Probabilistic approach to Mean-Field Games

IPAM Conference (UCLA)

François Delarue (Nice - J.-A. Dieudonné)

August 282017

Based on joint works with R. Carmona, P. Cardaliaguet, D. Crisan, J.F. Chassagneux, D. Lacker, J.M. Lasry and P.L. Lions

Part I. Motivation

Part I. Motivation

a. General philosophy

Basic purpose

- Interacting particles / players
- controlled players in mean-field interaction
- particles have dynamical states $\leftrightarrow \leadsto s$ stochastic diff. equation
- mean-field $\leftrightarrow \rightarrow$ symmetric interaction with whole population no privileged interaction with some particles
- Associate cost functional with each player
- find equilibria w.r.t. cost functionals
- shape of the equilibria for a large population?

Basic purpose

- Interacting particles / players
- controlled players in mean-field interaction
- particles have dynamical states $\leftrightarrow \rightarrow$ stochastic diff. equation
- mean-field $\leftrightarrow \rightarrow$ symmetric interaction with whole population no privileged interaction with some particles
- Associate cost functional with each player
- find equilibria w.r.t. cost functionals
- shape of the equilibria for a large population?
- Different notions of equilibria
- players decide on their own $\leadsto \leadsto$ find a consensus inside the population \Rightarrow notion of Nash equilibrium
- players obey a common center of decision $\leadsto \leadsto$ minimize the global cost to the collectivity
- Both cases \leadsto asymptotic equilibria as the number of players $\uparrow \infty$?

Asymptotic formulation

- Paradigm
- mean-field / symmetry $\leadsto \rightarrow$ propagation of chaos / LLN
- reduce the asymptotic analysis to one typical player with interaction with a theoretical distribution of the population?
- decrease the complexity to solve asymptotic formulation first

Asymptotic formulation

- Paradigm
- mean-field / symmetry $\leadsto \leadsto$ propagation of chaos / LLN
- reduce the asymptotic analysis to one typical player with interaction with a theoretical distribution of the population?
- decrease the complexity to solve asymptotic formulation first
- Program
- Existence of asymptotic equilibria? Uniqueness? Shape?
- Use asymptotic equilibria as quasi-equilibria in finite-game
- Prove convergence of equilibria in finite-player-systems

Asymptotic formulation

- Paradigm
- mean-field / symmetry $\leadsto \leadsto$ propagation of chaos / LLN
- reduce the asymptotic analysis to one typical player with interaction with a theoretical distribution of the population?
- decrease the complexity to solve asymptotic formulation first
- Program
- Existence of asymptotic equilibria? Uniqueness? Shape?
- Use asymptotic equilibria as quasi-equilibria in finite-game
- Prove convergence of equilibria in finite-player-systems
- Asymptotic formulation of Nash equilibria $\leadsto \rightarrow$ Mean-field games! [Lasry-Lions (06), Huang-Caines-Malhamé (06), Cardaliaguet, Achdou, Gangbo, Gomes, Porreta (PDE), Bensoussan, Carmona, D., Kolokoltsov, Lacker, Yam (Probability)]
- Common center of decision $\leadsto \leadsto$ optimal control of McKean-Vlasov SDEs

Part I. Motivation

b. Equilibria within a finite system

General formulation

- Controlled system of N interacting particles with mean-field interaction through the global state of the population
- dynamics of particle number $i \in\{1, \ldots, N\}$

$$
\begin{aligned}
\underbrace{d X_{t}^{i}}_{\in \mathbb{R}^{d}}= & b\left(X_{t}^{i}, \text { global state of the collectivity, } \alpha_{t}^{i}\right) d t \\
& +\sigma\left(X_{t}^{i}, \text { global state }\right) \underbrace{d W_{t}^{i}}_{\text {idiosyncratic noises }} \\
& +\sigma^{0}\left(X_{t}^{i}, \text { global state }\right) \underbrace{d B_{t}}_{\text {common/systemic noise }}
\end{aligned}
$$

General formulation

- Controlled system of N interacting particles with mean-field interaction through the global state of the population
- dynamics of particle number $i \in\{1, \ldots, N\}$

$$
\begin{aligned}
\underbrace{d X_{t}^{i}}_{\in \mathbb{R}^{d}}= & b\left(X_{t}^{i}, \text { global state of the collectivity, } \alpha_{t}^{i}\right) d t \\
& +\sigma\left(X_{t}^{i}, \text { global state }\right) \underbrace{d W_{t}^{i}}_{\text {idiosyncratic noises }} \\
& +\sigma^{0}\left(X_{t}^{i}, \text { global state }\right) \underbrace{d B_{t}}_{\text {common/systemic noise }}
\end{aligned}
$$

- Rough description of the probabilistic set-up
$\circ\left(B_{t}, W^{1}, \ldots, W^{N}\right)_{0 \leq t \leq T}$ independent B.M. with values in \mathbb{R}^{d}
- $\left(\alpha_{t}^{i}\right)_{0 \leq t \leq T}$ progressively-measurable processes with values in A (closed convex $\subset \mathbb{R}^{k}$)
- i.i.d. initial conditions \Perp noises

Empirical measure

- Code the state of the population at time t through $\bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}}$ $n \rightarrow$ probability measure on \mathbb{R}^{d}
- $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \leadsto$ set of probabilities on \mathbb{R}^{d} with finite 2 nd moments

Empirical measure

- Code the state of the population at time t through $\bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}}$ $\leadsto \rightarrow$ probability measure on \mathbb{R}^{d}
$\circ \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \leadsto$ set of probabilities on \mathbb{R}^{d} with finite 2 nd moments
- Express the coefficients as

$$
b: \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times A \rightarrow \mathbb{R}^{d}
$$

$$
\sigma, \sigma^{0}: \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{d \times d}
$$

- examples: $b(x, \mu, \alpha)=b\left(x, \int_{\mathbb{R}^{d}} \varphi d \mu, \alpha\right), \quad \int_{\mathbb{R}^{d}} b(x, v, \alpha) d \mu(v)$
- rewrite the dynamics of the particles

$$
d X_{t}^{i}=b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i}\right) d t+\sigma\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right) d W_{t}^{i}+\sigma^{0}\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right) d B_{t}
$$

Empirical measure

- Code the state of the population at time t through $\bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}}$ $n \rightarrow$ probability measure on \mathbb{R}^{d}
$\circ \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \leadsto$ set of probabilities on \mathbb{R}^{d} with finite 2 nd moments
- Express the coefficients as

$$
b: \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \times A \rightarrow \mathbb{R}^{d}
$$

$$
\sigma, \sigma^{0}: \mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}^{d \times d}
$$

- examples: $b(x, \mu, \alpha)=b\left(x, \int_{\mathbb{R}^{d}} \varphi d \mu, \alpha\right), \quad \int_{\mathbb{R}^{d}} b(x, v, \alpha) d \mu(v)$
- rewrite the dynamics of the particles

$$
d X_{t}^{i}=b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i}\right) d t+\sigma\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right) d W_{t}^{i}+\sigma^{0}\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right) d B_{t}
$$

- Cost functional to player $i \in\{1, \ldots, N\}$

$$
J^{i}\left(\boldsymbol{\alpha}^{1}, \boldsymbol{\alpha}^{2}, \ldots, \boldsymbol{\alpha}^{N}\right)=\mathbb{E}\left[g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)+\int_{0}^{T} f\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i}\right) d t\right]
$$

- same (f, g) for all i but J^{i} depends on the others through $\bar{\mu}^{N}$

Nash equilibrium

- Each player is willing to minimize its own cost functional
- need for a consensus \leadsto Nash equilibrium

Nash equilibrium

- Each player is willing to minimize its own cost functional
- need for a consensus \leadsto Nash equilibrium
- Say that a N-tuple of strategies $\left(\boldsymbol{\alpha}^{1, \star}, \ldots, \boldsymbol{\alpha}^{N, \star}\right)$ is a consensus if
- no interest for any player to leave the consensus
- change $\alpha^{i, \star} \leadsto \alpha^{i} \Rightarrow J^{i} \nearrow$

$$
J^{i}\left(\boldsymbol{\alpha}^{1, \star}, \ldots, \alpha^{i, \star}, \ldots, \alpha^{N, \star}\right) \leq J^{i}\left(\boldsymbol{\alpha}^{1, \star}, \ldots, \alpha^{i}, \ldots \boldsymbol{\alpha}^{N, \star}\right)
$$

Nash equilibrium

- Each player is willing to minimize its own cost functional
- need for a consensus \leadsto Nash equilibrium
- Say that a N-tuple of strategies $\left(\boldsymbol{\alpha}^{1, \star}, \ldots, \boldsymbol{\alpha}^{N, \star}\right)$ is a consensus if
- no interest for any player to leave the consensus
\circ change $\alpha^{i, \star} \leadsto \alpha^{i} \Rightarrow J^{i} \nearrow$

$$
J^{i}\left(\alpha^{1, \star}, \ldots, \alpha^{i, \star}, \ldots, \alpha^{N, \star}\right) \leq J^{i}\left(\alpha^{1, \star}, \ldots, \alpha^{i}, \ldots \alpha^{N, \star}\right)
$$

- Meaning of freezing $\boldsymbol{\alpha}^{1, \star}, \ldots, \boldsymbol{\alpha}^{i-1, \star}, \boldsymbol{\alpha}^{i+1, \star}, \boldsymbol{\alpha}^{N, \star}$
- freezing the processes \leadsto Nash equilibrium in open loop
- $\alpha_{t}^{i}=\alpha^{i}\left(t, X_{t}^{1}, \ldots, X_{t}^{N}\right) \leadsto$ each function α^{i} is a Markov feedback
\leadsto Nash over of Markov loop
- leads to different equilibria! but expect that there is no difference in the asymptotic setting

Part I. Motivation

c. Example

Exhaustible resources［Guéant Lasry Lions］

－N producers of oil $\leadsto X_{t}^{i}$（estimated reserve）at time t

$$
d X_{t}^{i}=-\alpha_{t}^{i} d t+\sigma X_{t}^{i} d W_{t}^{i}
$$

－$\alpha_{t}^{i} \leadsto$ instantaneous production rate
－σ common volatility for the perception of the reserve
－should be a constraint $X_{t}^{i} \geq 0$

Exhaustible resources [Guéant Lasry Lions]

- N producers of oil $\leadsto X_{t}^{i}$ (estimated reserve) at time t

$$
d X_{t}^{i}=-\alpha_{t}^{i} d t+\sigma X_{t}^{i} d W_{t}^{i}
$$

- $\alpha_{t}^{i} \leadsto$ instantaneous production rate
- σ common volatility for the perception of the reserve
- should be a constraint $X_{t}^{i} \geq 0$
- Optimize the profit of a producer

$$
J^{i}\left(\boldsymbol{\alpha}^{1}, \ldots, \boldsymbol{\alpha}^{N}\right)=\mathbb{E} \int_{0}^{\infty} \exp (-r t)\left(\alpha_{t}^{i} P_{t}-c\left(\alpha_{t}^{i}\right)\right) d t
$$

$\circ P_{t}$ is selling price, c cost production

- mean-field constraint \leadsto selling price is a function of the mean-production

$$
P_{t}=P\left(\frac{1}{N} \sum_{i=1}^{N} \alpha_{t}^{i}\right)
$$

- slightly different! $\leadsto \leadsto$ interaction through the law of the control \leadsto extended MFG [Gomes al., Carmona D., Cardaliaguet Lehalle]

Part II. From propagation of chaos to MFG

Part II. From propagation of chaos to MFG

a. McKean-Vlasov SDEs

General uncontrolled particle system

- Remove the control and the common noise!

$$
d X_{t}^{i}=b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right) d t+\sigma\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right) d W_{t}^{i}
$$

$$
\circ X_{0}^{1}, \ldots, X_{N}^{i} \text { i.i.d. (and } \Perp \text { of noises), } \quad \bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}}
$$

- ヨ! if the coefficients are Lipschitz in all the variables $\leadsto \rightarrow$ need a suitable distance on space of measures

General uncontrolled particle system

- Remove the control and the common noise!

$$
d X_{t}^{i}=b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right) d t+\sigma\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right) d W_{t}^{i}
$$

$\circ X_{0}^{1}, \ldots, X_{N}^{i}$ i.i.d. (and \Perp of noises), $\quad \bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}}$

- \exists ! if the coefficients are Lipschitz in all the variables $\rightsquigarrow \rightarrow$ need a suitable distance on space of measures
- Use the Wasserstein distance on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$

$$
\mu, v \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right), \quad W_{2}(\mu, v)=\left(\inf _{\pi} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} d \pi(x, y)\right)^{1 / 2},
$$

where π has μ and v as marginals on $\mathbb{R}^{d} \times \mathbb{R}^{d}$

- X and X^{\prime} two r.v.'s $\Rightarrow W_{2}\left(\mathcal{L}(X), \mathcal{L}\left(X^{\prime}\right)\right) \leq \mathbb{E}\left[\left|X-X^{\prime}\right|^{2}\right]^{1 / 2}$
- Example $W_{2}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}, \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}^{\prime}}\right) \leq\left(\frac{1}{N} \sum_{i=1}^{N}\left|x_{i}-x_{i}^{\prime}\right|^{2}\right)^{1 / 2}$

McKean-Vlasov SDE

- Expect some decorrelation / averaging in the system as $N \uparrow \infty$
- replace the empirical measure by the theoretical law

$$
d X_{t}=b\left(X_{t}, \mathcal{L}\left(X_{t}\right)\right) d t+\sigma\left(X_{t}, \mathcal{L}\left(X_{t}\right)\right) d W_{t}
$$

- Cauchy-Lipschitz theory
- assume b and σ Lipschitz continuous on $\mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \Rightarrow$ unique solution for any given initial condition in L^{2}
- proof works as in the standard case taking advantage of

$$
\mathbb{E}\left[\left|(b, \sigma)\left(X_{t}, \mathcal{L}\left(X_{t}\right)\right)-(b, \sigma)\left(X_{t}^{\prime}, \mathcal{L}\left(X_{t}^{\prime}\right)\right)\right|^{2}\right] \leq C \mathbb{E}\left[\left|X_{t}-X_{t}^{\prime}\right|^{2}\right]
$$

McKean-Vlasov SDE

- Expect some decorrelation / averaging in the system as $N \uparrow \infty$
- replace the empirical measure by the theoretical law

$$
d X_{t}=b\left(X_{t}, \mathcal{L}\left(X_{t}\right)\right) d t+\sigma\left(X_{t}, \mathcal{L}\left(X_{t}\right)\right) d W_{t}
$$

- Cauchy-Lipschitz theory
- assume b and σ Lipschitz continuous on $\mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \Rightarrow$ unique solution for any given initial condition in L^{2}
- proof works as in the standard case taking advantage of

$$
\mathbb{E}\left[\left|(b, \sigma)\left(X_{t}, \mathcal{L}\left(X_{t}\right)\right)-(b, \sigma)\left(X_{t}^{\prime}, \mathcal{L}\left(X_{t}^{\prime}\right)\right)\right|^{2}\right] \leq C \mathbb{E}\left[\left|X_{t}-X_{t}^{\prime}\right|^{2}\right]
$$

- Propagation of chaos
- each $\left(X_{t}^{i}\right)_{0 \leq t \leq T}$ converges in law to the solution of MKV SDE
\circ particles get independent in the limit \leadsto for k fixed:

$$
\left(X_{t}^{1}, \ldots, X_{t}^{k}\right)_{0 \leq t \leq T} \underset{\mathcal{L}}{\longrightarrow} \mathcal{L}(\mathrm{MKV})^{\otimes k}=\mathcal{L}\left(\left(X_{t}\right)_{0 \leq t \leq T}\right)^{\otimes k} \quad \text { as } N \nearrow \infty
$$

