and g bounded, monotone and Lipschitz \Rightarrow bound on Lip_µU and \exists ! on any [0, T]

• Strategy Investigate derivative of the flow in L^2

 \rightsquigarrow for $\xi, \ \chi \in L^2(\Omega, \mathcal{F}_0, \mathbb{P}; \mathbb{R}^d)$

$$(\partial_{\chi} X_{s}^{\xi}, \partial_{\chi} Y_{s}^{\xi}, \partial_{\chi} Z_{s}^{\xi}) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(\underbrace{X_{s}^{\xi + \varepsilon_{\chi}} - X_{s}^{\xi}, Y_{s}^{\xi + \varepsilon_{\chi}} - Y_{s}^{\xi}}_{0 \le s \le T}, \underbrace{Z_{s}^{\xi + \varepsilon_{\chi}} - Z_{s}^{\xi}}_{\text{in } \mathbb{E}[\sup_{0 \le s \le T} |\cdot_{s}|^{2}]}_{0 \le s \le T} \text{ in } \mathbb{E} \int_{0}^{T} |\cdot_{s}|^{2} ds$$

• provide a bound for $(\partial_{\chi} X^{\xi}, \partial_{\chi} Y^{\xi}, \partial_{\chi} Z^{\xi})$

Derivative on the Wasserstein space

- Differentiation on $\mathcal{P}_2(\mathbb{R}^d)$ taken from Lions
- Consider $U: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$
- Lifted-version of U

 $\hat{U}: L^2(\Omega,\mathbb{P};\mathbb{R}^d) \ni X \mapsto U(\mathrm{Law}(X))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\circ~U$ differentiable if \hat{U} Fréchet differentiable

Derivative on the Wasserstein space

- Differentiation on $\mathcal{P}_2(\mathbb{R}^d)$ taken from Lions
- Consider $U: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$
- Lifted-version of U

 $\hat{U}: L^2(\Omega,\mathbb{P};\mathbb{R}^d) \ni X \mapsto U(\mathrm{Law}(X))$

 \circ U differentiable if \hat{U} Fréchet differentiable

• Differential of U

 \circ Fréchet derivative of \hat{U} [see also Zhang (al.)]

 $D\hat{U}(X) = \partial_{\mu}U(\mu)(X), \quad \partial_{\mu}U(\mu) : \mathbb{R}^{d} \ni v \mapsto \partial_{\mu}U(\mu)(v) \quad \mu = \mathcal{L}(X)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• derivative of U at $\mu \rightsquigarrow \partial_{\mu} U(\mu) \in L^2(\mathbb{R}^d, \mu; \mathbb{R}^d)$

Derivative on the Wasserstein space

- Differentiation on $\mathcal{P}_2(\mathbb{R}^d)$ taken from Lions
- Consider $U: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$
- Lifted-version of U

 $\hat{U}: L^2(\Omega,\mathbb{P};\mathbb{R}^d) \ni X \mapsto U(\mathrm{Law}(X))$

 \circ U differentiable if \hat{U} Fréchet differentiable

• Differential of U

 \circ Fréchet derivative of \hat{U} [see also Zhang (al.)]

 $D\hat{U}(X) = \partial_{\mu}U(\mu)(X), \quad \partial_{\mu}U(\mu) : \mathbb{R}^{d} \ni v \mapsto \partial_{\mu}U(\mu)(v) \quad \mu = \mathcal{L}(X)$

∘ derivative of *U* at $\mu \rightsquigarrow \partial_{\mu} U(\mu) \in L^2(\mathbb{R}^d, \mu; \mathbb{R}^d)$

• Finite dimensional projection

$$\partial_{\mathbf{x}_i} \left[U \left(\frac{1}{N} \sum_{j=1}^N \delta_{\mathbf{x}_j} \right) \right] = \frac{1}{N} \partial_{\mu} U \left(\frac{1}{N} \sum_{j=1}^N \delta_{\mathbf{x}_j} \right) (\mathbf{x}_i), \quad \mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^d$$

<u>Application to the coupled case</u> $(b \equiv 0)$

• Return to coupled case \sim estimate $\partial_{\chi} Y_0^{\xi}$

$$\partial_{\chi} Y_0^{\xi} = \partial_{\chi} U(0,\xi,\mathcal{L}(\xi)) \cdot \chi + \underbrace{\tilde{\mathbb{E}}[\partial_{\mu} U(0,\xi,\mathcal{L}(\xi))(\tilde{\xi}) \cdot \tilde{\chi}]}_{\tilde{\Omega} = \text{copy space}}$$

• Lip_{μ} estimate on $U \Leftrightarrow$ bound of $\mathbb{E}[|\partial_{\mu}U(0,\xi,\mathcal{L}(\xi))(\xi)|^2]^{1/2}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Application to the coupled case $(b \equiv 0)$

• Return to coupled case \rightarrow estimate $\partial_{\chi} Y_0^{\xi}$

$$\partial_{\chi} Y_0^{\xi} = \partial_x U(0,\xi,\mathcal{L}(\xi)) \cdot \chi + \underbrace{\tilde{\mathbb{E}}[\partial_{\mu} U(0,\xi,\mathcal{L}(\xi))(\tilde{\xi}) \cdot \tilde{\chi}]}_{\tilde{\Omega} = \text{copy space}}$$