$-\lim _{N / \infty} \sup _{0 \leq t \leq T} \mathbb{E}\left[\left(W_{2}\left(\bar{\mu}_{t}^{N}, \mathcal{L}\left(X_{t}\right)\right)^{2}\right]=0\right.$

Part II. From propagation of chaos to MFG

b. Formulation of the asymptotic problems

Ansatz

- Go back to the finite game
- Ansatz \leadsto at equilibrium

$$
\boldsymbol{\alpha}_{t}^{i, \star}=\alpha^{N}\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right) \approx \alpha\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right)
$$

- particle system at equilibrium

$$
d X_{t}^{i} \approx b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right)\right) d t+\sigma\left(X_{t}^{i}, \alpha\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right)\right) d W_{t}^{i}
$$

- particles should decorrelate as $N \nearrow \infty$
- $\bar{\mu}_{t}^{N}$ should stabilize around some deterministic limit μ_{t}

Ansatz

- Go back to the finite game
- Ansatz \leadsto at equilibrium

$$
\boldsymbol{\alpha}_{t}^{i, \star}=\alpha^{N}\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right) \approx \alpha\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right)
$$

- particle system at equilibrium

$$
d X_{t}^{i} \approx b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right)\right) d t+\sigma\left(X_{t}^{i}, \alpha\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right)\right) d W_{t}^{i}
$$

- particles should decorrelate as $N \nearrow \infty$
- $\bar{\mu}_{t}^{N}$ should stabilize around some deterministic limit μ_{t}
- What about an intrinsic interpretation of μ_{t} ?
- should describe the global state of the population in equilibrium
\circ in the limit setting, any particle that leaves the equilibrium should not modify $\mu_{t} \leadsto$ leaving the equilibrium means that the cost increases \leadsto any particle in the limit should solve an optimal control problem in the environment $\left(\mu_{t}\right)_{0 \leq t \leq T}$

Matching problem of MFG

- Define the asymptotic equilibrium state of the population as the solution of a fixed point problem

Matching problem of MFG

－Define the asymptotic equilibrium state of the population as the solution of a fixed point problem
（1）fix a flow of probability measures $\left(\mu_{t}\right)_{0 \leq t \leq T}$（with values in $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ ）

Matching problem of MFG

- Define the asymptotic equilibrium state of the population as the solution of a fixed point problem
(1) fix a flow of probability measures $\left(\mu_{t}\right)_{0 \leq t \leq T}$ (with values in $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$)
(2) solve the stochastic optimal control problem in the environment $\left(\mu_{t}\right)_{0 \leq t \leq T}$

$$
d X_{t}=b\left(X_{t}, \mu_{t}, \alpha_{t}\right) d t+\sigma\left(X_{t}, \mu_{t}\right) d W_{t}
$$

- with $X_{0}=\xi$ being fixed on some set-up $(\Omega, \mathbb{F}, \mathbb{P})$ with a d-dimensional B.M.
\circ with cost $J(\boldsymbol{\alpha})=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T} f\left(X_{t}, \mu_{t}, \alpha_{t}\right) d t\right]$

Matching problem of MFG

- Define the asymptotic equilibrium state of the population as the solution of a fixed point problem
(1) fix a flow of probability measures $\left(\mu_{t}\right)_{0 \leq t \leq T}$ (with values in $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$)
(2) solve the stochastic optimal control problem in the environment $\left(\mu_{t}\right)_{0 \leq t \leq T}$

$$
d X_{t}=b\left(X_{t}, \mu_{t}, \alpha_{t}\right) d t+\sigma\left(X_{t}, \mu_{t}\right) d W_{t}
$$

- with $X_{0}=\xi$ being fixed on some set-up $(\Omega, \mathbb{F}, \mathbb{P})$ with a d-dimensional B.M.
- with cost $J(\boldsymbol{\alpha})=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T} f\left(X_{t}, \mu_{t}, \alpha_{t}\right) d t\right]$
(3) let $\left(X_{t}^{\star, \mu}\right)_{0 \leq t \leq T}$ be the unique optimizer (under nice assumptions) \leadsto find $\left(\mu_{t}\right)_{0 \leq t \leq T}$ such that

$$
\mu_{t}=\mathcal{L}\left(X_{t}^{\star, \mu}\right), \quad t \in[0, T]
$$

- Not a proof of convergence!

Part II. From propagation of chaos to MFG

c. Forward-backward systems

PDE point of view: HJB

- PDE characterization of the optimal control problem when σ is the identity
- Value function in environment $\left(\mu_{t}\right)_{0 \leq t \leq T}$

$$
u(t, x)=\inf _{\alpha \text { processes }} \mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{t}^{T} f\left(X_{s}, \mu_{s}, \alpha_{s}\right) d s \mid X_{t}=x\right]
$$

PDE point of view: HJB

- PDE characterization of the optimal control problem when σ is the identity
- Value function in environment $\left(\mu_{t}\right)_{0 \leq t \leq T}$

$$
u(t, x)=\inf _{\alpha \text { processes }} \mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{t}^{T} f\left(X_{s}, \mu_{s}, \alpha_{s}\right) d s \mid X_{t}=x\right]
$$

- U solution Backward HJB

$$
\left(\partial_{t} u+\frac{\partial_{x x}^{2} u}{2}\right)(t, x)+\underbrace{\inf _{\alpha \text { scalar }}\left[b\left(x, \mu_{t}, \alpha\right) \partial_{x} u(t, x)+f\left(x, \mu_{t}, \alpha\right)\right]}_{\text {standard Hamiltonian in HJB }}=0
$$

- $H(x, \mu, \alpha, z)=b(x, \mu, \alpha) \cdot z+f(x, \mu, \alpha)$

$$
\circ \alpha^{\star}(x, \mu, z)=\operatorname{argmin}_{\alpha \in A} H(x, \mu, \alpha, z) \leadsto \alpha^{\star}=\alpha^{\star}\left(x, \mu_{t}, \partial_{x} u(t, x)\right)
$$

- Terminal boundary condition: $u(T, \cdot)=g\left(\cdot, \mu_{T}\right)$
- Pay attention that u depends on $\left(\mu_{t}\right)_{t}$!

Fokker-Planck

- Need for a PDE characterization of $\left(\mathcal{L}\left(X_{t}^{\star, \mu}\right)\right)_{t}$
- Dynamics of $X^{\star, \mu}$ at equilibrium

$$
d X_{t}^{\star, \mu}=b\left(X_{t}^{\star, \mu}, \mu_{t}, \alpha^{\star}\left(X_{t}^{\star, \mu}, \mu_{t}, \partial_{x} u\left(t, X_{t}^{\star, \mu}\right)\right)\right) d t+d W_{t}
$$

- Law $\left(X_{t}^{\star, \mu}\right)_{0 \leq t \leq T}$ satisfies Fokker-Planck (FP) equation

$$
\partial_{t} \mu_{t}=-\operatorname{div}(\underbrace{b\left(x, \mu_{t}, \alpha^{\star}\left(x, \mu_{t}, \partial_{x} u(t, x)\right)\right.}_{b^{\star}(t, x)} \mu_{t})+\frac{1}{2} \partial_{x x}^{2} \mu_{t}
$$

Fokker-Planck

- Need for a PDE characterization of $\left(\mathcal{L}\left(X_{t}^{\star, \mu}\right)\right)_{t}$
- Dynamics of $X^{\star, \mu}$ at equilibrium

$$
d X_{t}^{\star, \mu}=b\left(X_{t}^{\star, \mu}, \mu_{t}, \alpha^{\star}\left(X_{t}^{\star, \mu}, \mu_{t}, \partial_{x} u\left(t, X_{t}^{\star, \mu}\right)\right)\right) d t+d W_{t}
$$

- Law $\left(X_{t}^{\star, \mu}\right)_{0 \leq t \leq T}$ satisfies Fokker-Planck (FP) equation

$$
\partial_{t} \mu_{t}=-\operatorname{div}(\underbrace{b\left(x, \mu_{t}, \alpha^{\star}\left(x, \mu_{t}, \partial_{x} u(t, x)\right)\right.}_{b^{\star}(t, x)} \mu_{t})+\frac{1}{2} \partial_{x x}^{2} \mu_{t}
$$

- MFG equilibrium described by forward-backward in ∞ dimension Fokker-Planck (forward) HJB (backward)
- ∞ dimensional analogue of

$$
\begin{aligned}
& \dot{x}_{t}=b\left(x_{t}, y_{t}\right) d t, \quad x_{0}=x^{0} \\
& \dot{y}_{t}=-f\left(x_{t}, y_{t}\right) d t, \quad y_{T}=g\left(x_{T}\right)
\end{aligned}
$$

Optimal control and FBSDEs

- Environment $\left(\mu_{t}\right)_{0 \leq t \leq T}$ is fixed and cost functional of the type

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T} f\left(X_{t}, \mu_{t}, \alpha_{t}\right) d t\right]
$$

- assume f and g continuous and at most of quadratic growth

Optimal control and FBSDEs

- Environment $\left(\mu_{t}\right)_{0 \leq t \leq T}$ is fixed and cost functional of the type

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T} f\left(X_{t}, \mu_{t}, \alpha_{t}\right) d t\right]
$$

- assume f and g continuous and at most of quadratic growth
- Interpret optimal paths as the forward component of an FBSDE $\leadsto \rightarrow$ On $(\Omega, \mathbb{F}, \mathbb{P})$ with \mathbb{F} generated by $\left(\xi,\left(W_{t}\right)_{0 \leq t \leq T}\right)$

$$
\begin{aligned}
X_{t} & =X_{0}+\int_{0}^{t} b\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}, \mu_{s}\right) d W_{s} \\
Y_{t} & =G\left(X_{T}, \mu_{T}\right)+\int_{t}^{T} F\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{aligned}
$$

Optimal control and FBSDEs

- Environment $\left(\mu_{t}\right)_{0 \leq t \leq T}$ is fixed and cost functional of the type

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T} f\left(X_{t}, \mu_{t}, \alpha_{t}\right) d t\right]
$$

- assume f and g continuous and at most of quadratic growth
- Interpret optimal paths as the forward component of an FBSDE $\leadsto \rightarrow$ On $(\Omega, \mathbb{F}, \mathbb{P})$ with \mathbb{F} generated by $\left(\xi,\left(W_{t}\right)_{0 \leq t \leq T}\right)$

$$
\begin{aligned}
X_{t} & =X_{0}+\int_{0}^{t} b\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}, \mu_{s}\right) d W_{s} \\
Y_{t} & =G\left(X_{T}, \mu_{T}\right)+\int_{t}^{T} F\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{aligned}
$$

- σ invertible, H strict convex in α and coeff. bounded in $x \Rightarrow$ $((G, F)=(g, f)) \Rightarrow$ represent value function!

Optimal control and FBSDEs

- Environment $\left(\mu_{t}\right)_{0 \leq t \leq T}$ is fixed and cost functional of the type

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T} f\left(X_{t}, \mu_{t}, \alpha_{t}\right) d t\right]
$$

- assume f and g continuous and at most of quadratic growth
- Interpret optimal paths as the forward component of an FBSDE $\leadsto \leadsto$ On $(\Omega, \mathbb{F}, \mathbb{P})$ with \mathbb{F} generated by $\left(\xi,\left(W_{t}\right)_{0 \leq t \leq T}\right)$

$$
\begin{aligned}
X_{t} & =X_{0}+\int_{0}^{t} b\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}, \mu_{s}\right) d W_{s} \\
Y_{t} & =G\left(X_{T}, \mu_{T}\right)+\int_{t}^{T} F\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{aligned}
$$

- σ invertible, H strict convex in α and coeff. bounded in $x \Rightarrow$ $((G, F)=(g, f)) \Rightarrow$ represent value function!
$\circ H$ strict convex in $(x, \alpha) \Rightarrow$ Pontryagin! $\left((G, F)=\left(\partial_{x} g, \partial_{x} H\right)\right)(\sigma$ indep. of $x) \Rightarrow$ represent gradient value function!

Optimal control and FBSDEs

- Environment $\left(\mu_{t}\right)_{0 \leq t \leq T}$ is fixed and cost functional of the type

$$
J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T} f\left(X_{t}, \mu_{t}, \alpha_{t}\right) d t\right]
$$

- assume f and g continuous and at most of quadratic growth
- Interpret optimal paths as the forward component of an FBSDE $\leadsto \leadsto$ On $(\Omega, \mathbb{F}, \mathbb{P})$ with \mathbb{F} generated by $\left(\xi,\left(W_{t}\right)_{0 \leq t \leq T}\right)$

$$
\begin{aligned}
X_{t} & =X_{0}+\int_{0}^{t} b\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}, \mu_{s}\right) d W_{s} \\
Y_{t} & =G\left(X_{T}, \mu_{T}\right)+\int_{t}^{T} F\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{aligned}
$$

- σ invertible, H strict convex in α and coeff. bounded in $x \Rightarrow$ $((G, F)=(g, f)) \Rightarrow$ represent value function!
$\circ H$ strict convex in $(x, \alpha) \Rightarrow$ Pontryagin! $\left((G, F)=\left(\partial_{x} g, \partial_{x} H\right)\right)(\sigma$ indep. of $x) \Rightarrow$ represent gradient value function!
- choose $\left(\mu_{t}\right)_{0 \leq t \leq T}$ as the law of optimal path! \Rightarrow characterize by FBSDE of McKean-Vlasov type

MKV FBSDE for the value function

- Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$
\begin{aligned}
X_{t}= & \xi+\int_{0}^{t} b\left(X_{s}, \mathcal{L}\left(X_{s}\right), \alpha^{\star}\left(X_{s}, \mathcal{L}\left(X_{s}\right), Z_{s} \sigma^{-1}\left(X_{s}, \mathcal{L}\left(X_{s}\right)\right)\right)\right) d s \\
& +\int_{0}^{t} \sigma\left(X_{s}, \mathcal{L}\left(X_{s}\right)\right) d W_{s} \\
Y_{t}= & g\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) \\
& +\int_{t}^{T} f\left(X_{s}, \mathcal{L}\left(X_{s}\right), \alpha^{\star}\left(X_{s}, \mathcal{L}\left(X_{s}\right), Z_{s} \sigma^{-1}\left(X_{s}, \mathcal{L}\left(X_{s}\right)\right)\right)\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{aligned}
$$

MKV FBSDE for the value function

- Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$
\begin{aligned}
X_{t}= & \xi+\int_{0}^{t} b\left(X_{s}, \mathcal{L}\left(X_{s}\right), \alpha^{\star}\left(X_{s}, \mathcal{L}\left(X_{s}\right), Z_{s} \sigma^{-1}\left(X_{s}, \mathcal{L}\left(X_{s}\right)\right)\right)\right) d s \\
& +\int_{0}^{t} \sigma\left(X_{s}, \mathcal{L}\left(X_{s}\right)\right) d W_{s} \\
Y_{t}= & g\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) \\
& +\int_{t}^{T} f\left(X_{s}, \mathcal{L}\left(X_{s}\right), \alpha^{\star}\left(X_{s}, \mathcal{L}\left(X_{s}\right), Z_{s} \sigma^{-1}\left(X_{s}, \mathcal{L}\left(X_{s}\right)\right)\right)\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{aligned}
$$

- Connection with PDE formulation

$$
Y_{s}=u\left(s, X_{s}\right), \quad Z_{s}=\partial_{x} u\left(s, X_{s}\right) \sigma\left(X_{s}, \mu_{s}\right)
$$