• Lip_{μ} estimate on $U \Leftrightarrow$ bound of $\mathbb{E}[|\partial_{\mu}U(0,\xi,\mathcal{L}(\xi))(\xi)|^2]^{1/2}$

• Estimate $(\partial_{\chi} X_t)_t$ first \rightsquigarrow dynamics of $(X_t)_t$ and $(\partial_{\chi} X_t)_t$

$$dX_{t} = -\partial_{x}U(t, X_{t}, \mathcal{L}(X_{t}))dt + dW_{t}$$

$$d\partial_{\chi}X_{t} = -\left(\partial_{xx}^{2}U(t, X_{t}, \mathcal{L}(X_{t}))\partial_{\chi}X_{t} + \tilde{\mathbb{E}}[\partial_{\mu}(\partial_{x}U)(t, X_{t}, \mathcal{L}(X_{t}))(\tilde{X}_{t})\partial_{\chi}\tilde{X}_{t}]\right)dt$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\circ \partial_{xx}^2 U$ already estimated! (thanks to Laplace)

Application to the coupled case ($b \equiv 0$)

• Return to coupled case \rightarrow estimate $\partial_{\chi} Y_0^{\xi}$

$$\partial_{\chi} Y_0^{\xi} = \partial_{\chi} U(0,\xi,\mathcal{L}(\xi)) \cdot \chi + \underbrace{\tilde{\mathbb{E}}[\partial_{\mu} U(0,\xi,\mathcal{L}(\xi))(\tilde{\xi}) \cdot \tilde{\chi}]}_{\tilde{\Omega} = \text{copy space}}$$

• Lip_{μ} estimate on $U \Leftrightarrow$ bound of $\mathbb{E}[|\partial_{\mu}U(0,\xi,\mathcal{L}(\xi))(\xi)|^2]^{1/2}$

• Estimate $(\partial_{\chi} X_t)_t$ first \rightsquigarrow dynamics of $(X_t)_t$ and $(\partial_{\chi} X_t)_t$

$$d\mathbb{E}[|\partial_{\chi}X_{t}|^{2}] = -2\mathbb{E}\Big[\partial_{\chi}X_{t} \cdot (\partial_{xx}^{2}U(X_{t},\mathcal{L}(X_{t}))\partial_{\chi}X_{t})\Big]dt \\ - 2\mathbb{E}\widetilde{\mathbb{E}}\Big[\partial_{\chi}X_{t} \cdot \left(\partial_{\mu}(\partial_{x}U)(X_{t},\mathcal{L}(X_{t}))(\widetilde{X}_{t})\overline{\partial_{\chi}X_{t}}\right)\Big]dt$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\circ \partial_{xx}^2 U$ already estimated! (thanks to Laplace)

Application to the coupled case $(b \equiv 0)$

• Return to coupled case \rightarrow estimate $\partial_{\chi} Y_0^{\xi}$

$$\partial_{\chi} Y_0^{\xi} = \partial_{\chi} U(0,\xi,\mathcal{L}(\xi)) \cdot \chi + \underbrace{\tilde{\mathbb{E}}[\partial_{\mu} U(0,\xi,\mathcal{L}(\xi))(\tilde{\xi}) \cdot \tilde{\chi}]}_{\tilde{\Omega} = \text{copy space}}$$

• Lip_{μ} estimate on $U \Leftrightarrow$ bound of $\mathbb{E}[|\partial_{\mu}U(0,\xi,\mathcal{L}(\xi))(\xi)|^2]^{1/2}$

• Estimate $(\partial_{\chi} X_t)_t$ first \rightsquigarrow dynamics of $(X_t)_t$ and $(\partial_{\chi} X_t)_t$

$$d\mathbb{E}[|\partial_{\chi}X_{t}|^{2}] = -2\mathbb{E}\Big[\partial_{\chi}X_{t} \cdot (\partial_{\chi\chi}^{2}U(X_{t},\mathcal{L}(X_{t}))\partial_{\chi}X_{t})\Big]dt \\ - 2\mathbb{E}\widetilde{\mathbb{E}}\Big[\partial_{\chi}X_{t} \cdot \Big(\partial_{\mu}(\partial_{\chi}U)(X_{t},\mathcal{L}(X_{t}))(\widetilde{X}_{t})\overline{\partial_{\chi}X_{t}}\Big)\Big]dt$$

 $\circ \partial_{xx}^2 U$ already estimated! (thanks to Laplace)

• Propagation of monotonicity

$$\mathbb{E}\widetilde{\mathbb{E}}\left[\partial_{\chi}X_{t}\cdot\left(\partial_{x}(\partial_{\mu}U)(t,X_{t},\mathcal{L}(X_{t}))(\widetilde{X}_{t})\widetilde{\partial_{\chi}X_{t}}\right)\right] \geq 0 \Rightarrow \mathbb{E}\left[|\partial_{\chi}X_{T}|^{2}\right] \leq C\mathbb{E}[|\chi|^{2}]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

o insert into the backward equation

Part IV. Solving MFG with a Common Noise

c. Weak solutions

Fixed point without uniqueness

• Solution by compactness argument (without monotonicity)

• use of Schauder's fixed point theorem

• Disentangle sources of noise \rightsquigarrow product probability space

$$\Omega = \Omega^0 \times \Omega^1, \quad \mathbb{F} = \mathbb{F}^0 \otimes \mathbb{F}^1, \quad \mathbb{P} = \mathbb{P}^0 \otimes \mathbb{P}^1$$

 $\circ (\Omega^0, \mathbb{F}^0, \mathbb{P}^0) \rightsquigarrow \text{ common noise } \boldsymbol{B} ; (\Omega^1, \mathbb{F}^1, \mathbb{P}^1) \rightsquigarrow \text{ noise } \boldsymbol{W}$

• Fixed point $(\mu_t)_{0 \le t \le T}$ as \mathbb{F}^0 prog. meas. process

 $\circ \mathbb{F}^{0} = \mathbb{F}^{B} \text{ and } \mathbb{F}^{1} = \mathbb{F}^{W} \Rightarrow \text{optimal path under } (\mu_{t})_{0 \le t \le T} \text{ given by}$ $dX_{t} = (b(X_{t}, \mu_{t}) - Z_{t})dt + dW_{t} + \eta dB_{t}$ $dY_{t} = -(f(X_{t}, \mu_{t}) + \frac{1}{2}|Z_{t}|^{2})dt + Z_{t}dW_{t} + \zeta_{t}dB_{t}, \quad Y_{T} = g(X_{T}, \mu_{T})$

• Solve $\left| \mu_t(\omega^0) = \mathcal{L}(X_t^{\text{optimal}} | \mathcal{F}_T^0)(\omega^0) \right|$ for $t \in [0, T]$ and $\omega^0 \in \Omega^0$

 \rightsquigarrow fixed point in $(C([0, T], \mathcal{P}_2(\mathbb{R}^d)))^{\Omega^0}$

o much too big space for tractable compactness → strategy is to
 discretize common noise

Discretization method [Carmona D Lacker]

• General principle \rightsquigarrow discretization of the fixed point

• choice of the conditioning $\rightsquigarrow \Omega^0$ canonical space for $(B_t)_{0 \le t \le T}$ $\rightsquigarrow \mathcal{L}(X_t | \mathcal{F}_T^0) = \mathcal{L}(X_t | (B_s)_{0 \le s \le T})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• $\mathcal{L}(X_t | (B_s)_{0 \le s \le T}) \rightsquigarrow \mathcal{L}(X_t | \text{process with finite support})$

Discretization method [Carmona D Lacker]

• General principle \rightsquigarrow discretization of the fixed point

◦ choice of the conditioning $\rightarrow \Omega^0$ canonical space for $(B_t)_{0 \le t \le T}$ $\rightarrow \mathcal{L}(X_t | \mathcal{F}_T^0) = \mathcal{L}(X_t | (B_s)_{0 \le s \le T})$

• $\mathcal{L}(X_t | (B_s)_{0 \le s \le T}) \rightsquigarrow \mathcal{L}(X_t | \text{process with finite support})$

• Choice of the process with finite support

• Π projection on spatial grid $\{x_1, \ldots, x_P\} \subset \mathbb{R}^d$

 $\circ t_1, \ldots, t_N$ time mesh $\subset [0, T]$

- $\circ\,\hat{B}_{t_i}=\Pi(B_{t_i})$
- Conditioning

• fixed point condition on $\mathcal{L}(X_t | \hat{B}_{t_1}, \dots, \hat{B}_{t_i})$ for $t \in [t_i, t_{i+1}]$

• input \rightsquigarrow sequence of processes on each $[t_i, t_{i+1}]$ with values in $\mathcal{P}_2(\mathbb{R}^d)$ and only depending on the realizations of $(\hat{B}_{t_1}, \dots, \hat{B}_{t_i})$

fixed point in $\prod_{i=1}^{N} C([t_i, t_{i+1}]; \mathcal{P}_2(\mathbb{R}^d))^{iP}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()・

Solution under discrete conditioning

• Solve FBSDE

$$dX_{t} = \left(b(X_{t}, \mathcal{L}(X_{t} | \hat{B}_{t_{1}}, \dots, \hat{B}_{t_{i}})) - Z_{t}\right)dt + dW_{t} + \eta dB_{t}$$

$$dY_{t} = -\left(f(X_{t}, \mathcal{L}(X_{t} | \hat{B}_{t_{1}}, \dots, \hat{B}_{t_{i}})) + \frac{1}{2}|Z_{t}|^{2}\right)dt + Z_{t}dW_{t} + \zeta_{t}dB_{t}$$

$$Y_{T} = g(X_{T}, \mathcal{L}(X_{T} | \hat{B}_{t_{1}}, \dots, \hat{B}_{t_{N}}))$$

• Strategy for the fixed point

 \circ input $\mu = (\mu^1, \dots, \mu^N)$ with

 $\mu^{i} \in C([t_{i}, t_{i+1}]; \mathcal{P}_{2}(\mathbb{R}^{d}))^{\{x_{1}, \dots, x_{P}\}^{i}}$

$$\circ \mu_t = \mu_t^i(\hat{B}_{t_1}, \cdots, \hat{B}_{t_i})$$

output given by

$$\{x_1, \cdots, x_P\}^i \ni (a_1, \ldots, a_i) \mapsto \mathcal{L}(X_t \mid \hat{B}_{t_1} = a_1, \ldots, \hat{B}_{t_i} = a_i)$$

• Stability for FBSDEs \sim continuity w.r.t input + compactness for laws \Rightarrow Schauder

Passing to the limit

• Convergent subsequence as $N, P \rightarrow \infty$?