MKV FBSDE for the value function

- Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$
\begin{aligned}
X_{t}= & \xi+\int_{0}^{t} b\left(X_{s}, \mathcal{L}\left(X_{s}\right), \alpha^{\star}\left(X_{s}, \mathcal{L}\left(X_{s}\right), Z_{s} \sigma^{-1}\left(X_{s}, \mathcal{L}\left(X_{s}\right)\right)\right)\right) d s \\
& +\int_{0}^{t} \sigma\left(X_{s}, \mathcal{L}\left(X_{s}\right)\right) d W_{s} \\
Y_{t}= & g\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) \\
& +\int_{t}^{T} f\left(X_{s}, \mathcal{L}\left(X_{s}\right), \alpha^{\star}\left(X_{s}, \mathcal{L}\left(X_{s}\right), Z_{s} \sigma^{-1}\left(X_{s}, \mathcal{L}\left(X_{s}\right)\right)\right)\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{aligned}
$$

- Connection with PDE formulation

$$
Y_{s}=u\left(s, X_{s}\right), \quad Z_{s}=\partial_{x} u\left(s, X_{s}\right) \sigma\left(X_{s}, \mu_{s}\right)
$$

- Unique minimizer for each $\left(\mu_{t}\right)_{0 \leq t \leq T}$ if
$\circ b, f, g, \sigma, \sigma^{-1}$ bounded in (x, μ), Lipschitz in x
- b linear in α and f strictly convex and loc. Lip in α, with $\operatorname{Lip}(f)$ at most of linear growth in α

MKV FBSDE for the Pontryagin principle

- Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$
\begin{aligned}
X_{t}= & \xi+\int_{0}^{t} b\left(X_{s}, \mathcal{L}\left(X_{s}\right), \alpha^{\star}\left(X_{s}, \mathcal{L}\left(X_{s}\right), Y_{s}\right)\right) d s+\int_{0}^{t} \sigma\left(\mathcal{L}\left(X_{s}\right)\right) d W_{s} \\
Y_{t}= & \partial_{x} g\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) \\
& +\int_{t}^{T} \partial_{x} H\left(X_{s}, \mathcal{L}\left(X_{s}\right), \alpha^{\star}\left(X_{s}, \mathcal{L}\left(X_{s}\right), Y_{s}\right), Y_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{aligned}
$$

MKV FBSDE for the Pontryagin principle

- Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$
\begin{aligned}
X_{t} & =\xi+\int_{0}^{t} b\left(X_{s}, \mathcal{L}\left(X_{s}\right), \alpha^{\star}\left(X_{s}, \mathcal{L}\left(X_{s}\right), Y_{s}\right)\right) d s+\int_{0}^{t} \sigma\left(\mathcal{L}\left(X_{s}\right)\right) d W_{s} \\
Y_{t} & =\partial_{x} g\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) \\
& +\int_{t}^{T} \partial_{x} H\left(X_{s}, \mathcal{L}\left(X_{s}\right), \alpha^{\star}\left(X_{s}, \mathcal{L}\left(X_{s}\right), Y_{s}\right), Y_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{aligned}
$$

- Connection with PDE formulation

$$
Y_{s}=\partial_{x} u\left(s, X_{s}\right), \quad Z_{s}=\partial_{x}^{2} u\left(s, X_{s}\right) \sigma\left(\mu_{s}\right)
$$

MKV FBSDE for the Pontryagin principle

- Consider, on $(\Omega, \mathbb{F}, \mathbb{P})$, the MKV FBSDE

$$
\begin{aligned}
X_{t}= & \xi+\int_{0}^{t} b\left(X_{s}, \mathcal{L}\left(X_{s}\right), \alpha^{\star}\left(X_{s}, \mathcal{L}\left(X_{s}\right), Y_{s}\right)\right) d s+\int_{0}^{t} \sigma\left(\mathcal{L}\left(X_{s}\right)\right) d W_{s} \\
Y_{t}= & \partial_{x} g\left(X_{T}, \mathcal{L}\left(X_{T}\right)\right) \\
& +\int_{t}^{T} \partial_{x} H\left(X_{s}, \mathcal{L}\left(X_{s}\right), \alpha^{\star}\left(X_{s}, \mathcal{L}\left(X_{s}\right), Y_{s}\right), Y_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{aligned}
$$

- Connection with PDE formulation

$$
Y_{s}=\partial_{x} u\left(s, X_{s}\right), \quad Z_{s}=\partial_{x}^{2} u\left(s, X_{s}\right) \sigma\left(\mu_{s}\right)
$$

- Unique minimizer for each $\left(\mu_{t}\right)_{0 \leq t \leq T}$ if
- σ indep. of x and $b(x, \mu, \alpha)=b_{0}(\mu)+b_{1} x+b_{2} \alpha$
- $\partial_{x} f, \partial_{\alpha} f, \partial_{x} g$ L-Lipschitz in (x, α)
- g and f convex in (x, α) with f strict convex in α

Seeking a solution

- Any way \leadsto two-point-boundary-problem \Rightarrow
- Cauchy-Lipschitz theory in small time only
- if Lipschitz coefficients (including the direction of the measure)
\leadsto existence and uniqueness in short time (see later on)
\leadsto existence and uniqueness of MFG equilibria in small time

Seeking a solution

- Any way \rightarrow two-point-boundary-problem \Rightarrow
- Cauchy-Lipschitz theory in small time only
- if Lipschitz coefficients (including the direction of the measure)
\leadsto existence and uniqueness in short time (see later on)
\leadsto existence and uniqueness of MFG equilibria in small time
- What about arbitrary time?
- existence \leadsto fixed point over the measure argument by means of compactness arguments

> | Schauder's theorem |
| :--- |

- uniqueness \leadsto require additional assumption

Seeking a solution

- Any way \sim two-point-boundary-problem \Rightarrow
- Cauchy-Lipschitz theory in small time only
- if Lipschitz coefficients (including the direction of the measure)
\leadsto existence and uniqueness in short time (see later on)
\leadsto existence and uniqueness of MFG equilibria in small time
- What about arbitrary time?
- existence \sim fixed point over the measure argument by means of compactness arguments

> | Schauder's theorem |
| :--- |

- uniqueness \leadsto require additional assumption
- Other question \leadsto connection with social optimization?
- potential games \leadsto MFG solution is also a social optimizer (but for other coefficients)

Part III. Solving MFG

a. Schauder fixed point theorem without common noise

Statement of the Schauder fixed point theorem

- Generalisation of Brouwer's theorem from finite to infinite dimension
- Let $(V,\|\cdot\|)$ be a normed vector space
$\circ \emptyset \neq E \subset V$ with E closed and convex
$\circ \phi: E \rightarrow E$ continuous such that $\phi(E)$ is relatively compact
$\circ \Rightarrow$ existence of a fixed point to ϕ

Statement of the Schauder fixed point theorem

- Generalisation of Brouwer's theorem from finite to infinite dimension
- Let $(V,\|\cdot\|)$ be a normed vector space
$\circ \emptyset \neq E \subset V$ with E closed and convex
$\circ \phi: E \rightarrow E$ continuous such that $\phi(E)$ is relatively compact
- \Rightarrow existence of a fixed point to ϕ
- In MFG \leadsto what is V, what is E, what is ϕ ?
- recall that MFG equilibrium is a flow of measures $\left(\mu_{t}\right)_{0 \leq t \leq T}$

$$
E \subset C\left([0, T], \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)
$$

- need to embed into a linear structure

$$
C\left([0, T], \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right) \subset \mathcal{C}\left([0, T], \mathcal{M}_{1}\left(\mathbb{R}^{d}\right)\right)
$$

- $\mathcal{M}_{1}\left(\mathbb{R}^{d}\right)$ set of signed measures v with $\int_{\mathbb{R}^{d}}|x| d|v|(x)<\infty$

Compactness on the space of probability measures

- Equip $\mathcal{M}_{1}\left(\mathbb{R}^{d}\right)$ with a norm $\|\cdot\|$ and restrict to $\mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ such that - convergence of $\left(v_{n}\right)_{n \geq 1}$ in $\mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ implies weak convergence

$$
\forall h \in C_{b}\left(\mathbb{R}^{d}, \mathbb{R}\right), \quad \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} h d v_{n}=\int_{\mathbb{R}^{d}} h d v
$$

- if $\left(v_{n}\right)_{n \geq 1}$ has uniformly bounded moments of order $p>2$

$$
\text { Unif. square integrability } \Rightarrow W_{2}\left(v_{n}, v\right) \rightarrow 0
$$

o says that the input in the coefficients varies continuously!

$$
b\left(x, v_{n}, y, z\right), \sigma\left(x, v_{n}\right), F\left(x, v_{n}, y, z\right), G\left(x, v_{n}\right)
$$

Compactness on the space of probability measures

- Equip $\mathcal{M}_{1}\left(\mathbb{R}^{d}\right)$ with a norm $\|\cdot\|$ and restrict to $\mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ such that - convergence of $\left(v_{n}\right)_{n \geq 1}$ in $\mathcal{P}_{1}\left(\mathbb{R}^{d}\right)$ implies weak convergence

$$
\forall h \in C_{b}\left(\mathbb{R}^{d}, \mathbb{R}\right), \quad \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{d}} h d v_{n}=\int_{\mathbb{R}^{d}} h d v
$$

\circ if $\left(v_{n}\right)_{n \geq 1}$ has uniformly bounded moments of order $p>2$

$$
\text { Unif. square integrability } \Rightarrow W_{2}\left(v_{n}, v\right) \rightarrow 0
$$

o says that the input in the coefficients varies continuously!

$$
b\left(x, v_{n}, y, z\right), \sigma\left(x, v_{n}\right), F\left(x, v_{n}, y, z\right), G\left(x, v_{n}\right)
$$

- Compactness $\leadsto \leadsto$ if $\left(v_{n}\right)_{n \geq 1}$ has bounded moments of order $p>2$
- $\left(v_{n}\right)_{n \geq 1}$ admits a weakly convergent subsequence
\circ then convergence for W_{2} by unif. integrability and for $\|\cdot\|$ also

Application to MKV FBSDE

- Choose E as continuous $\left(\mu_{t}\right)_{0 \leq t \leq T}$ from $[0, T]$ to $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$

$$
\sup _{0 \leq t \leq T} \int_{\mathbb{R}^{d}}|x|^{4} d \mu_{t}(x) \leq K \quad \text { for some } K
$$

Application to MKV FBSDE

- Choose E as continuous $\left(\mu_{t}\right)_{0 \leq t \leq T}$ from $[0, T]$ to $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$

$$
\sup _{0 \leq t \leq T} \int_{\mathbb{R}^{d}}|x|^{4} d \mu_{t}(x) \leq K \quad \text { for some } K
$$

- Construct $\phi \sim$ fix $\left(\mu_{t}\right)_{0 \leq t \leq T}$ in E and solve

$$
\begin{aligned}
& X_{t}=\xi+\int_{0}^{t} b\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right)+\int_{0}^{t} \sigma\left(X_{s}, \mu_{s}\right) d W_{s} \\
& Y_{t}=G\left(X_{T}, \mu_{T}\right)+\int_{t}^{T} F\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s} \\
& \circ \text { let } \phi\left(\mu=\left(\mu_{t}\right)_{0 \leq t \leq T}\right)=\left(\mathcal{L}\left(X_{t}^{\mu}\right)\right)_{0 \leq t \leq T}
\end{aligned}
$$

Application to MKV FBSDE

- Choose E as continuous $\left(\mu_{t}\right)_{0 \leq t \leq T}$ from $[0, T]$ to $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$

$$
\sup _{0 \leq t \leq T} \int_{\mathbb{R}^{d}}|x|^{4} d \mu_{t}(x) \leq K \quad \text { for some } K
$$

- Construct $\phi \sim$ fix $\left(\mu_{t}\right)_{0 \leq t \leq T}$ in E and solve
- Assume bounded coefficients and $\mathbb{E}\left[|\xi|^{4}\right]<\infty$
- choose K such that $\mathbb{E}\left[\left|X_{t}^{\mu}\right|^{4}\right] \leq K$

$$
\Rightarrow E \text { stable by } \phi
$$

$$
\circ W_{2}\left(\mathcal{L}\left(X_{t}^{\mu}\right), \mathcal{L}\left(X_{s}^{\mu}\right)\right) \leq C \mathbb{E}\left[\left|X_{t}^{\mu}-X_{s}^{\mu}\right|^{2}\right]^{1 / 2} \leq C|t-s|^{1 / 2}
$$

$$
\begin{aligned}
& X_{t}=\xi+\int_{0}^{t} b\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right)+\int_{0}^{t} \sigma\left(X_{s}, \mu_{s}\right) d W_{s} \\
& Y_{t}=G\left(X_{T}, \mu_{T}\right)+\int_{t}^{T} F\left(X_{s}, \mu_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s} \\
& \text { - let } \phi\left(\mu=\left(\mu_{t}\right)_{0 \leq t \leq T}\right)=\left(\mathcal{L}\left(X_{t}^{\mu}\right)\right)_{0 \leq t \leq T}
\end{aligned}
$$

Conclusion

- Consider continuous $\boldsymbol{\mu}=\left(\mu_{t}\right)_{0 \leq t \leq T}$ from $[0, T]$ to $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
- for any $t \leadsto(\phi(\mu))_{t}$ in a compact subset of $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
$\circ[0, T] \ni t \mapsto(\phi(\boldsymbol{\mu}))_{t}$ is uniformly continuous in $\boldsymbol{\mu}$
- by Arzelà-Ascoli \Rightarrow output lives in a compact subset of $E \subset C\left([0, T], \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$ (and thus of $C\left([0, T], \mathcal{M}_{1}\left(\mathbb{R}^{d}\right)\right)$
- Continuity of ϕ on $E \leadsto$ stability of the solution of FBSDEs with respect to a continuous perturbation of the environment

Conclusion

- Consider continuous $\boldsymbol{\mu}=\left(\mu_{t}\right)_{0 \leq t \leq T}$ from $[0, T]$ to $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
- for any $t \sim(\phi(\mu))_{t}$ in a compact subset of $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
- $[0, T] \ni t \mapsto(\phi(\mu))_{t}$ is uniformly continuous in $\boldsymbol{\mu}$
- by Arzelà-Ascoli \Rightarrow output lives in a compact subset of $E \subset C\left([0, T], \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$ (and thus of $C\left([0, T], \mathcal{M}_{1}\left(\mathbb{R}^{d}\right)\right)$
- Continuity of ϕ on $E \leadsto$ stability of the solution of FBSDEs with respect to a continuous perturbation of the environment
- Refinements to allow for unbounded coefficients
- for the Value-Function FBSDE $\leadsto b$ linear in α, f strictly convex in α, with derivatives in α at most of linear growth in α
- Pontryagin principle
$\leadsto b$ linear in (x, α) and f convex in (x, α) with derivatives at most of linear growth with weak-mean reverting conditions

$$
\left\langle x, \partial_{x} f\left(0, \delta_{x}, 0\right)\right\rangle \geq-c(1+|x|) \quad \text { and } \quad\left\langle x, \partial_{x} g\left(0, \delta_{x}\right)\right\rangle \geq-c(1+|x|)
$$

Linear-quadratic in $d=1$

- Apply previous results with
- $b(t, x, \mu, \alpha)=a_{t} x+a_{t}^{\prime} \mathbb{E}(\mu)+b_{t} \alpha_{t}$
- $g(x, \mu)=\frac{1}{2}\left[q x+q^{\prime} \mathbb{E}(\mu)\right]^{2} \leftrightarrow$ (mean-reverting) $q q^{\prime} \geq 0$
- $f(t, x, \mu, \alpha)=\frac{1}{2}\left[\alpha^{2}+\left(m_{t} x+m_{t}^{\prime} \mathbb{E}(\mu)\right)^{2}\right] \leadsto$ (mean-rev.) $m_{t} m_{t}^{\prime} \geq 0$