o use Pontryagin's principle to describe optimal paths

$$dX_t = b(X_t, \mathcal{L}(X_t \mid \hat{B}_{t_1}, \dots, \hat{B}_{t_i}))dt - Z_t dt + dW_t + \eta dB_t$$

$$dZ_t = -\partial_x H(X_t, \mathcal{L}(X_t \mid \hat{B}_{t_1}, \dots, \hat{B}_{t_i}), Z_t)dt + dM_t$$

$$Z_T = \partial_x g(X_T, \mathcal{L}(X_T \mid \hat{B}_{t_1}, \dots, \hat{B}_{t_N}))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $\rightsquigarrow (M_t)_t$ martingale, $\mu_t = \mathcal{L}(X_t | \hat{B}_{t_1}, \dots, \hat{B}_{t_i})$

Passing to the limit

• Convergent subsequence as $N, P \rightarrow \infty$?

o use Pontryagin's principle to describe optimal paths

 $dX_t = b(X_t, \mathcal{L}(X_t | \hat{B}_{t_1}, \dots, \hat{B}_{t_i}))dt - Z_t dt + dW_t + \eta dB_t$ $dZ_t = -\partial_x H(X_t, \mathcal{L}(X_t | \hat{B}_{t_1}, \dots, \hat{B}_{t_i}), Z_t)dt + dM_t$ $Z_T = \partial_x g(X_T, \mathcal{L}(X_T | \hat{B}_{t_1}, \dots, \hat{B}_{t_N}))$

 $\rightsquigarrow (M_t)_t$ martingale, $\mu_t = \mathcal{L}(X_t | \hat{B}_{t_1}, \dots, \hat{B}_{t_i})$

• Tightness of the laws of $(X_t^{N,P}, \mu_t^{N,P}, Z_t^{N,P}, M^{N,P}, B_t, W_t)_{0 \le t \le T}$ • tightness of $(X_t^{N,P})_{0 \le t \le T}$ in $C([0,T]; \mathbb{R}^d)$ by Kolmogorov • tightness of $(\mu_t^{N,P})_{0 \le t \le T}$ in $C([0,T]; \mathcal{P}_2(\mathbb{R}^d))$ since

 $\int_{d} |x|^{q} d\mu_{t}^{N,P}(x) = \mathbb{E}[|X_{t}^{N,P}|^{q}|\mathcal{F}_{T}^{0}], \quad W_{2}(\mu_{t}^{N,P},\mu_{s}^{N,P})^{2} \leq \mathbb{E}[|X_{t}^{N,P}-X_{s}^{N,P}|^{2}|\mathcal{F}_{T}^{0}]$

• tightness $(Z_t^{N,P}, M_t^{N,P})_{0 \le t \le T}$ in $\mathcal{D}([0, T]; \mathbb{R}^d)$ with Meyer-Zheng $\rightsquigarrow (z_t^n)_{0 \le t \le T} \rightarrow (z_t)_{0 \le t \le T}$ in *dt*-measure [Pardoux] for use in BSDE

Passing to the limit

• Convergent subsequence as $N, P \rightarrow \infty$?

• use Pontryagin's principle to describe optimal paths

$$dX_t = b(X_t, \mathcal{L}(X_t | \hat{B}_{t_1}, \dots, \hat{B}_{t_i}))dt - Z_t dt + dW_t + \eta dB_t$$

$$dZ_t = -\partial_x H(X_t, \mathcal{L}(X_t | \hat{B}_{t_1}, \dots, \hat{B}_{t_i}), Z_t)dt + dM_t$$

$$Z_T = \partial_x g(X_T, \mathcal{L}(X_T | \hat{B}_{t_1}, \dots, \hat{B}_{t_N}))$$

 $\rightsquigarrow (M_t)_t$ martingale, $\mu_t = \mathcal{L}(X_t | \hat{B}_{t_1}, \dots, \hat{B}_{t_t})$

- Tightness of the laws of $(X_t^{N,P}, \mu_t^{N,P}, Z_t^{N,P}, M^{N,P}, B_t, W_t)_{0 \le t \le T}$
- Limit process $(X_t^{\infty}, \mu_t^{\infty}, Z_t^{\infty}, M_t^{\infty}, B_t^{\infty}, W_t^{\infty})_{0 \le t \le T}$

• identify $\sim \mu_t^{\infty}$ as conditional law of X_t^{∞} given information? \rightsquigarrow pass to the limit in $\mu_t^{N,P} = \mathcal{L}(X_t^{N,P} | \hat{B}_{t_1}^{N,P}, \dots, \hat{B}_{t_i}^{N,P})$

• solve optimization problem in environment $(\mu_t^{\infty})_{0 \le t \le T}$?

 \rightsquigarrow main difficulty \rightarrow loss of measurability of μ_t^{∞} w.r.t $(B_s^{\infty})_{0 \le s \le t} \Rightarrow |$ weak solution only! | ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで
• Limiting FBSDE formulation

$$dX_t^{\infty} = \left(b(X_t^{\infty}, \mu_t^{\infty}) - Z_t^{\infty}\right)dt + dW_t^{\infty} + \eta dB_t^{\infty}$$
$$dZ_t^{\infty} = -\partial_x H(X_t^{\infty}, \mu_t^{\infty}, Z_t^{\infty})dt + dM_t^{\infty}, \quad Z_T^{\infty} = \partial_x g(X_T^{\infty}, \mu_T^{\infty})$$