Linear-quadratic in $d=1$

- Apply previous results with

$$
\begin{aligned}
& \circ b(t, x, \mu, \alpha)=a_{t} x+a_{t}^{\prime} \mathbb{E}(\mu)+b_{t} \alpha_{t} \\
& \circ g(x, \mu)=\frac{1}{2}\left[q x+q^{\prime} \mathbb{E}(\mu)\right]^{2} \leadsto \leadsto \text { (mean-reverting) } q q^{\prime} \geq 0 \\
& \circ f(t, x, \mu, \alpha)=\frac{1}{2}\left[\alpha^{2}+\left(m_{t} x+m_{t}^{\prime} \mathbb{E}(\mu)\right)^{2}\right] \leadsto\left(\text { mean-rev.) } m_{t} m_{t}^{\prime} \geq 0\right.
\end{aligned}
$$

- Compare with direct method \leadsto Pontryagin

$$
\begin{aligned}
d X_{t} & =\left[a_{t} X_{t}+a_{t}^{\prime} \mathbb{E}\left(X_{t}\right)-b_{t}^{2} Y_{t}\right] d t+\sigma d W_{t} \\
d Y_{t} & =-\left[a_{t} Y_{t}+m_{t}\left(m_{t} X_{t}+m_{t}^{\prime} \mathbb{E}\left(X_{t}\right)\right)\right] d t+Z_{t} d W_{t} \\
Y_{T} & =q\left[q X_{T}+q^{\prime} \mathbb{E}\left(X_{T}\right)\right]
\end{aligned}
$$

- take the mean

$$
\begin{aligned}
& d \mathbb{E}\left(X_{t}\right)=\left[\left(a_{t}+a_{t}^{\prime}\right) \mathbb{E}\left(X_{t}\right)-b_{t}^{2} \mathbb{E}\left(Y_{t}\right)\right] d t \\
& d \mathbb{E}\left(Y_{t}\right)=-\left[a_{t} \mathbb{E}\left(Y_{t}\right)+m_{t}\left(m_{t}+m_{t}^{\prime}\right) \mathbb{E}\left(X_{t}\right)\right] d t \\
& \mathbb{E}\left(Y_{T}\right)=q\left(q+q^{\prime}\right) \mathbb{E}\left(X_{T}\right)
\end{aligned}
$$

Linear-quadratic in $d=1$

- Apply previous results with

$$
\begin{aligned}
& \circ b(t, x, \mu, \alpha)=a_{t} x+a_{t}^{\prime} \mathbb{E}(\mu)+b_{t} \alpha_{t} \\
& \circ g(x, \mu)=\frac{1}{2}\left[q x+q^{\prime} \mathbb{E}(\mu)\right]^{2} \leftrightarrow \rightarrow\left(\text { mean-reverting) } q q^{\prime} \geq 0\right. \\
& \circ f(t, x, \mu, \alpha)=\frac{1}{2}\left[\alpha^{2}+\left(m_{t} x+m_{t}^{\prime} \mathbb{E}(\mu)\right)^{2}\right] \leftrightarrow \leadsto \text { (mean-rev.) } m_{t} m_{t}^{\prime} \geq 0
\end{aligned}
$$

- Compare with direct method \rightarrow Pontryagin

$$
\begin{aligned}
d X_{t} & =\left[a_{t} X_{t}+a_{t}^{\prime} \mathbb{E}\left(X_{t}\right)-b_{t}^{2} Y_{t}\right] d t+\sigma d W_{t} \\
d Y_{t} & =-\left[a_{t} Y_{t}+m_{t}\left(m_{t} X_{t}+m_{t}^{\prime} \mathbb{E}\left(X_{t}\right)\right)\right] d t+Z_{t} d W_{t} \\
Y_{T} & =q\left[q X_{T}+q^{\prime} \mathbb{E}\left(X_{T}\right)\right]
\end{aligned}
$$

- take the mean

$$
\begin{aligned}
& d \mathbb{E}\left(X_{t}\right)=\left[\left(a_{t}+a_{t}^{\prime}\right) \mathbb{E}\left(X_{t}\right)-b_{t}^{2} \mathbb{E}\left(Y_{t}\right)\right] d t \\
& d \mathbb{E}\left(Y_{t}\right)=-\left[a_{t} \mathbb{E}\left(Y_{t}\right)+m_{t}\left(m_{t}+m_{t}^{\prime}\right) \mathbb{E}\left(X_{t}\right)\right] d t \\
& \mathbb{E}\left(Y_{T}\right)=q\left(q+q^{\prime}\right) \mathbb{E}\left(X_{T}\right)
\end{aligned}
$$

- existence and uniqueness if $q\left(q+q^{\prime}\right) \geq 0, m_{t}\left(m_{t}+m_{t}^{\prime}\right) \geq 0$

Part III. Solving MFG

b. Uniqueness criterion

A counter-example to uniqueness

- Consider the MKV FBSDE

$$
\begin{aligned}
d X_{t} & =b\left(\mathbb{E}\left(Y_{t}\right)\right) d t+d W_{t}, \quad X_{0}=x_{0} \\
d Y_{t} & =-f\left(\mathbb{E}\left(X_{t}\right)\right) d t+Z_{t} d W_{t}, \quad Y_{T}=g\left(\mathbb{E}\left(X_{T}\right)\right)
\end{aligned}
$$

\circ take bounded and Lipschitz coefficients \leadsto existence of a solution

- uniqueness may not hold!
- completely different of the system with $b\left(Y_{t}\right), f\left(X_{t}\right)$ and $g\left(X_{T}\right)$ for which uniqueness holds true!

A counter-example to uniqueness

- Consider the MKV FBSDE

$$
\begin{aligned}
d X_{t} & =b\left(\mathbb{E}\left(Y_{t}\right)\right) d t+d W_{t}, \quad X_{0}=x_{0} \\
d Y_{t} & =-f\left(\mathbb{E}\left(X_{t}\right)\right) d t+Z_{t} d W_{t}, \quad Y_{T}=g\left(\mathbb{E}\left(X_{T}\right)\right)
\end{aligned}
$$

\circ take bounded and Lipschitz coefficients \leadsto existence of a solution

- uniqueness may not hold!
- completely different of the system with $b\left(Y_{t}\right), f\left(X_{t}\right)$ and $g\left(X_{T}\right)$ for which uniqueness holds true!
- Proof \sim take the mean

$$
\begin{aligned}
& d \mathbb{E}\left(X_{t}\right)=b\left(\mathbb{E}\left(Y_{t}\right)\right) d t, \quad \mathbb{E}\left(X_{0}\right)=x_{0} \\
& d \mathbb{E}\left(Y_{t}\right)=-f\left(\mathbb{E}\left(X_{t}\right)\right) d t, \quad \mathbb{E}\left(Y_{T}\right)=g\left(\mathbb{E}\left(X_{T}\right)\right)
\end{aligned}
$$

- led back to counter-example for FBSDE \leadsto choose b, f and g equal to the identity on a compact subset

Lasry Lions monotonicity condition

- Recall following FBSDE result
$\circ \exists$! may hold for the Pontryagin system if convex g and H
- convexity $\leadsto \rightarrow$ monotonicity of $\partial_{x} g$ and $\partial_{x} H$
- what is monotonicity condition in the direction of the measure?

Lasry Lions monotonicity condition

- Recall following FBSDE result
- \exists ! may hold for the Pontryagin system if convex g and H
- convexity $\leadsto \rightarrow$ monotonicity of $\partial_{x} g$ and $\partial_{x} H$
- what is monotonicity condition in the direction of the measure?
- Lasry Lions monotonicity condition
- b, σ do not depend on μ
$\circ f(x, \mu, \alpha)=f_{0}(x, \mu)+f_{1}(x, \alpha)$ (μ and α are separated)
- monotonicity property for f_{0} and g w.r.t. μ

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}\left(f_{0}(x, \mu)-f_{0}\left(x, \mu^{\prime}\right)\right) d\left(\mu-\mu^{\prime}\right)(x) \geq 0 \\
& \int_{\mathbb{R}^{d}}\left(g(x, \mu)-g\left(x, \mu^{\prime}\right)\right) d\left(\mu-\mu^{\prime}\right)(x) \geq 0
\end{aligned}
$$

Lasry Lions monotonicity condition

- Recall following FBSDE result
- \exists ! may hold for the Pontryagin system if convex g and H
- convexity $\leadsto \rightarrow$ monotonicity of $\partial_{x} g$ and $\partial_{x} H$
- what is monotonicity condition in the direction of the measure?
- Lasry Lions monotonicity condition
- b, σ do not depend on μ
$\circ f(x, \mu, \alpha)=f_{0}(x, \mu)+f_{1}(x, \alpha)$ (μ and α are separated)
- monotonicity property for f_{0} and g w.r.t. μ

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}\left(f_{0}(x, \mu)-f_{0}\left(x, \mu^{\prime}\right)\right) d\left(\mu-\mu^{\prime}\right)(x) \geq 0 \\
& \int_{\mathbb{R}^{d}}\left(g(x, \mu)-g\left(x, \mu^{\prime}\right)\right) d\left(\mu-\mu^{\prime}\right)(x) \geq 0
\end{aligned}
$$

- Example: $h(x, \mu)=\int_{\mathbb{R}^{d}} L(z, \rho \star \mu(z)) \rho(x-z) d z$ where L is \nearrow in second variable and ρ is even

Monotonicity restores uniqueness

- Assume that for any input $\boldsymbol{\mu}=\left(\mu_{t}\right)_{0 \leq t \leq T}$ unique optimal control $\boldsymbol{\alpha}^{\star, \mu}$
$\circ+$ existence of an MFG for a given initial condition

Monotonicity restores uniqueness

- Assume that for any input $\boldsymbol{\mu}=\left(\mu_{t}\right)_{0 \leq t \leq T}$ unique optimal control $\boldsymbol{\alpha}^{\star, \mu}$
- + existence of an MFG for a given initial condition
- Lasry Lions \Rightarrow uniqueness of MFG equilibrium!

Monotonicity restores uniqueness

- Assume that for any input $\boldsymbol{\mu}=\left(\mu_{t}\right)_{0 \leq t \leq T}$ unique optimal control $\boldsymbol{\alpha}^{\star, \mu}$
-+ existence of an MFG for a given initial condition
- Lasry Lions \Rightarrow uniqueness of MFG equilibrium!
- if two different equilibria μ and $\boldsymbol{\mu}^{\prime} \sim \boldsymbol{\alpha}^{\star, \mu} \neq \boldsymbol{\alpha}^{\star, \mu^{\prime}}$

$$
\underbrace{J^{\mu}\left(\alpha^{\star, \mu}\right)}_{\text {cost under } \mu}<J^{\mu}\left(\alpha^{\star, \mu^{\prime}}\right) \text { and } \underbrace{J^{\mu^{\prime}}\left(\alpha^{\star, \mu^{\prime}}\right)}_{\text {cost under } \mu^{\prime}}<J^{\mu^{\prime}}\left(\alpha^{\star, \mu}\right)
$$

Monotonicity restores uniqueness

- Assume that for any input $\boldsymbol{\mu}=\left(\mu_{t}\right)_{0 \leq t \leq T}$ unique optimal control $\boldsymbol{\alpha}^{\star, \mu}$
$\circ+$ existence of an MFG for a given initial condition
- Lasry Lions \Rightarrow uniqueness of MFG equilibrium!
- if two different equilibria μ and $\mu^{\prime} \leadsto \boldsymbol{\alpha}^{\star, \mu} \neq \boldsymbol{\alpha}^{\star, \mu^{\prime}}$

$$
\underbrace{J^{\mu}\left(\alpha^{\star, \mu}\right)}_{\text {cost under } \mu}<J^{\mu}\left(\alpha^{\star, \mu^{\prime}}\right) \quad \text { and } \underbrace{J^{\mu^{\prime}}\left(\alpha^{\star, \mu^{\prime}}\right)}_{\text {cost under } \mu^{\prime}}<J^{\mu^{\prime}}\left(\alpha^{\star, \mu}\right)
$$

so that

$$
\begin{aligned}
& J^{\mu^{\prime}}\left(\alpha^{\star, \mu}\right)-J^{\mu^{\prime}}\left(\alpha^{\star, \mu^{\prime}}\right)+J^{\mu}\left(\alpha^{\star, \mu^{\prime}}\right)-J^{\mu}\left(\alpha^{\star, \mu}\right)>0 \\
& J^{\mu^{\prime}}\left(\alpha^{\star \mu}\right)-J^{\mu}\left(\alpha^{\star, \mu}\right)-\left[J^{\mu^{\prime}}\left(\alpha^{\star, \mu^{\prime}}\right)-J^{\mu}\left(\alpha^{\star, \mu^{\prime}}\right)\right]>0
\end{aligned}
$$

Monotonicity restores uniqueness

- Assume that for any input $\boldsymbol{\mu}=\left(\mu_{t}\right)_{0 \leq t \leq T}$ unique optimal control $\boldsymbol{\alpha}^{\star, \mu}$
$\circ+$ existence of an MFG for a given initial condition
- Lasry Lions \Rightarrow uniqueness of MFG equilibrium!
- if two different equilibria μ and $\mu^{\prime} \leadsto \boldsymbol{\alpha}^{\star, \mu} \neq \boldsymbol{\alpha}^{\star, \mu^{\prime}}$

$$
\underbrace{J^{\mu}\left(\alpha^{\star, \mu}\right)}_{\text {ost under } \mu}<J^{\mu}\left(\alpha^{\star, \mu^{\prime}}\right) \text { and } \underbrace{J^{\mu^{\prime}}\left(\alpha^{\star, \mu^{\prime}}\right)}_{\text {cost under } \mu^{\prime}}<J^{\mu^{\prime}}\left(\alpha^{\star, \mu}\right)
$$

so that

$$
\begin{aligned}
& J^{\mu^{\prime}}\left(\alpha^{\star, \mu}\right)-J^{\mu^{\prime}}\left(\alpha^{\star, \mu^{\prime}}\right)+J^{\mu}\left(\alpha^{\star, \mu^{\prime}}\right)-J^{\mu}\left(\alpha^{\star, \mu}\right)>0 \\
& J^{\mu^{\prime}}\left(\alpha^{\star \mu}\right)-J^{\mu}\left(\alpha^{\star, \mu}\right)-\left[J^{\mu^{\prime}}\left(\alpha^{\star, \mu^{\prime}}\right)-J^{\mu}\left(\alpha^{\star, \mu^{\prime}}\right)\right]>0
\end{aligned}
$$

$\mathbb{E}[\underbrace{g\left(X_{T}^{\star, \mu}, \mu_{T}^{\prime}\right)-g\left(X_{T}^{\star, \mu}, \mu_{T}\right)}-\underbrace{\left(g\left(X_{T}^{\star, \mu^{\prime}}, \mu_{T}^{\prime}\right)-g\left(X_{T}^{\star, \mu^{\prime}}, \mu_{T}\right)\right)}+\ldots]>0$

$$
\int_{\mathbb{R}^{d}}\left(g\left(x, \mu_{T}^{\prime}\right)-g\left(x, \mu_{T}\right)\right) d \mu_{T}(x) \int_{\mathbb{R}^{d}}\left(g\left(x, \mu_{T}^{\prime}\right)-g\left(x, \mu_{T}\right)\right) d \mu_{T}^{\prime}(x)
$$