 \rightsquigarrow necessary condition for optimality only, but not a limitation \rightsquigarrow may pass to the limit in the optimality condition

$$\circ \operatorname{cost} J(-Z^{\infty}) = \mathbb{E}\left[g(X_T^{\infty}, \mu_T^{\infty}) + \int_0^T \left(f(X_t^{\infty}, \mu_t^{\infty}) + \frac{1}{2}|Z_t^{\infty}|^2\right) dt\right]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Limiting FBSDE formulation

$$dX_t^{\infty} = \left(b(X_t^{\infty}, \mu_t^{\infty}) - Z_t^{\infty}\right)dt + dW_t^{\infty} + \eta dB_t^{\infty}$$
$$dZ_t^{\infty} = -\partial_x H(X_t^{\infty}, \mu_t^{\infty}, Z_t^{\infty})dt + dM_t^{\infty}, \quad Z_T^{\infty} = \partial_x g(X_T^{\infty}, \mu_T^{\infty})$$

 \rightsquigarrow necessary condition for optimality only, but not a limitation \rightsquigarrow may pass to the limit in the optimality condition

Main question: What is the common information ?
 o whole information → F[∞] generated by (X[∞], μ[∞], B[∞], W[∞])
 o common environment → expect (μ[∞], B[∞])? should satisfy

 \rightsquigarrow fixed point $\mu_t^{\infty} = \mathcal{L}(X_t^{\infty} | \mu^{\infty}, B^{\infty})$ (true)

 $\rightsquigarrow (\mu^{\infty}, B^{\infty}) X_0^{\infty}$ and $W^{\infty} \perp$ (true) $(X_0^{\infty}, W^{\infty}) \rightsquigarrow$ proper noise

 \rightsquigarrow fair extra observation $\rightarrow \sigma(X_0^{\infty}, \mu_s^{\infty}, B_s^{\infty}, W_s^{\infty}, s \le T)$ and \mathcal{F}_t^{∞} conditional ⊥ on $\sigma(X_0^{\infty}, \mu_s^{\infty}, B_s^{\infty}, W_s^{\infty}, s \le t)$ (???)

• Limiting FBSDE formulation

$$dX_t^{\infty} = \left(b(X_t^{\infty}, \mu_t^{\infty}) - Z_t^{\infty}\right)dt + dW_t^{\infty} + \eta dB_t^{\infty}$$
$$dZ_t^{\infty} = -\partial_x H(X_t^{\infty}, \mu_t^{\infty}, Z_t^{\infty})dt + dM_t^{\infty}, \quad Z_T^{\infty} = \partial_x g(X_T^{\infty}, \mu_T^{\infty})$$

 \rightsquigarrow necessary condition for optimality only, but not a limitation \rightsquigarrow may pass to the limit in the optimality condition

- Main question: What is the <u>common information</u>?
 - whole information $\rightsquigarrow \mathbb{F}^{\infty}$ generated by $(X^{\infty}, \mu^{\infty}, B^{\infty}, W^{\infty})$
 - common environment \rightsquigarrow expect $(\mu^{\infty}, B^{\infty})$? should satisfy

 \rightsquigarrow fixed point $\mu_t^{\infty} = \mathcal{L}(X_t^{\infty} | \mu^{\infty}, B^{\infty})$ (true)

 $\rightsquigarrow (\mu^{\infty}, B^{\infty}) X_0^{\infty}$ and $W^{\infty} \perp$ (true) $(X_0^{\infty}, W^{\infty}) \rightsquigarrow$ proper noise

 \rightsquigarrow fair extra observation $\rightsquigarrow \sigma(X_0^{\infty}, \mu_s^{\infty}, B_s^{\infty}, W_s^{\infty}, s \le T)$ and \mathcal{F}_t^{∞} conditional ⊥ on $\sigma(X_0^{\infty}, \mu_s^{\infty}, B_s^{\infty}, W_s^{\infty}, s \le t)$ (???)

w→ notion of compatibility [Jacod, Mémin, Kurtz] and
[Buckdahn (al.)] for BSDEs

• Limiting FBSDE formulation

 \rightsquigarrow necessary condition for optimality only, but not a limitation \rightsquigarrow may pass to the limit in the optimality condition

Main question: What is the common information ?
whole information → F[∞] generated by (X[∞], μ[∞], B[∞], W[∞])
common environment → expect (μ[∞], B[∞])? should satisfy
mix fixed point μ_t[∞] = L(X_t[∞] | μ[∞], B[∞]) (true)
mix (μ[∞], B[∞]) X₀[∞] and W[∞] ⊥ (true) (X₀[∞], W[∞]) → proper noise
mix fair extra observation → σ(X₀[∞], μ_s[∞], B_s[∞], W_s[∞], s ≤ T) and
𝓕_t[∞] conditional ⊥ on σ(X₀[∞], μ_s[∞], B_s[∞], W_s[∞], s ≤ t) (???)

→ notion of <u>compatibility</u> [Jacod, Mémin, Kurtz] and [Buckdahn (al.)] for BSDEs

 \rightarrow difficult to pass to the limit on compatibility ⇒ need to enlarge environment

• Limiting FBSDE formulation \longrightarrow necessary condition for optimality only, but not a limitation \rightarrow may pass to the limit in the optimality condition

• Main question: What is the common information ?

• whole information $\rightsquigarrow \mathbb{F}^{\infty}$ generated by $(X^{\infty}, \mu^{\infty}, B^{\infty}, W^{\infty})$

 \circ common environment \rightsquigarrow replace by $(\mathcal{M}^{\infty}, B^{\infty})$

 $\rightsquigarrow \mathcal{M}^{\infty}_t \text{ limit in law of } \mathcal{L}(X^{N,P}_{\cdot \wedge t}, W^{N,P}_{\cdot \wedge t}|B^{\infty})$

 $\rightsquigarrow \text{ fixed point } \mathcal{M}_t^{\infty} = \mathcal{L}(X_{\cdot \wedge t}^{\infty}, W_{\cdot \wedge t}^{\infty} | \mathcal{M}^{\infty}, B^{\infty})$

 \rightsquigarrow fixed point \Rightarrow compatibility

• Yamada-Watanabe : strong ! for compatible solutions \Rightarrow weak solutions are strong

• strong solutions \rightarrow environment is adapted to B^{∞}

 \circ example if monotonicity \Rightarrow close the loop!

Part V. Master Equation

a. Derivation of equation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Setting

• Assume \exists ! for value function MKV FBSDE ($\sigma = 1$)

$$dX_{s} = (b(X_{s}, \mathcal{L}(X_{s}|B)) - Z_{s})ds + dW_{s} + \eta dB_{s}$$

$$dY_{s} = -f(X_{s}, \mathcal{L}(X_{s}|B), Z_{s})ds + Z_{s}dW_{s} + \zeta_{s}dB_{s}, \quad Y_{T} = g(X_{T}, \mathcal{L}(X_{T}|B))$$

$$\circ Y_{t} = U(t, X_{t}, \mu) = U(t, X_{t}, \mathcal{L}(X_{t}|B))$$

$$\bullet \text{ Goal : Expand the right-hand side to identify PDE for U!!!$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Setting

• Assume \exists ! for value function MKV FBSDE ($\sigma = 1$)

$$dX_s = (b(X_s, \mathcal{L}(X_s|B)) - Z_s)ds + dW_s + \eta dB_s$$

$$dY_s = -f(X_s, \mathcal{L}(X_s|B), Z_s)ds + Z_s dW_s + \zeta_s dB_s, \quad Y_T = g(X_T, \mathcal{L}(X_T|B))$$

 $\circ Y_t = U(t, X_t, \mu) = U(t, X_t, \mathcal{L}(X_t|B))$

- Goal : Expand the right-hand side to identify PDE for U!!!
- Need for second-order derivatives

 $\circ \partial_t U(t, x, \mu)$ and $\partial_x^2 U(t, x, \mu)$ bounded and Lipschitz in (x, μ)

 $\circ \partial_{\mu} U(t, x, \mu)(v)$ is differentiable in x, v and μ

 $\circ \partial_x \partial_\mu U(t, x, \mu)(v), \partial_v \partial_\mu U(x, \mu)(v)$ bounded and Lipschitz

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\circ \partial^2_{\mu} U(t, x, \mu)(v, v')$ is bounded and Lipschitz

Setting

• Assume \exists ! for value function MKV FBSDE ($\sigma = 1$)

$$dX_s = \left(b(X_s, \mathcal{L}(X_s|B)) - Z_s\right)ds + dW_s + \eta dB_s$$

 $dY_s = -f(X_s, \mathcal{L}(X_s|B), Z_s)ds + Z_s dW_s + \zeta_s dB_s, \quad Y_T = g(X_T, \mathcal{L}(X_T|B))$

 $\circ \ Y_t = U(t, X_t, \mu) = U(t, X_t, \mathcal{L}(X_t|B))$

- Goal : Expand the right-hand side to identify PDE for U!!!
- Need for second-order derivatives

 $\circ \partial_t U(t, x, \mu)$ and $\partial_x^2 U(t, x, \mu)$ bounded and Lipschitz in (x, μ)

 $\circ \partial_{\mu} U(t, x, \mu)(v)$ is differentiable in x, v and μ

 $\circ \partial_x \partial_\mu U(t, x, \mu)(v), \partial_v \partial_\mu U(x, \mu)(v)$ bounded and Lipschitz

 $\circ \partial^2_{\mu} U(t, x, \mu)(v, v')$ is bounded and Lipschitz

• Theorem : [Gangbo Swiech, C D D, C D L L] If monotonicity and smooth coefficients, then U is smooth

Itô's formula on $\mathcal{P}_2(\mathbb{R}^d)$

• Process
$$dX_t = b_t dt + dW_t + dB_t \mathbb{E} \int_0^T |b_t|^2 dt < \infty$$

 \circ disentangle sources of noise \rightsquigarrow use product probability space

$$\Omega = \Omega^B \times \Omega^W, \quad \mathbb{F} = \mathbb{F}^B \otimes \mathbb{F}^W, \quad \mathbb{P} = \mathbb{P}^B \otimes \mathbb{P}^W$$

$$\circ (\Omega^{B}, \mathbb{F}^{B}, \mathbb{P}^{B}) \rightsquigarrow B, \quad (\Omega^{W}, \mathbb{F}^{W}, \mathbb{P}^{W}) \rightsquigarrow W, \quad \mathcal{L}(\cdot | \sigma(B)) = \mathcal{L}^{W}(\cdot)$$

$$\circ \Omega = \Omega^{B} \times \Omega^{W}, \Omega^{B} \text{ carries } B, \Omega^{W} \text{ carries } W$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