- same for $f_{0} \Rightarrow$ LHS must be ≤ 0

Part IV. Solving MFG with a Common Noise

a. Formulation

MFG with a common noise

- Mean field game with common noise B
- asymptotic formulation for a finite player game with

$$
d X_{t}^{i}=b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}, \alpha_{t}^{i}\right) d t+\sigma\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right) d W_{t}^{i}+\sigma^{0}\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right) d B_{t}
$$

- uncontrolled version \leadsto asymptotic SDE with $\bar{\mu}_{t}^{N}$ replaced by $\mathcal{L}\left(X_{t} \mid\left(B_{s}\right)_{0 \leq s \leq T}\right)=\mathcal{L}\left(X_{t} \mid\left(B_{s}\right)_{0 \leq s \leq t}\right)$
- particles become independent conditional on B and converge to the solution

$$
d X_{t}=b\left(X_{t}, \mathcal{L}(X \mid B)\right) d t+\sigma\left(X_{t}, \mathcal{L}(X \mid B)\right) d W_{t}+\sigma^{0}\left(X_{t}, \mathcal{L}(X \mid B)\right) d B_{t}
$$

MFG with a common noise

- Mean field game with common noise B
- asymptotic formulation for a finite player game with $A=\mathbb{R}^{k}$ and

$$
d X_{t}^{i}=\left(b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right)+\alpha_{t}^{i}\right) d t+\sigma d W_{t}^{i}+\eta d B_{t}
$$

- uncontrolled version $\sim \bar{\mu}_{t}^{N}$ replaced by $\mathcal{L}\left(X_{t} \mid B\right)$
- Equilibrium as a fixed point $\leadsto \operatorname{time}[0, T]$, state in \mathbb{R}^{d}
- candidate $\leadsto\left(\mu_{t}\right)_{t \in[0, T]} \mathbb{F}^{B}$ prog-meas with values in space of probability measures with a finite second moment $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
- representative player with control α

$$
d X_{t}=\left(b\left(X_{t}, \mu_{t}\right)+\alpha_{t}\right) d t+\sigma d W_{t}+\eta d B_{t}
$$

$$
\leadsto X_{0} \sim \mu_{0}, \sigma, \eta \in\{0,1\}, W \text { and } B \mathbb{R}^{d} \text {-valued } \Perp \text { B.M. }
$$

- cost functional $J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T}\left(f\left(X_{t}, \mu_{t}\right)+\frac{1}{2}\left|\alpha_{t}\right|^{2}\right) d t\right]$
- find $\left(\mu_{t}\right)_{t \in[0, T]}$ such that $\mu_{t}=\mathcal{L}\left(X_{t}^{\text {optimal }} \mid\left(B_{s}\right)_{0 \leq s \leq T}\right)$

MFG with a common noise

- Mean field game with common noise B
- asymptotic formulation for a finite player game with

$$
d X_{t}^{i}=\left(b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right)+\alpha_{t}^{i}\right) d t+\sigma d W_{t}^{i}+\eta d B_{t}
$$

- uncontrolled version $\sim \bar{\mu}_{t}^{N}$ replaced by $\mathcal{L}\left(X_{t} \mid B\right)$
- Equilibrium as a fixed point $\leadsto \operatorname{time}[0, T]$, state in \mathbb{R}^{d}
- candidate $\leadsto\left(\mu_{t}\right)_{t \in[0, T]} \mathbb{F}^{B}$ prog-meas with values in space of probability measures with a finite second moment $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
- representative player with control α

$$
d X_{t}=\left(b\left(X_{t}, \mu_{t}\right)+\alpha_{t}\right) d t+\sigma d W_{t}+\eta d B_{t}
$$

$$
\leadsto X_{0} \sim \mu_{0}, \sigma, \eta \in\{0,1\}, W \text { and } B \mathbb{R}^{d} \text {-valued } \Perp \text { B.M. }
$$

- cost functional $J(\alpha)=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T}\left(f\left(X_{t}, \mu_{t}\right)+\frac{1}{2}\left|\alpha_{t}\right|^{2}\right) d t\right]$
\circ find $\left(\mu_{t}\right)_{t \in[0, T]}$ such that $\mu_{t}=\mathcal{L}\left(X_{t}^{\text {optimal }} \mid\left(B_{s}\right)_{0 \leq s \leq t}\right)$

Forward-backward formulation

- Forward-backward formulation must account for $\left(\mu_{t}\right)_{0 \leq t \leq T}$ random
- systems of two forward-backward SPDEs [Carmona D,

Cardaliaguet D Lasry Lions]

Forward-backward formulation

- Forward-backward formulation must account for $\left(\mu_{t}\right)_{0 \leq t \leq T}$ random
- systems of two forward-backward SPDEs
\leadsto one backward stochastic HJB equation [Peng]

$$
d_{t} u(t, x)+(\underbrace{b\left(x, \mu_{t}\right) \cdot D_{x} u(t, x)+\frac{\sigma^{2}+\eta^{2}}{2} \Delta_{x} u(t, x)}_{\text {Laplace generator }}+\underbrace{f\left(x, \mu_{t}\right)-\frac{1}{2}\left|D_{x} u(t, x)\right|^{2}}_{\text {standard Hamiltonian in HJB }}
$$

$+\underbrace{\eta \operatorname{div}[v(t, x)]}_{\text {Ito Wentzell cross term }}) d t-\underbrace{\eta v(t, x) \cdot d B_{t}}_{\text {backward term }}=0$
with boundary condition: $u(T, \cdot)=g\left(\cdot, \mu_{T}\right)$
$\leadsto \leadsto$ one forward stochastic Fokker-Planck equation

$$
\begin{aligned}
d_{t} \mu_{t}= & \left(-\operatorname{div}\left(\mu_{t}\left[b\left(x, \mu_{t}\right)-D_{x} u(t, x)\right]\right) d t+\frac{\sigma^{2}+\eta^{2}}{2} \operatorname{trace}\left(\partial_{x x}^{2} \mu_{t}\right)\right) d t \\
& -\eta \operatorname{div}\left(\mu_{t} d B_{t}\right)
\end{aligned}
$$

Forward-backward formulation

- Forward-backward formulation must account for $\left(\mu_{t}\right)_{0 \leq t \leq T}$ random
- systems of two forward-backward SPDEs
- systems of two forward-backward McKV SDEs [Carmona D, Buckdahn (al.), Lacker]

Forward-backward formulation

- Forward-backward formulation must account for $\left(\mu_{t}\right)_{0 \leq t \leq T}$ random
- systems of two forward-backward SPDEs
- systems of two forward-backward McKV SDEs
\leadsto two ways: represent the value function or optimal control
- Representation of the value function $\sigma=1$

$$
\begin{aligned}
& d X_{t}=b\left(X_{t}, \mathcal{L}\left(X_{t} \mid B\right)\right) d t-Z_{t} d t+d W_{t}+\eta d B_{t} \\
& d Y_{t}=-f\left(X_{t}, \mathcal{L}\left(X_{t} \mid B\right)\right) d t-\frac{1}{2}\left|Z_{t}\right|^{2} d t+Z_{t} d W_{t}+\zeta_{t} d B_{t} \\
& Y_{T}=g\left(X_{T}, \mathcal{L}\left(X_{T} \mid B\right)\right)
\end{aligned}
$$

- Representation of the optimal control (Pontryagin)

$$
\begin{aligned}
& d X_{t}=b\left(X_{t}, \mathcal{L}\left(X_{t} \mid B\right)\right) d t-Y_{t} d t+\sigma d W_{t}+\eta d B_{t} \\
& d Y_{t}=-\underbrace{\partial_{x} H\left(X_{t}, \mathcal{L}\left(X_{t} \mid B\right), Y_{t}\right)}_{H(x, \mu, y)=b(x, \mu) \cdot y+f(x, \mu, y)} d t+Z_{t} d W_{t}+\zeta_{t} d B_{t} \\
& Y_{T}=\partial_{x} g\left(X_{T}, \mathcal{L}\left(X_{T} \mid B\right)\right)
\end{aligned}
$$

Forward-backward formulation

- Forward-backward formulation must account for $\left(\mu_{t}\right)_{0 \leq t \leq T}$ random
- systems of two forward-backward SPDEs
- systems of two forward-backward McKV SDEs
\leadsto two ways: represent the value function or optimal control
- Representation of the value function $\sigma=1$

$$
\begin{aligned}
& d X_{t}=b\left(X_{t}, \mathcal{L}\left(X_{t} \mid B\right)\right) d t-Z_{t} d t+d W_{t}+\eta d B_{t} \\
& d Y_{t}=-f\left(X_{t}, \mathcal{L}\left(X_{t} \mid B\right)\right) d t-\frac{1}{2}\left|Z_{t}\right|^{2} d t+Z_{t} d W_{t}+\zeta_{t} d B_{t} \\
& Y_{T}=g\left(X_{T}, \mathcal{L}\left(X_{T} \mid B\right)\right)
\end{aligned}
$$

- Representation of the optimal control (Pontryagin)

$$
\begin{aligned}
& d X_{t}=b\left(X_{t}, \mathcal{L}\left(X_{t} \mid B\right)\right) d t-Y_{t} d t+\sigma d W_{t}+\eta d B_{t} \\
& d Y_{t}=-\partial_{x} H\left(X_{t}, \mathcal{L}\left(X_{t} \mid B\right), Y_{t}\right) d t+Z_{t} d W_{t}+\zeta_{t} d B_{t} \\
& Y_{T}=\partial_{x} g\left(X_{T}, \mathcal{L}\left(X_{T} \mid B\right)\right)
\end{aligned}
$$

- Analysis of these equations?

Part IV. Solving MFG with a Common Noise

b. Strong solutions

Implementing Picard theorem

- Easiest way to construct solutions is to implement Picard theorem
o shall see next how to make use of Schauder's theorem
- Forward-backward system of McKean-Vlasov type

$$
\begin{aligned}
& d X_{t}=\left(b\left(X_{t}, \mathcal{L}\left(X_{t} \mid B\right)\right)-Z_{t}\right) d t+d W_{t}+\eta d B_{t} \\
& d Y_{t}=-\left(f\left(X_{t}, \mathcal{L}\left(X_{t} \mid B\right)\right)+\frac{1}{2}\left|Z_{t}\right|^{2}\right) d t+Z_{t} d W_{t}+\zeta_{t} d B_{t} \\
& Y_{T}=g\left(X_{T}, \mathcal{L}\left(X_{T} \mid B\right)\right)
\end{aligned}
$$

- Z_{t} should be $\partial_{x} u\left(t, X_{t}\right) \leadsto$ bounded and x-Lipschitz coefficients $\Rightarrow L^{\infty}$ bound
\leadsto replace quadratic term by general bounded f

Implementing Picard theorem

- Easiest way to construct solutions is to implement Picard theorem
- shall see next how to make use of Schauder's theorem
- Forward-backward system of McKean-Vlasov type

$$
\begin{aligned}
& d X_{t}=\left(b\left(X_{t}, \mathcal{L}\left(X_{t} \mid B\right)\right)-Z_{t}\right) d t+d W_{t}+\eta d B_{t} \\
& d Y_{t}=-f\left(X_{t}, \mathcal{L}\left(X_{t} \mid B\right), Z_{t}\right) d t+Z_{t} d W_{t}+\zeta_{t} d B_{t} \\
& Y_{T}=g\left(X_{T}, \mathcal{L}\left(X_{T} \mid B\right)\right)
\end{aligned}
$$

- Cauchy-Lipschitz theory in small time only!
- Theorem If K-Lipschitz coefficients $\Rightarrow \exists$! for $T \leq c(K)$
- for any initial condition $X_{0} \in L^{2}\left(\Omega, \mathcal{F}_{0}, \mathbb{P} ; \mathbb{R}^{d}\right)$
- Question How to go further?

Decoupling field $(T \leq c(K))$

- Recall non MKV case $\sim \exists U:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
Y_{t}=U\left(t, X_{t}\right) \quad \Leftrightarrow \quad U(t, x)=Y_{t}^{t, x}\left(\text { with } X_{t}^{t, x}=x\right)
$$

- keep fact for extending solutions is to bound $\operatorname{Lip}_{x}(U)$

Decoupling field $(T \leq c(K))$

- Recall non MKV case $\sim \exists U:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
Y_{t}=U\left(t, X_{t}\right) \quad \Leftrightarrow \quad U(t, x)=Y_{t}^{t, x}\left(\text { with } X_{t}^{t, x}=x\right)
$$

- MKV setting \leadsto state variable is in $\mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
\leadsto need to construct $U(t, x, \mu) \quad t \in[0, T], x \in \mathbb{R}^{d}, \mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
- Two-step procedure [Crisan Chassagneux D, Buckdahn (al.)]
- 1st step \sim MKV FBSDE with $X_{t} \sim \mu, X_{t} \Perp(W, B)$
$d X_{s}=\left(b\left(X_{s}, \mathcal{L}\left(X_{s} \mid B\right)\right)-Z_{s}\right) d s+d W_{s}+\eta d B_{s}$
$d Y_{s}=-f\left(X_{s}, \mathcal{L}\left(X_{s} \mid B\right), Z_{s}\right) d s+Z_{s} d W_{s}+\zeta_{s} d B_{s}, \quad Y_{T}=g\left(X_{T}, \mathcal{L}\left(X_{T} \mid B\right)\right)$ $\leadsto\left(\mathcal{L}\left(X_{s} \mid B\right)\right)_{t \leq s \leq T}$ only depends on X_{t} through μ

Decoupling field $(T \leq c(K))$

- Recall non MKV case $\sim \exists U:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
Y_{t}=U\left(t, X_{t}\right) \quad \Leftrightarrow \quad U(t, x)=Y_{t}^{t, x}\left(\text { with } X_{t}^{t, x}=x\right)
$$

- MKV setting \leadsto state variable is in $\mathbb{R}^{d} \times \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ \leadsto need to construct $U(t, x, \mu) \quad t \in[0, T], x \in \mathbb{R}^{d}, \mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$
- Two-step procedure [Crisan Chassagneux D, Buckdahn (al.)]
- 1st step \leadsto MKV FBSDE with $X_{t} \sim \mu, X_{t} \Perp(W, B)$

$$
\begin{aligned}
d X_{s} & =\left(b\left(X_{s}, \mathcal{L}\left(X_{s} \mid B\right)\right)-Z_{s}\right) d s+d W_{s}+\eta d B_{s} \\
d Y_{s} & =-f\left(X_{s}, \mathcal{L}\left(X_{s} \mid B\right), Z_{s}\right) d s+Z_{s} d W_{s}+\zeta_{s} d B_{s}, \quad Y_{T}=g\left(X_{T}, \mathcal{L}\left(X_{T} \mid B\right)\right)
\end{aligned}
$$

- 2nd step \leadsto non-MKV FBSDE with $x_{t}=x$ and 1st step input

$$
\begin{aligned}
& d x_{s}=\left(b\left(x_{s}, \mathcal{L}\left(X_{s} \mid B\right)\right)-z_{s}\right) d s+d W_{s}+\eta d B_{s} \\
& d y_{s}=-f\left(x_{s}, \mathcal{L}\left(X_{s} \mid B\right), z_{s}\right) d t+z_{s} d W_{s}+\varsigma_{s} d B_{s}, \quad y_{T}=g\left(x_{T}, \mathcal{L}\left(X_{T} \mid B\right)\right) \\
& \quad \text { - let } U(t, x, \mu)=y_{t} \Rightarrow Y_{t}=U\left(t, X_{t}, \mu\right)=U\left(t, X_{t}, \mathcal{L}\left(X_{t} \mid B\right)\right)
\end{aligned}
$$

Controlling the Lipschitz constant

- Non-MKV setting \leadsto may control the Lipschitz constant by monotonicity or ellipticity conditions
\leadsto start with monotonicity $\leadsto B$ has no role \Rightarrow simplify $\eta=0$
- Come back to cost structure \leadsto monotonicity of f (same with g)

$$
\int_{\mathbb{R}^{d}}\left[f(x, \mu)-f\left(x, \mu^{\prime}\right)\right] d\left(\mu-\mu^{\prime}\right)(x) \geq 0 \quad[\text { Lions }]
$$

- Theorem [L, C C D, Cardaliaguet (al.)] If $b \equiv 0, f$ and g bounded, monotone and Lipschitz \Rightarrow bound on $\operatorname{Lip}_{\mu} U$ and \exists ! on any $[0, T]$

Controlling the Lipschitz constant

- Non-MKV setting \leadsto may control the Lipschitz constant by monotonicity or ellipticity conditions
\leadsto start with monotonicity $\leadsto B$ has no role \Rightarrow simplify $\eta=0$
- Come back to cost structure \sim monotonicity of f (same with g)

$$
\int_{\mathbb{R}^{d}}\left[f(x, \mu)-f\left(x, \mu^{\prime}\right)\right] d\left(\mu-\mu^{\prime}\right)(x) \geq 0 \quad[\text { Lions }]
$$

- Theorem [L, C C D, Cardaliaguet (al.)] If $b \equiv 0, f$ and g bounded, monotone and Lipschitz \Rightarrow bound on $\operatorname{Lip}_{\mu} U$ and \exists ! on any $[0, T]$
- Strategy Investigate derivative of the flow in L^{2}

$$
\leadsto \text { for } \xi, \chi \in L^{2}\left(\Omega, \mathcal{F}_{0}, \mathbb{P} ; \mathbb{R}^{d}\right)
$$

$$
\left(\partial_{\chi} X_{s}^{\xi}, \partial_{\chi} Y_{s}^{\xi}, \partial_{\chi} Z_{s}^{\xi}\right)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(\underbrace{X_{s}^{\xi+\varepsilon \chi}-X_{s}^{\xi}, Y_{s}^{\xi+\varepsilon \chi}-Y_{s}^{\xi}}_{\operatorname{in} \mathbb{E}\left[\sup _{0 \leq s \leq T}|\cdot s|^{2}\right]}, \underbrace{Z_{s}^{\xi+\varepsilon \chi}-Z_{s}^{\xi}}_{\int_{0}^{T}|\cdot s|^{2} d s})
$$

\circ provide a bound for $\left(\partial_{\chi} X^{\xi}, \partial_{\chi} Y^{\xi}, \partial_{\chi} Z^{\xi}\right)$

Derivative on the Wasserstein space

- Differentiation on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ taken from Lions
- Consider $U: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$
- Lifted-version of U

$$
\hat{U}: L^{2}\left(\Omega, \mathbb{P} ; \mathbb{R}^{d}\right) \ni X \mapsto U(\operatorname{Law}(X))
$$

- U differentiable if \hat{U} Fréchet differentiable

Derivative on the Wasserstein space

- Differentiation on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ taken from Lions
- Consider $U: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$
- Lifted-version of U

$$
\hat{U}: L^{2}\left(\Omega, \mathbb{P} ; \mathbb{R}^{d}\right) \ni X \mapsto U(\operatorname{Law}(X))
$$

- U differentiable if \hat{U} Fréchet differentiable
- Differential of U
- Fréchet derivative of \hat{U} [see also Zhang (al.)]
$D \hat{U}(X)=\partial_{\mu} U(\mu)(X), \quad \partial_{\mu} U(\mu): \mathbb{R}^{d} \ni v \mapsto \partial_{\mu} U(\mu)(v) \quad \mu=\mathcal{L}(X)$
- derivative of U at $\mu \leadsto \partial_{\mu} U(\mu) \in L^{2}\left(\mathbb{R}^{d}, \mu ; \mathbb{R}^{d}\right)$

Derivative on the Wasserstein space

- Differentiation on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ taken from Lions
- Consider $U: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$
- Lifted-version of U

$$
\hat{U}: L^{2}\left(\Omega, \mathbb{P} ; \mathbb{R}^{d}\right) \ni X \mapsto U(\operatorname{Law}(X))
$$

- U differentiable if \hat{U} Fréchet differentiable
- Differential of U
- Fréchet derivative of \hat{U} [see also Zhang (al.)]

$$
D \hat{U}(X)=\partial_{\mu} U(\mu)(X), \quad \partial_{\mu} U(\mu): \mathbb{R}^{d} \ni v \mapsto \partial_{\mu} U(\mu)(v) \quad \mu=\mathcal{L}(X)
$$

- derivative of U at $\mu \leadsto \partial_{\mu} U(\mu) \in L^{2}\left(\mathbb{R}^{d}, \mu ; \mathbb{R}^{d}\right)$
- Finite dimensional projection

$$
\partial_{x_{i}}\left[U\left(\frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}}\right)\right]=\frac{1}{N} \partial_{\mu} U\left(\frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}}\right)\left(x_{i}\right), \quad x_{1}, \ldots, x_{N} \in \mathbb{R}^{d}
$$

Application to the coupled case ($b \equiv 0$)

- Return to coupled case \leadsto estimate $\partial_{\chi} Y_{0}^{\xi}$

$$
\partial_{\chi} Y_{0}^{\xi}=\partial_{x} U(0, \xi, \mathcal{L}(\xi)) \cdot \chi+\underbrace{\tilde{\mathbb{E}}\left[\partial_{\mu} U(0, \xi, \mathcal{L}(\xi))(\tilde{\xi}) \cdot \tilde{\chi}\right]}_{\tilde{\Omega}=\text { copy space }}
$$

- Lip_{μ} estimate on $U \Leftrightarrow$ bound of $\mathbb{E}\left[\left|\partial_{\mu} U(0, \xi, \mathcal{L}(\xi))(\xi)\right|^{2}\right]^{1 / 2}$

Application to the coupled case ($b \equiv 0$)

- Return to coupled case \leadsto estimate $\partial_{\chi} Y_{0}^{\xi}$

$$
\partial_{\chi} Y_{0}^{\xi}=\partial_{x} U(0, \xi, \mathcal{L}(\xi)) \cdot \chi+\underbrace{\tilde{E}\left[\partial_{\mu} U(0, \xi, \mathcal{L}(\xi))(\tilde{\xi}) \cdot \tilde{\chi}\right]}_{\tilde{\Omega}=\text { copy space }}
$$

- Lip_{μ} estimate on $U \Leftrightarrow$ bound of $\mathbb{E}\left[\left|\partial_{\mu} U(0, \xi, \mathcal{L}(\xi))(\xi)\right|^{2}\right]^{1 / 2}$
- Estimate $\left(\partial_{\chi} X_{t}\right)_{t}$ first \leadsto dynamics of $\left(X_{t}\right)_{t}$ and $\left(\partial_{\chi} X_{t}\right)_{t}$

$$
\begin{aligned}
& d X_{t}=-\partial_{x} U\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right) d t+d W_{t} \\
& d \partial_{\chi} X_{t}=-(\partial_{x x}^{2} U\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right) \partial_{\chi} X_{t} \\
&\left.+\tilde{\mathbb{E}}\left[\partial_{\mu}\left(\partial_{x} U\right)\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right)\left(\tilde{X}_{t}\right) \partial_{\chi} \tilde{X}_{t}\right]\right) d t
\end{aligned}
$$

- $\partial_{x x}^{2} U$ already estimated! (thanks to Laplace)

Application to the coupled case ($b \equiv 0$)

- Return to coupled case \leadsto estimate $\partial_{\chi} Y_{0}^{\xi}$

$$
\partial_{\chi} Y_{0}^{\xi}=\partial_{x} U(0, \xi, \mathcal{L}(\xi)) \cdot \chi+\underbrace{\tilde{\mathbb{E}}\left[\partial_{\mu} U(0, \xi, \mathcal{L}(\xi))(\tilde{\xi}) \cdot \tilde{\chi}\right]}_{\tilde{\Omega}=\text { copy space }}
$$

- Lip_{μ} estimate on $U \Leftrightarrow$ bound of $\mathbb{E}\left[\left|\partial_{\mu} U(0, \xi, \mathcal{L}(\xi))(\xi)\right|^{2}\right]^{1 / 2}$
- Estimate $\left(\partial_{\chi} X_{t}\right)_{t}$ first \leadsto dynamics of $\left(X_{t}\right)_{t}$ and $\left(\partial_{\chi} X_{t}\right)_{t}$

$$
\begin{aligned}
d \mathbb{E}\left[\left|\partial_{\chi} X_{t}\right|^{2}\right]= & -2 \mathbb{E}\left[\partial_{\chi} X_{t} \cdot\left(\partial_{x x}^{2} U\left(X_{t}, \mathcal{L}\left(X_{t}\right)\right) \partial_{\chi} X_{t}\right)\right] d t \\
& -2 \mathbb{E} \tilde{\mathbb{E}}\left[\partial_{\chi} X_{t} \cdot\left(\partial_{\mu}\left(\partial_{x} U\right)\left(X_{t}, \mathcal{L}\left(X_{t}\right)\right)\left(\tilde{X}_{t}\right) \widetilde{\partial_{\chi} X_{t}}\right)\right] d t
\end{aligned}
$$

- $\partial_{x x}^{2} U$ already estimated! (thanks to Laplace)

Application to the coupled case $(b \equiv 0)$

- Return to coupled case \sim estimate $\partial_{\chi} Y_{0}^{\xi}$

$$
\partial_{\chi} Y_{0}^{\xi}=\partial_{x} U(0, \xi, \mathcal{L}(\xi)) \cdot \chi+\underbrace{\tilde{\mathbb{E}}\left[\partial_{\mu} U(0, \xi, \mathcal{L}(\xi))(\tilde{\xi}) \cdot \tilde{\chi}\right]}_{\tilde{\Omega}=\text { copy space }}
$$

- Lip_{μ} estimate on $U \Leftrightarrow$ bound of $\mathbb{E}\left[\left|\partial_{\mu} U(0, \xi, \mathcal{L}(\xi))(\xi)\right|^{2}\right]^{1 / 2}$
- Estimate $\left(\partial_{\chi} X_{t}\right)_{t}$ first \leadsto dynamics of $\left(X_{t}\right)_{t}$ and $\left(\partial_{\chi} X_{t}\right)_{t}$

$$
\begin{aligned}
d \mathbb{E}\left[\left|\partial_{\chi} X_{t}\right|^{2}\right]= & -2 \mathbb{E}\left[\partial_{\chi} X_{t} \cdot\left(\partial_{x x}^{2} U\left(X_{t}, \mathcal{L}\left(X_{t}\right)\right) \partial_{\chi} X_{t}\right)\right] d t \\
& -2 \mathbb{E} \tilde{\mathbb{E}}\left[\partial_{\chi} X_{t} \cdot\left(\partial_{\mu}\left(\partial_{x} U\right)\left(X_{t}, \mathcal{L}\left(X_{t}\right)\right)\left(\tilde{X}_{t}\right) \widetilde{\partial_{\chi} X_{t}}\right)\right] d t
\end{aligned}
$$

- $\partial_{x x}^{2} U$ already estimated! (thanks to Laplace)
- Propagation of monotonicity
$\mathbb{E} \tilde{\mathbb{E}}\left[\partial_{\chi} X_{t} \cdot\left(\partial_{x}\left(\partial_{\mu} U\right)\left(t, X_{t}, \mathcal{L}\left(X_{t}\right)\right)\left(\tilde{X}_{t}\right) \widetilde{\partial_{\chi} X_{t}}\right)\right] \geq 0 \Rightarrow \mathrm{E}\left[\left|\partial_{\chi} X_{T}\right|^{2}\right] \leq C \mathbb{E}\left[|\chi|^{2}\right]$
- insert into the backward equation

Part IV. Solving MFG with a Common Noise

c. Weak solutions

Fixed point without uniqueness

- Solution by compactness argument (without monotonicity)
- use of Schauder's fixed point theorem
- Disentangle sources of noise \leadsto product probability space

$$
\Omega=\Omega^{0} \times \Omega^{1}, \quad \mathbb{F}=\mathbb{F}^{0} \otimes \mathbb{F}^{1}, \quad \mathbb{P}=\mathbb{P}^{0} \otimes \mathbb{P}^{1}
$$

$\circ\left(\Omega^{0}, \mathbb{F}^{0}, \mathbb{P}^{0}\right) \leadsto$ common noise $B ;\left(\Omega^{1}, \mathbb{F}^{1}, \mathbb{P}^{1}\right) \leadsto$ noise W

- Fixed point $\left(\mu_{t}\right)_{0 \leq t \leq T}$ as \mathbb{F}^{0} prog. meas. process

$$
\begin{aligned}
& \circ \mathbb{F}^{0}=\mathbb{F}^{B} \text { and } \mathbb{F}^{1}=\mathbb{F}^{W} \Rightarrow \text { optimal path under }\left(\mu_{t}\right)_{0 \leq t \leq T} \text { given by } \\
& d X_{t}=\left(b\left(X_{t}, \mu_{t}\right)-Z_{t}\right) d t+d W_{t}+\eta d B_{t} \\
& d Y_{t}=-\left(f\left(X_{t}, \mu_{t}\right)+\frac{1}{2}\left|Z_{t}\right|^{2}\right) d t+Z_{t} d W_{t}+\zeta_{t} d B_{t}, \quad Y_{T}=g\left(X_{T}, \mu_{T}\right)
\end{aligned}
$$

- Solve $\mu_{t}\left(\omega^{0}\right)=\mathcal{L}\left(X_{t}^{\text {optimal }} \mid \mathcal{F}_{T}^{0}\right)\left(\omega^{0}\right)$ for $t \in[0, T]$ and $\omega^{0} \in \Omega^{0}$
\leadsto fixed point in $\left(C\left([0, T], \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)\right)^{\Omega^{0}}$
\circ much too big space for tractable compactness \sim strategy is to discretize common noise

Discretization method [Carmona D Lacker]

- General principle \leadsto discretization of the fixed point
- choice of the conditioning $\leadsto \Omega^{0}$ canonical space for $\left(B_{t}\right)_{0 \leq t \leq T}$
$\leadsto \mathcal{L}\left(X_{t} \mid \mathcal{F}_{T}^{0}\right)=\mathcal{L}\left(X_{t} \mid\left(B_{s}\right)_{0 \leq s \leq T}\right)$
- $\mathcal{L}\left(X_{t} \mid\left(B_{s}\right)_{0 \leq s \leq T}\right) \leadsto \mathcal{L}\left(X_{t} \mid\right.$ process with finite support $)$

Discretization method [Carmona D Lacker]

- General principle \sim discretization of the fixed point
- choice of the conditioning $\leadsto \Omega^{0}$ canonical space for $\left(B_{t}\right)_{0 \leq t \leq T}$
$\sim \mathcal{L}\left(X_{t} \mid \mathcal{F}_{T}^{0}\right)=\mathcal{L}\left(X_{t} \mid\left(B_{s}\right)_{0 \leq s \leq T}\right)$
- $\mathcal{L}\left(X_{t} \mid\left(B_{s}\right)_{0 \leq s \leq T}\right) \sim \mathcal{L}\left(X_{t} \mid\right.$ process with finite support)
- Choice of the process with finite support
- Π projection on spatial grid $\left\{x_{1}, \ldots, x_{P}\right\} \subset \mathbb{R}^{d}$
$\circ t_{1}, \ldots, t_{N}$ time mesh $\subset[0, T]$
- $\hat{B}_{t_{i}}=\Pi\left(B_{t_{i}}\right)$
- Conditioning
- fixed point condition on $\mathcal{L}\left(X_{t} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{i}}\right)$ for $t \in\left[t_{i}, t_{i+1}\right]$
- input \leadsto sequence of processes on each $\left[t_{i}, t_{i+1}\right]$ with values in $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ and only depending on the realizations of $\left(\hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{i}}\right)$

$$
\text { fixed point in } \prod_{i=1}^{N} \mathcal{C}\left(\left[t_{i}, t_{i+1}\right] ; \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)^{i P}
$$