 $\circ \mu_t = \mathcal{L}(X_t)$: conditional law of X_t given B

Itô's formula on $\mathcal{P}_2(\mathbb{R}^d)$

• Process $dX_t = b_t dt + dW_t + dB_t \mathbb{E} \int_0^T |b_t|^2 dt < \infty$

 \circ disentangle sources of noise \rightsquigarrow use product probability space

$$\Omega = \Omega^B \times \Omega^W, \quad \mathbb{F} = \mathbb{F}^B \otimes \mathbb{F}^W, \quad \mathbb{P} = \mathbb{P}^B \otimes \mathbb{P}^W$$

 $\circ (\Omega^{B}, \mathbb{F}^{B}, \mathbb{P}^{B}) \rightsquigarrow B, \quad (\Omega^{W}, \mathbb{F}^{W}, \mathbb{P}^{W}) \rightsquigarrow W, \quad \mathcal{L}(\cdot | \sigma(B)) = \mathcal{L}^{W}(\cdot)$ $\circ \Omega = \Omega^{B} \times \Omega^{W}, \Omega^{B} \text{ carries } B, \Omega^{W} \text{ carries } W$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

 $\circ \mu_t = \mathcal{L}(X_t)$: conditional law of X_t given B

• *U* Fréchet differentiable with $\mathbb{R}^d \ni v \mapsto \partial_{\mu} U(\mu, v)$ differentiable (v, μ)

Itô's formula on $\mathcal{P}_2(\mathbb{R}^d)$

• Process $dX_t = b_t dt + dW_t + dB_t \mathbb{E} \int_0^T |b_t|^2 dt < \infty$

 \circ disentangle sources of noise \rightsquigarrow use product probability space

$$\Omega = \Omega^B \times \Omega^W, \quad \mathbb{F} = \mathbb{F}^B \otimes \mathbb{F}^W, \quad \mathbb{P} = \mathbb{P}^B \otimes \mathbb{P}^W$$

 $\circ (\Omega^{B}, \mathbb{F}^{B}, \mathbb{P}^{B}) \rightsquigarrow B, \quad (\Omega^{W}, \mathbb{F}^{W}, \mathbb{P}^{W}) \rightsquigarrow W, \quad \mathcal{L}(\cdot | \sigma(B)) = \mathcal{L}^{W}(\cdot)$ $\circ \Omega = \Omega^{B} \times \Omega^{W}, \Omega^{B} \text{ carries } B, \Omega^{W} \text{ carries } W$

 $\circ \mu_t = \mathcal{L}(X_t)$: conditional law of X_t given B

• *U* Fréchet differentiable with $\mathbb{R}^d \ni v \mapsto \partial_{\mu} U(\mu, v)$ differentiable (v, μ)

• Itô's formula for $(U(\mu_t))_{t\geq 0}$?

 $dU(\boldsymbol{\mu}_{t}) = \mathbb{E}^{W}[b_{t} \cdot \partial_{\mu}U(\boldsymbol{\mu}_{t})(X_{t})] + \mathbb{E}^{W}[\operatorname{Trace}(\partial_{\nu}\partial_{\mu}U(\boldsymbol{\mu}_{t})(X_{t}))]dt$ $+ \frac{1}{2}\mathbb{E}^{W}\mathbb{\tilde{E}}^{\tilde{W}}[\operatorname{Trace}(\partial_{\mu}^{2}U(\boldsymbol{\mu}_{t})(X_{t},\tilde{X}_{t}))]dt + \mathbb{E}^{W}[\partial_{\mu}U(\boldsymbol{\mu}_{t})(X_{t})] \cdot dB_{t}$ $\circ \mathbb{\tilde{E}}^{\tilde{W}} \text{ conditional expectation on a copy space } \Omega^{B} \times \tilde{\Omega}^{W}$ $\circ \mathbb{C}^{W} = \mathbb{C}^{W}[\Omega^{W}(\Omega^{W}) \otimes \Omega^{W}(\Omega^{W})] \cdot \mathbb{C}^{W}[\Omega^{W}) \otimes \mathbb{C}^{W}[\Omega^{W}) \otimes \mathbb{C}^{W}[\Omega^{W}] \otimes \mathbb{C}^{W}[\Omega^{W}) \otimes \mathbb{C}^{W}[\Omega^{W}] \otimes \mathbb{C}^{W}[\Omega^{W}]$

Identification of the master equation

• Identification of the *dt* terms in the expansion of the identify:

 $Y_t = U(t, X_t, \mathcal{L}(X_t \,|\, B))$

Identification of the master equation

• Identification of the *dt* terms in the expansion of the identify:

$$Y_t = U(t, X_t, \mathcal{L}(X_t | B))$$

• Get the form of the full-fledged master equation

$$\begin{aligned} \partial_t U(t, x, \mu) &- \int_{\mathbb{R}^d} \partial_x U(t, \nu, \mu) \cdot \partial_\mu U(t, x, \mu)(\nu) d\mu(\nu) \\ &+ f(x, \mu) - \frac{1}{2} |\partial_x U(t, x, \mu)|^2 + \frac{1 + \eta^2}{2} \operatorname{Trace} \left(\partial_x^2 U(t, x, \mu) \right) \\ &+ \frac{1 + \eta^2}{2} \int_{\mathbb{R}^d} \operatorname{Trace} \left(\partial_\nu \partial_\mu U(t, x, \mu, \nu) \right) d\mu(\nu) \\ &+ \eta^2 \int_{\mathbb{R}^d} \operatorname{Trace} \left(\partial_x \partial_\mu U(t, x, \mu, \nu) \right) d\mu(\nu) \\ &+ \frac{\eta^2}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \operatorname{Trace} \left(\partial_\mu^2 U(t, x, \mu, \nu, \nu') \right) d\mu(\nu) d\mu(\nu') = 0 \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 \circ Not a HJB! (MFG \neq optimization)

Part V. Master Equation

b. Application

• Controlled dynamics

$$dX_t^i = \left(b(X_t^i, \overline{\mu}_t^N) + \alpha_t^i)\right)dt + dW_t^i + \eta dB_t$$

• Cost functionals to player *i*

$$J^{i}(\alpha^{1},\ldots,\alpha^{N}) = \mathbb{E}\Big[g(X_{T}^{i},\bar{\mu}_{T}^{N}) + \int_{0}^{T} \big(f(X_{s}^{i},\bar{\mu}_{s}^{N}) + \frac{1}{2}|\alpha_{s}^{i}|^{2}\big)ds\Big]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Rigorous connection between N-player game and MFG?

• Controlled dynamics

$$dX_t^i = \left(b(X_t^i, \bar{\mu}_t^N) + \alpha_t^i)\right)dt + dW_t^i + \eta dB_t$$

• Cost functionals to player i

$$J^{i}(\alpha^{1},\ldots,\alpha^{N}) = \mathbb{E}\Big[g(X_{T}^{i},\bar{\mu}_{T}^{N}) + \int_{0}^{T} \Big(f(X_{s}^{i},\bar{\mu}_{s}^{N}) + \frac{1}{2}|\alpha_{s}^{i}|^{2}\Big)ds\Big]$$

- Rigorous connection between N-player game and MFG?
- Prove the convergence of the Nash equilibria as N tends to ∞

 \circ difficulty \rightsquigarrow no uniform smoothness on the optimal feedback function $\alpha^{\star,N}$ w.r.t to N

$$\underbrace{\alpha_t^{\star,i,N}}_{\text{optimal control to player }i} = \alpha^{\star,N}(X_t^i; \underbrace{X^1, \dots, X^{i-1}, X^{i+1}, \dots, X^N}_{\text{states of the others}})$$

 \rightsquigarrow no compactness on the feedback functions

• weak compactness arguments on the control (notion of relaxed controls) for equilibria over open loop controls [Lacker, Fischer]

• Controlled dynamics

0

$$dX_t^i = \left(b(X_t^i, \bar{\mu}_t^N) + \alpha_t^i)\right)dt + dW_t^i + \eta dB_t$$

• Cost functionals to player *i*

$$J^{i}(\alpha^{1},\ldots,\alpha^{N}) = \mathbb{E}\Big[g(X_{T}^{i},\bar{\mu}_{T}^{N}) + \int_{0}^{T} \Big(f(X_{s}^{i},\bar{\mu}_{s}^{N}) + \frac{1}{2}|\alpha_{s}^{i}|^{2}\Big)ds\Big]$$

- Rigorous connection between N-player game and MFG?
- Prove the convergence of the Nash equilibria as N tends to ∞

 \circ difficulty \rightsquigarrow no uniform smoothness on the optimal feedback function $\alpha^{\star,N}$ w.r.t to N

$$\underbrace{\alpha_{t}^{\star,i,N}}_{\text{optimal control to player }i} = \alpha^{\star,N}(X_{t}^{i}; \underbrace{X^{1}, \ldots, X^{i-1}, X^{i+1}, \ldots, X^{N}}_{\text{states of the others}})$$

$$\Rightarrow \text{ no compactness on the feedback functions}$$
use the master equation [C D L L]: expand $(U(t, X_{t}^{i}, \bar{\mu}_{t}^{N}))_{0 \le t \le T}$

and prove \approx equilibrium cost to player *i*

• Controlled dynamics

$$dX_t^i = \left(b(X_t^i, \bar{\mu}_t^N) + \alpha_t^i)\right)dt + dW_t^i + \eta dB_t$$

• Cost functionals to player *i*

$$J^{i}(\alpha^{1},\ldots,\alpha^{N}) = \mathbb{E}\Big[g(X_{T}^{i},\bar{\mu}_{T}^{N}) + \int_{0}^{T} \Big(f(X_{s}^{i},\bar{\mu}_{s}^{N}) + \frac{1}{2}|\alpha_{s}^{i}|^{2}\Big)ds\Big]$$

- Rigorous connection between N-player game and MFG?
- Construct | approximate Nash equilibria | (easier)

 \circ limit setting \rightsquigarrow optimal control has the form

$$\alpha_t^{\star} = -\partial_x U(t, X_t, \qquad \underbrace{\mathcal{L}(X_t|B)} \qquad)$$

population at equilibrium

• in *N*-player game, use $\alpha_t^{N,i} = -\partial_x U(t, \mathbf{X}_t^i, \bar{\mu}_t^N)$

◦ almost Nash → cost decreases at most of $ε_N$ under unilateral deviation where $ε_N \to 0$

Advertising

René Carmona · François Delarue

Probabilistic Theory of Mean Field Games with Applications I

Mean Field FBSDEs, Control, and Games

René Carmona · François Delarue

Probabilistic Theory of Mean Field Games with Applications I

Mean Field Games with Common Noise and Master Equations

イロト イヨト イヨト イヨト

Springer

Springer