Solution under discrete conditioning

- Solve FBSDE

$$
\begin{aligned}
& d X_{t}=\left(b\left(X_{t}, \mathcal{L}\left(X_{t} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{i}}\right)\right)-Z_{t}\right) d t+d W_{t}+\eta d B_{t} \\
& d Y_{t}=-\left(f\left(X_{t}, \mathcal{L}\left(X_{t} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{i}}\right)\right)+\frac{1}{2}\left|Z_{t}\right|^{2}\right) d t+Z_{t} d W_{t}+\zeta_{t} d B_{t} \\
& Y_{T}=g\left(X_{T}, \mathcal{L}\left(X_{T} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{N}}\right)\right)
\end{aligned}
$$

- Strategy for the fixed point
- input $\mu=\left(\mu^{1}, \ldots, \mu^{N}\right)$ with

$$
\mu^{i} \in C\left(\left[t_{i}, t_{i+1}\right] ; \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)^{\left\{x_{1}, \ldots, x_{P}\right\}^{i}}
$$

$$
\circ \mu_{t}=\mu_{t}^{i}\left(\hat{B}_{t_{1}}, \cdots, \hat{B}_{t_{i}}\right)
$$

- output given by

$$
\left\{x_{1}, \cdots, x_{P}\right\}^{i} \ni\left(a_{1}, \ldots, a_{i}\right) \mapsto \mathcal{L}\left(X_{t} \mid \hat{B}_{t_{1}}=a_{1}, \ldots, \hat{B}_{t_{i}}=a_{i}\right)
$$

- Stability for FBSDEs \leadsto continuity w.r.t input + compactness for laws \Rightarrow Schauder

Passing to the limit

- Convergent subsequence as $N, P \rightarrow \infty$?
- use Pontryagin's principle to describe optimal paths

$$
\begin{aligned}
& d X_{t}=b\left(X_{t}, \mathcal{L}\left(X_{t} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{i}}\right)\right) d t-Z_{t} d t+d W_{t}+\eta d B_{t} \\
& d Z_{t}=-\partial_{x} H\left(X_{t}, \mathcal{L}\left(X_{t} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{i}}\right), Z_{t}\right) d t+d M_{t} \\
& Z_{T}=\partial_{x} g\left(X_{T}, \mathcal{L}\left(X_{T} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{N}}\right)\right)
\end{aligned}
$$

$\leadsto\left(M_{t}\right)_{t}$ martingale, $\quad \mu_{t}=\mathcal{L}\left(X_{t} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{i}}\right)$

Passing to the limit

- Convergent subsequence as $N, P \rightarrow \infty$?
- use Pontryagin's principle to describe optimal paths

$$
\begin{aligned}
& d X_{t}=b\left(X_{t}, \mathcal{L}\left(X_{t} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{i}}\right)\right) d t-Z_{t} d t+d W_{t}+\eta d B_{t} \\
& d Z_{t}=-\partial_{x} H\left(X_{t}, \mathcal{L}\left(X_{t} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{i}}\right), Z_{t}\right) d t+d M_{t} \\
& Z_{T}=\partial_{x} g\left(X_{T}, \mathcal{L}\left(X_{T} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{N}}\right)\right)
\end{aligned}
$$

$\leadsto\left(M_{t}\right)_{t}$ martingale, $\quad \mu_{t}=\mathcal{L}\left(X_{t} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{i}}\right)$

- Tightness of the laws of $\left(X_{t}^{N, P}, \mu_{t}^{N, P}, Z_{t}^{N, P}, M^{N, P}, B_{t}, W_{t}\right)_{0 \leq t \leq T}$ - tightness of $\left(X_{t}^{N, P}\right)_{0 \leq t \leq T}$ in $C\left([0, T] ; \mathbb{R}^{d}\right)$ by Kolmogorov - tightness of $\left(\mu_{t}^{N, P}\right)_{0 \leq t \leq T}$ in $C\left([0, T] ; \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$ since

$$
\int_{d}|x|^{q} d \mu_{t}^{N, P}(x)=\mathbb{E}\left[\left|X_{t}^{N, P}\right|^{q} \mid \mathscr{F}_{T}^{0}\right], \quad W_{2}\left(\mu_{t}^{N, P}, \mu_{s}^{N, P}\right)^{2} \leq \mathbb{E}\left[\left|X_{t}^{N, P}-X_{s}^{N, P}\right|^{2} \mid \mathscr{F}_{T}^{0}\right]
$$

- tightness $\left(Z_{t}^{N, P}, M_{t}^{N, P}\right)_{0 \leq t \leq T}$ in $\mathcal{D}\left([0, T] ; \mathbb{R}^{d}\right)$ with Meyer-Zheng
$\leadsto\left(z_{t}^{n}\right)_{0 \leq t \leq T} \rightarrow\left(z_{t}\right)_{0 \leq t \leq T}$ in $d t$-measure [Pardoux] for use in BSDE

Passing to the limit

- Convergent subsequence as $N, P \rightarrow \infty$?
- use Pontryagin's principle to describe optimal paths

$$
\begin{aligned}
& d X_{t}=b\left(X_{t}, \mathcal{L}\left(X_{t} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{i}}\right)\right) d t-Z_{t} d t+d W_{t}+\eta d B_{t} \\
& d Z_{t}=-\partial_{x} H\left(X_{t}, \mathcal{L}\left(X_{t} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{i}}\right), Z_{t}\right) d t+d M_{t} \\
& Z_{T}=\partial_{x} g\left(X_{T}, \mathcal{L}\left(X_{T} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{N}}\right)\right)
\end{aligned}
$$

$\leadsto\left(M_{t}\right)_{t}$ martingale, $\quad \mu_{t}=\mathcal{L}\left(X_{t} \mid \hat{B}_{t_{1}}, \ldots, \hat{B}_{t_{i}}\right)$

- Tightness of the laws of $\left(X_{t}^{N, P}, \mu_{t}^{N, P}, Z_{t}^{N, P}, M^{N, P}, B_{t}, W_{t}\right)_{0 \leq t \leq T}$
- Limit process $\left(X_{t}^{\infty}, \mu_{t}^{\infty}, Z_{t}^{\infty}, M_{t}^{\infty}, B_{t}^{\infty}, W_{t}^{\infty}\right)_{0 \leq t \leq T}$
- identify $\leadsto \mu_{t}^{\infty}$ as conditional law of X_{t}^{∞} given information?
\leadsto pass to the limit in $\mu_{t}^{N, P}=\mathcal{L}\left(X_{t}^{N, P} \mid \hat{B}_{t_{1}}^{N, P}, \ldots, \hat{B}_{t_{i}}^{N, P}\right)$
- solve optimization problem in environment $\left(\mu_{t}^{\infty}\right)_{0 \leq t \leq T}$?
\leadsto main difficulty \leadsto loss of measurability of μ_{t}^{∞} w.r.t
$\left(B_{s}^{\infty}\right)_{0 \leq s \leq t} \Rightarrow$ weak solution only!

Strong vs. weak solutions

- Limiting FBSDE formulation

$$
\begin{aligned}
& d X_{t}^{\infty}=\left(b\left(X_{t}^{\infty}, \mu_{t}^{\infty}\right)-Z_{t}^{\infty}\right) d t+d W_{t}^{\infty}+\eta d B_{t}^{\infty} \\
& d Z_{t}^{\infty}=-\partial_{x} H\left(X_{t}^{\infty}, \mu_{t}^{\infty}, Z_{t}^{\infty}\right) d t+d M_{t}^{\infty}, \quad Z_{T}^{\infty}=\partial_{x} g\left(X_{T}^{\infty}, \mu_{T}^{\infty}\right)
\end{aligned}
$$

$\leadsto \leadsto$ necessary condition for optimality only, but not a limitation \leadsto may pass to the limit in the optimality condition

$$
\circ \operatorname{cost} J\left(-Z^{\infty}\right)=\mathbb{E}\left[g\left(X_{T}^{\infty}, \mu_{T}^{\infty}\right)+\int_{0}^{T}\left(f\left(X_{t}^{\infty}, \mu_{t}^{\infty}\right)+\frac{1}{2}\left|Z_{t}^{\infty}\right|^{2}\right) d t\right]
$$

Strong vs. weak solutions

- Limiting FBSDE formulation

$$
\begin{aligned}
& d X_{t}^{\infty}=\left(b\left(X_{t}^{\infty}, \mu_{t}^{\infty}\right)-Z_{t}^{\infty}\right) d t+d W_{t}^{\infty}+\eta d B_{t}^{\infty} \\
& d Z_{t}^{\infty}=-\partial_{x} H\left(X_{t}^{\infty}, \mu_{t}^{\infty}, Z_{t}^{\infty}\right) d t+d M_{t}^{\infty}, \quad Z_{T}^{\infty}=\partial_{x} g\left(X_{T}^{\infty}, \mu_{T}^{\infty}\right)
\end{aligned}
$$

$\leadsto \rightarrow$ necessary condition for optimality only, but not a limitation
\leadsto may pass to the limit in the optimality condition

- Main question: What is the common information?
- whole information $\leadsto \mathbb{F}^{\infty}$ generated by $\left(X^{\infty}, \mu^{\infty}, B^{\infty}, W^{\infty}\right)$
- common environment \leadsto expect $\left(\mu^{\infty}, B^{\infty}\right)$? should satisfy
\leadsto fixed point $\mu_{t}^{\infty}=\mathcal{L}\left(X_{t}^{\infty} \mid \mu^{\infty}, B^{\infty}\right)$ (true)
$\leadsto\left(\mu^{\infty}, B^{\infty}\right) X_{0}^{\infty}$ and $W^{\infty} \Perp$ (true) $\left(X_{0}^{\infty}, W^{\infty}\right) \leadsto$ proper noise
\leadsto fair extra observation $\leadsto \sigma\left(X_{0}^{\infty}, \mu_{s}^{\infty}, B_{s}^{\infty}, W_{s}^{\infty}, s \leq T\right)$ and \mathcal{F}_{t}^{∞} conditional \Perp on $\sigma\left(X_{0}^{\infty}, \mu_{s}^{\infty}, B_{s}^{\infty}, W_{s}^{\infty}, s \leq t\right)(? ? ?)$
\leadsto observation of private state has no bias on future of the environment (???)

Strong vs. weak solutions

- Limiting FBSDE formulation

$$
\begin{aligned}
& d X_{t}^{\infty}=\left(b\left(X_{t}^{\infty}, \mu_{t}^{\infty}\right)-Z_{t}^{\infty}\right) d t+d W_{t}^{\infty}+\eta d B_{t}^{\infty} \\
& d Z_{t}^{\infty}=-\partial_{x} H\left(X_{t}^{\infty}, \mu_{t}^{\infty}, Z_{t}^{\infty}\right) d t+d M_{t}^{\infty}, \quad Z_{T}^{\infty}=\partial_{x} g\left(X_{T}^{\infty}, \mu_{T}^{\infty}\right)
\end{aligned}
$$

\leadsto necessary condition for optimality only, but not a limitation
\leadsto may pass to the limit in the optimality condition

- Main question: What is the common information?
- whole information $\sim \mathbb{F}^{\infty}$ generated by $\left(X^{\infty}, \mu^{\infty}, B^{\infty}, W^{\infty}\right)$
- common environment \leadsto expect $\left(\mu^{\infty}, B^{\infty}\right)$? should satisfy
\leadsto fixed point $\mu_{t}^{\infty}=\mathcal{L}\left(X_{t}^{\infty} \mid \mu^{\infty}, B^{\infty}\right)$ (true)
$\leadsto\left(\mu^{\infty}, B^{\infty}\right) X_{0}^{\infty}$ and $W^{\infty} \Perp$ (true) $\left(X_{0}^{\infty}, W^{\infty}\right) \leadsto$ proper noise
\leadsto fair extra observation $\leadsto \sigma\left(X_{0}^{\infty}, \mu_{s}^{\infty}, B_{s}^{\infty}, W_{s}^{\infty}, s \leq T\right)$ and \mathcal{F}_{t}^{∞} conditional \Perp on $\sigma\left(X_{0}^{\infty}, \mu_{s}^{\infty}, B_{s}^{\infty}, W_{s}^{\infty}, s \leq t\right)(? ? ?)$
\leadsto notion of compatibility [Jacod, Mémin, Kurtz] and [Buckdahn (al.)] for BSDEs

Strong vs. weak solutions

- Limiting FBSDE formulation
$\leadsto \leadsto$ necessary condition for optimality only, but not a limitation \leadsto may pass to the limit in the optimality condition
- Main question: What is the common information?
- whole information $\leadsto \mathbb{F}^{\infty}$ generated by $\left(X^{\infty}, \mu^{\infty}, B^{\infty}, W^{\infty}\right)$
- common environment \leadsto expect $\left(\mu^{\infty}, B^{\infty}\right)$? should satisfy
\leadsto fixed point $\mu_{t}^{\infty}=\mathcal{L}\left(X_{t}^{\infty} \mid \mu^{\infty}, B^{\infty}\right)$ (true)
$\leadsto\left(\mu^{\infty}, B^{\infty}\right) X_{0}^{\infty}$ and $W^{\infty} \Perp$ (true) $\left(X_{0}^{\infty}, W^{\infty}\right) \leadsto$ proper noise
\leadsto fair extra observation $\leadsto \sigma\left(X_{0}^{\infty}, \mu_{s}^{\infty}, B_{s}^{\infty}, W_{s}^{\infty}, s \leq T\right)$ and
\mathcal{F}_{t}^{∞} conditional \Perp on $\sigma\left(X_{0}^{\infty}, \mu_{s}^{\infty}, B_{s}^{\infty}, W_{s}^{\infty}, s \leq t\right)(? ? ?)$
$\leadsto \rightarrow$ notion of compatibility [Jacod, Mémin, Kurtz] and
[Buckdahn (al.)] for BSDEs
\leadsto difficult to pass to the limit on compatibility \Rightarrow need to
enlarge environment

Strong vs. weak solutions

- Limiting FBSDE formulation
\leadsto necessary condition for optimality only, but not a limitation \sim may pass to the limit in the optimality condition
- Main question: What is the common information?
- whole information $\leadsto \mathbb{F}^{\infty}$ generated by $\left(X^{\infty}, \mu^{\infty}, B^{\infty}, W^{\infty}\right)$
- common environment \leadsto replace by $\left(\mathcal{M}^{\infty}, B^{\infty}\right)$

$$
\begin{aligned}
& \leadsto \mathcal{M}_{t}^{\infty} \text { limit in law of } \mathcal{L}\left(X_{\cdot \wedge t}^{N, P}, W_{\cdot \wedge t}^{N, P} \mid B^{\infty}\right) \\
& \rightsquigarrow \text { fixed point } \mathcal{M}_{t}^{\infty}=\mathcal{L}\left(X_{\cdot \wedge t}^{\infty}, W_{\cdot \wedge t}^{\infty} \mid \mathcal{M}^{\infty}, B^{\infty}\right) \\
& \rightsquigarrow \text { fixed point } \Rightarrow \text { compatibility }
\end{aligned}
$$

- Yamada-Watanabe: strong! for compatible solutions \Rightarrow weak solutions are strong
- strong solutions \leadsto environment is adapted to B^{∞}
- example if monotonicity \Rightarrow close the loop!

Part V. Master Equation

a. Derivation of equation

Setting

- Assume \exists ! for value function MKV FBSDE $(\sigma=1)$

$$
\begin{aligned}
& d X_{s}=\left(b\left(X_{s}, \mathcal{L}\left(X_{s} \mid B\right)\right)-Z_{s}\right) d s+d W_{s}+\eta d B_{s} \\
& d Y_{s}=-f\left(X_{s}, \mathcal{L}\left(X_{s} \mid B\right), Z_{s}\right) d s+Z_{s} d W_{s}+\zeta_{s} d B_{s}, \quad Y_{T}=g\left(X_{T}, \mathcal{L}\left(X_{T} \mid B\right)\right) \\
& \quad \circ Y_{t}=U\left(t, X_{t}, \mu\right)=U\left(t, X_{t}, \mathcal{L}\left(X_{t} \mid B\right)\right)
\end{aligned}
$$

- Goal: Expand the right-hand side to identify PDE for U !!!

Setting

- Assume \exists ! for value function MKV FBSDE $(\sigma=1)$

$$
\begin{aligned}
& d X_{s}=\left(b\left(X_{s}, \mathcal{L}\left(X_{s} \mid B\right)\right)-Z_{s}\right) d s+d W_{s}+\eta d B_{s} \\
& d Y_{s}=-f\left(X_{s}, \mathcal{L}\left(X_{s} \mid B\right), Z_{s}\right) d s+Z_{s} d W_{s}+\zeta_{s} d B_{s}, \quad Y_{T}=g\left(X_{T}, \mathcal{L}\left(X_{T} \mid B\right)\right)
\end{aligned}
$$

$$
\circ Y_{t}=U\left(t, X_{t}, \mu\right)=U\left(t, X_{t}, \mathcal{L}\left(X_{t} \mid B\right)\right)
$$

- Goal: Expand the right-hand side to identify PDE for U !!!
- Need for second-order derivatives
- $\partial_{t} U(t, x, \mu)$ and $\partial_{x}^{2} U(t, x, \mu)$ bounded and Lipschitz in (x, μ)
- $\partial_{\mu} U(t, x, \mu)(v)$ is differentiable in x, v and μ
- $\partial_{x} \partial_{\mu} U(t, x, \mu)(v), \partial_{\nu} \partial_{\mu} U(x, \mu)(v)$ bounded and Lipschitz
- $\partial_{\mu}^{2} U(t, x, \mu)\left(v, v^{\prime}\right)$ is bounded and Lipschitz

Setting

- Assume \exists ! for value function MKV FBSDE $(\sigma=1)$

$$
\begin{aligned}
& d X_{s}=\left(b\left(X_{s}, \mathcal{L}\left(X_{s} \mid B\right)\right)-Z_{s}\right) d s+d W_{s}+\eta d B_{s} \\
& d Y_{s}=-f\left(X_{s}, \mathcal{L}\left(X_{s} \mid B\right), Z_{s}\right) d s+Z_{s} d W_{s}+\zeta_{s} d B_{s}, \quad Y_{T}=g\left(X_{T}, \mathcal{L}\left(X_{T} \mid B\right)\right)
\end{aligned}
$$

$$
\circ Y_{t}=U\left(t, X_{t}, \mu\right)=U\left(t, X_{t}, \mathcal{L}\left(X_{t} \mid B\right)\right)
$$

- Goal: Expand the right-hand side to identify PDE for U !!!
- Need for second-order derivatives
- $\partial_{t} U(t, x, \mu)$ and $\partial_{x}^{2} U(t, x, \mu)$ bounded and Lipschitz in (x, μ)
- $\partial_{\mu} U(t, x, \mu)(v)$ is differentiable in x, v and μ
- $\partial_{x} \partial_{\mu} U(t, x, \mu)(v), \partial_{v} \partial_{\mu} U(x, \mu)(v)$ bounded and Lipschitz
- $\partial_{\mu}^{2} U(t, x, \mu)\left(v, v^{\prime}\right)$ is bounded and Lipschitz
- Theorem: [Gangbo Swiech, C D D, C D L L] If monotonicity and smooth coefficients, then U is smooth

Itô's formula on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$

- Process $d X_{t}=b_{t} d t+d W_{t}+d B_{t} \mathbb{E} \int_{0}^{T}\left|b_{t}\right|^{2} d t<\infty$
- disentangle sources of noise \leadsto use product probability space

$$
\begin{aligned}
& \quad \Omega=\Omega^{B} \times \Omega^{W}, \quad \mathbb{F}=\mathbb{F}^{B} \otimes \mathbb{F}^{W}, \quad \mathbb{P}=\mathbb{P}^{B} \otimes \mathbb{P}^{W} \\
& \circ\left(\Omega^{B}, \mathbb{F}^{B}, \mathbb{P}^{B}\right) \leadsto B, \quad\left(\Omega^{W}, \mathbb{F}^{W}, \mathbb{P}^{W}\right) \leadsto \mathrm{W}, \quad \mathcal{L}(\cdot \mid \sigma(B))=\mathcal{L}^{W}(\cdot) \\
& \circ \Omega=\Omega^{B} \times \Omega^{W}, \Omega^{B} \text { carries } B, \Omega^{W} \text { carries } W \\
& \circ \mu_{t}=\mathcal{L}\left(X_{t}\right) \text { : conditional law of } X_{t} \text { given } B
\end{aligned}
$$

$\underline{\text { Itô's formula on } \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)}$

- Process $d X_{t}=b_{t} d t+d W_{t}+d B_{t} \mathbb{E} \int_{0}^{T}\left|b_{t}\right|^{2} d t<\infty$
- disentangle sources of noise \leadsto use product probability space

$$
\begin{aligned}
& \quad \Omega=\Omega^{B} \times \Omega^{W}, \quad \mathbb{F}=\mathbb{F}^{B} \otimes \mathbb{F}^{W}, \quad \mathbb{P}=\mathbb{P}^{B} \otimes \mathbb{P}^{W} \\
& \circ\left(\Omega^{B}, \mathbb{F}^{B}, \mathbb{P}^{B}\right) \leadsto B, \quad\left(\Omega^{W}, \mathbb{F}^{W}, \mathbb{P}^{W}\right) \leadsto \mathrm{W}, \quad \mathcal{L}(\cdot \mid \sigma(B))=\mathcal{L}^{W}(\cdot) \\
& \circ \Omega=\Omega^{B} \times \Omega^{W}, \Omega^{B} \text { carries } B, \Omega^{W} \text { carries } W \\
& \circ \mu_{t}=\mathcal{L}\left(X_{t}\right) \text { : conditional law of } X_{t} \text { given } B
\end{aligned}
$$

- U Fréchet differentiable with $\mathbb{R}^{d} \ni v \mapsto \partial_{\mu} U(\mu, v)$ differentiable (v, μ)

Ito's formula on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$

- Process $d X_{t}=b_{t} d t+d W_{t}+d B_{t} \mathbb{E} \int_{0}^{T}\left|b_{t}\right|^{2} d t<\infty$
- disentangle sources of noise \leadsto use product probability space

$$
\Omega=\Omega^{B} \times \Omega^{W}, \quad \mathbb{F}=\mathbb{F}^{B} \otimes \mathbb{F}^{W}, \quad \mathbb{P}=\mathbb{P}^{B} \otimes \mathbb{P}^{W}
$$

$\circ\left(\Omega^{B}, \mathbb{F}^{B}, \mathbb{P}^{B}\right) \leadsto B, \quad\left(\Omega^{W}, \mathbb{F}^{W}, \mathbb{P}^{W}\right) \leadsto \mathrm{W}, \quad \mathcal{L}(\cdot \mid \sigma(B))=\mathcal{L}^{W}(\cdot)$

- $\Omega=\Omega^{B} \times \Omega^{W}, \Omega^{B}$ carries B, Ω^{W} carries W
- $\mu_{t}=\mathcal{L}\left(X_{t}\right)$: conditional law of X_{t} given B
- U Fréchet differentiable with $\mathbb{R}^{d} \ni v \mapsto \partial_{\mu} U(\mu, v)$ differentiable (v, μ)
- Itô's formula for $\left(U\left(\mu_{t}\right)\right)_{t \geq 0}$?

$$
\begin{aligned}
d U\left(\mu_{t}\right) & =\mathbb{E}^{W}\left[b_{t} \cdot \partial_{\mu} U\left(\mu_{t}\right)\left(X_{t}\right)\right]+\mathbb{E}^{W}\left[\operatorname{Trace}\left(\partial_{v} \partial_{\mu} U\left(\mu_{t}\right)\left(X_{t}\right)\right)\right] d t \\
& +\frac{1}{2} \mathbb{E}^{W} \tilde{\mathbb{E}}^{\tilde{W}}\left[\operatorname{Trace}\left(\partial_{\mu}^{2} U\left(\mu_{t}\right)\left(X_{t}, \tilde{X}_{t}\right)\right)\right] d t+\mathbb{E}^{W}\left[\partial_{\mu} U\left(\mu_{t}\right)\left(X_{t}\right)\right] \cdot d B_{t}
\end{aligned}
$$

- $\tilde{\mathbb{E}}^{\tilde{W}}$ conditional expectation on a copy space $\Omega^{B} \times \tilde{\Omega}^{W}$

Identification of the master equation

- Identification of the $d t$ terms in the expansion of the identify:

$$
Y_{t}=U\left(t, X_{t}, \mathcal{L}\left(X_{t} \mid B\right)\right)
$$

Identification of the master equation

- Identification of the $d t$ terms in the expansion of the identify:

$$
Y_{t}=U\left(t, X_{t}, \mathcal{L}\left(X_{t} \mid B\right)\right)
$$

- Get the form of the full-fledged master equation

$$
\begin{aligned}
& \partial_{t} U(t, x, \mu)-\int_{\mathbb{R}^{d}} \partial_{x} U(t, v, \mu) \cdot \partial_{\mu} U(t, x, \mu)(v) d \mu(v) \\
& \quad+f(x, \mu)-\frac{1}{2}\left|\partial_{x} U(t, x, \mu)\right|^{2}+\frac{1+\eta^{2}}{2} \operatorname{Trace}\left(\partial_{x}^{2} U(t, x, \mu)\right) \\
& \quad+\frac{1+\eta^{2}}{2} \int_{\mathbb{R}^{d}} \operatorname{Trace}\left(\partial_{v} \partial_{\mu} U(t, x, \mu, v)\right) d \mu(v) \\
& \quad+\eta^{2} \int_{\mathbb{R}^{d}} \operatorname{Trace}\left(\partial_{x} \partial_{\mu} U(t, x, \mu, v)\right) d \mu(v) \\
& \quad+\frac{\eta^{2}}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \operatorname{Trace}\left(\partial_{\mu}^{2} U\left(t, x, \mu, v, v^{\prime}\right)\right) d \mu(v) d \mu\left(v^{\prime}\right)=0
\end{aligned}
$$

- Not a HJB! (MFG $=$ optimization)

Part V. Master Equation

b. Application

Revisiting the N-player game

- Controlled dynamics

$$
\left.d X_{t}^{i}=\left(b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right)+\alpha_{t}^{i}\right)\right) d t+d W_{t}^{i}+\eta d B_{t}
$$

- Cost functionals to player i

$$
J^{i}\left(\alpha^{1}, \ldots, \alpha^{N}\right)=\mathbb{E}\left[g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)+\int_{0}^{T}\left(f\left(X_{s}^{i}, \bar{\mu}_{s}^{N}\right)+\frac{1}{2}\left|\alpha_{s}^{i}\right|^{2}\right) d s\right]
$$

- Rigorous connection between N-player game and MFG?

Revisiting the N-player game

- Controlled dynamics

$$
\left.d X_{t}^{i}=\left(b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right)+\alpha_{t}^{i}\right)\right) d t+d W_{t}^{i}+\eta d B_{t}
$$

- Cost functionals to player i

$$
J^{i}\left(\alpha^{1}, \ldots, \alpha^{N}\right)=\mathbb{E}\left[g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)+\int_{0}^{T}\left(f\left(X_{s}^{i}, \bar{\mu}_{s}^{N}\right)+\frac{1}{2}\left|\alpha_{s}^{i}\right|^{2}\right) d s\right]
$$

- Rigorous connection between N-player game and MFG?
- Prove the convergence of the Nash equilibria as N tends to ∞
- difficulty \leadsto no uniform smoothness on the optimal feedback function $\alpha^{\star, N}$ w.r.t to N

$$
\underbrace{\alpha_{t}^{\star, i, N}}_{\text {optimal control to player } i}=\alpha^{\star, N}(X_{t}^{i} ; \underbrace{X^{1}, \ldots, X^{i-1}, X^{i+1}, \ldots, X^{N}}_{\text {states of the others }})
$$ \leadsto no compactness on the feedback functions

- weak compactness arguments on the control (notion of relaxed controls) for equilibria over open loop controls [Lacker, Fischer]

Revisiting the N-player game

- Controlled dynamics

$$
\left.d X_{t}^{i}=\left(b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right)+\alpha_{t}^{i}\right)\right) d t+d W_{t}^{i}+\eta d B_{t}
$$

- Cost functionals to player i

$$
J^{i}\left(\alpha^{1}, \ldots, \alpha^{N}\right)=\mathbb{E}\left[g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)+\int_{0}^{T}\left(f\left(X_{s}^{i}, \bar{\mu}_{s}^{N}\right)+\frac{1}{2}\left|\alpha_{s}^{i}\right|^{2}\right) d s\right]
$$

- Rigorous connection between N-player game and MFG?
- Prove the convergence of the Nash equilibria as N tends to ∞
\circ difficulty \leadsto no uniform smoothness on the optimal feedback function $\alpha^{\star, N}$ w.r.t to N

$$
\underbrace{\alpha_{t}^{\star i, N}}_{\text {control to player } i}=\alpha^{\star, N}(X_{i}^{i} ; \underbrace{X^{1}, \ldots, X^{i-1}, X^{i+1}, \ldots, X^{N}}_{\text {states of the others }})
$$

\sim no compactness on the feedback functions

- use the master equation [C D L L]: expand $\left(U\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right)\right)_{0 \leq t \leq T}$ and prove \approx equilibrium cost to player i

Revisiting the N-player game

- Controlled dynamics

$$
\left.d X_{t}^{i}=\left(b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right)+\alpha_{t}^{i}\right)\right) d t+d W_{t}^{i}+\eta d B_{t}
$$

- Cost functionals to player i

$$
J^{i}\left(\alpha^{1}, \ldots, \alpha^{N}\right)=\mathbb{E}\left[g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)+\int_{0}^{T}\left(f\left(X_{s}^{i}, \bar{\mu}_{s}^{N}\right)+\frac{1}{2}\left|\alpha_{s}^{i}\right|^{2}\right) d s\right]
$$

- Rigorous connection between N-player game and MFG?
- Construct approximate Nash equilibria (easier)
- limit setting \leadsto optimal control has the form

$$
\alpha_{t}^{\star}=-\partial_{x} U(t, X_{t}, \underbrace{\mathcal{L}\left(X_{t} \mid B\right)}_{\text {population at equilibrium }})
$$

- in N-player game, use $\alpha_{t}^{N, i}=-\partial_{x} U\left(t, X_{t}^{i}, \bar{\mu}_{t}^{N}\right)$
- almost Nash $\leadsto \rightarrow \operatorname{cost}$ decreases at most of ε_{N} under unilateral deviation where $\varepsilon_{N} \rightarrow 0$

René Carmona - François Delarue

Probabilistic Theory of Mean Field Games with Applications I

Mean Field FBSDEs, Control, and Games

Springer

René Carmona • François Delarue

Probabilistic Theory of Mean Field Games with Applications II

Mean Field Games with Common Noise and Master Equations

Springer

