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Part I. Motivation

a. General philosophy



Basic purpose
• Interacting particles / players

◦ controlled players in mean-field interaction

◦ particles have dynamical states! stochastic diff. equation

◦ mean-field!
symmetric interaction with whole population
no privileged interaction with some particles

• Associate cost functional with each player

◦ find equilibria w.r.t. cost functionals

◦ shape of the equilibria for a large population?

• Different notions of equilibria

◦ players decide on their own find a consensus inside the
population⇒ notion of Nash equilibrium

◦ players obey a common center of decision minimize the
global cost to the collectivity

• Both cases{ asymptotic equilibria as the number of players ↑ ∞?
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Asymptotic formulation
• Paradigm

◦ mean-field / symmetry! propagation of chaos / LLN

◦ reduce the asymptotic analysis to one typical player with
interaction with a theoretical distribution of the population?

◦ decrease the complexity to solve asymptotic formulation first

• Program

◦ Existence of asymptotic equilibria ? Uniqueness? Shape?

◦ Use asymptotic equilibria as quasi-equilibria in finite-game

◦ Prove convergence of equilibria in finite-player-systems

• Asymptotic formulation of Nash equilibria Mean-field games!
[Lasry-Lions (06), Huang-Caines-Malhamé (06), Cardaliaguet,
Achdou, Gangbo, Gomes, Porreta (PDE), Bensoussan, Carmona, D.,
Kolokoltsov, Lacker, Yam (Probability)]

• Common center of decision optimal control of McKean-Vlasov
SDEs
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Part I. Motivation

b. Equilibria within a finite system



General formulation
• Controlled system of N interacting particles with mean-field
interaction through the global state of the population

◦ dynamics of particle number i ∈ {1, . . . ,N}

dXi
t︸︷︷︸

∈ Rd

= b
(
Xi

t , global state of the collectivity, αi
t
)
dt

+ σ
(
Xi

t , global state
)

dW i
t︸︷︷︸

idiosyncratic noises

+ σ0(Xi
t , global state

)
dBt︸︷︷︸

common/systemic noise

• Rough description of the probabilistic set-up

◦ (Bt,W1, . . . ,WN)0≤t≤T independent B.M. with values in Rd

◦ (αi
t)0≤t≤T progressively-measurable processes with values in A

(closed convex ⊂ Rk)

◦ i.i.d. initial conditions ⊥⊥ noises
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Empirical measure
• Code the state of the population at time t through µ̄N

t = 1
N

∑N
i=1 δXi

t

 probability measure on Rd

◦ P2(Rd){ set of probabilities on Rd with finite 2nd moments

• Express the coefficients as
b : Rd × P2(Rd) × A→ Rd,

σ, σ0 : Rd × P2(Rd)→ Rd×d,

◦ examples: b(x, µ, α) = b
(
x,

∫
Rd ϕdµ, α

)
,

∫
Rd b(x, v, α)dµ(v)

◦ rewrite the dynamics of the particles

dXi
t = b

(
Xi

t , µ̄
N
t , α

i
t
)
dt + σ

(
Xi

t , µ̄
N
t
)
dW i

t + σ0(Xi
t , µ̄

N
t
)
dBt

• Cost functional to player i ∈ {1, . . . ,N}

Ji(α1,α2, . . . ,αN)
= E

[
g
(
Xi

T , µ̄
N
T
)

+

∫ T

0
f
(
Xi

t , µ̄
N
t , α

i
t
)
dt

]
◦ same (f , g) for all i but Ji depends on the others through µ̄N
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Nash equilibrium
• Each player is willing to minimize its own cost functional

◦ need for a consensus { Nash equilibrium

• Say that a N-tuple of strategies (α1,?, . . . ,αN,?) is a consensus if

◦ no interest for any player to leave the consensus

◦ change αi,? { αi ⇒ Ji ↗

Ji(α1,?, . . . ,αi,?, . . . ,αN,?) ≤ Ji(α1,?, . . . ,αi, . . .αN,?)
•Meaning of freezing α1,?, . . . ,αi−1,?,αi+1,?,αN,?

◦ freezing the processes{ Nash equilibrium in open loop

◦ αi
t = αi(t,X1

t , . . . ,X
N
t ){ each function αi is a Markov feedback

{ Nash over of Markov loop

◦ leads to different equilibria! but expect that there is no
difference in the asymptotic setting
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Part I. Motivation

c. Example



Exhaustible resources [Guéant Lasry Lions]

• N producers of oil{ Xi
t (estimated reserve) at time t

dXi
t = −αi

tdt + σXi
tdW i

t

◦ αi
t { instantaneous production rate

◦ σ common volatility for the perception of the reserve

◦ should be a constraint Xi
t ≥ 0

• Optimize the profit of a producer

Ji(α1, . . . ,αN) = E

∫ ∞

0
exp(−rt)

(
αi

tPt − c(αi
t)
)
dt

◦ Pt is selling price, c cost production

◦ mean-field constraint{ selling price is a function of the
mean-production

Pt = P
( 1
N

N∑
i=1

αi
t
)

◦ slightly different! interaction through the law of the control
{ extended MFG [Gomes al., Carmona D., Cardaliaguet Lehalle]
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Part II. From propagation of chaos to MFG



Part II. From propagation of chaos to MFG

a. McKean-Vlasov SDEs



General uncontrolled particle system
• Remove the control and the common noise!

dXi
t = b

(
Xi

t , µ̄
N
t
)
dt + σ

(
Xi

t , µ̄
N
t
)
dW i

t

◦ X1
0 , . . . ,X

i
N i.i.d. (and ⊥⊥ of noises), µ̄N

t =
1
N

N∑
i=1

δXi
t

• ∃! if the coefficients are Lipschitz in all the variables need a
suitable distance on space of measures

• Use the Wasserstein distance on P2(Rd)

µ, ν ∈ P2(Rd), W2(µ, ν) =

(
inf
π

∫
Rd×Rd

|x − y|2dπ(x, y)
)1/2

,

where π has µ and ν as marginals on Rd × Rd

◦ X and X′ two r.v.’s⇒ W2(L(X),L(X′)) ≤ E[|X − X′|2]1/2

• Example W2
( 1
N

N∑
i=1

δxi ,
1
N

N∑
i=1

δx′i

)
≤

( 1
N

N∑
i=1

|xi − x′i |
2
)1/2
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McKean-Vlasov SDE
• Expect some decorrelation / averaging in the system as N ↑ ∞

◦ replace the empirical measure by the theoretical law

dXt = b
(
Xt,L(Xt)

)
dt + σ

(
Xt,L(Xt)

)
dWt

• Cauchy-Lipschitz theory

◦ assume b and σ Lipschitz continuous on Rd × P2(Rd)⇒ unique
solution for any given initial condition in L2

◦ proof works as in the standard case taking advantage of

E
[∣∣∣(b, σ)

(
Xt,L(Xt)

)
− (b, σ)

(
X′t ,L(X′t )

)∣∣∣2] ≤ CE
[
|Xt − X′t |

2]

• Propagation of chaos

◦ each (Xi
t)0≤t≤T converges in law to the solution of MKV SDE

◦ particles get independent in the limit{ for k fixed:

(X1
t , . . . ,X

k
t )0≤t≤T −→

L
L(MKV)⊗k = L

(
(Xt)0≤t≤T

)⊗k as N ↗ ∞

◦ lim
N↗∞

sup
0≤t≤T

E
[(

W2(µ̄N
t ,L(Xt)

)2]
= 0
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Part II. From propagation of chaos to MFG

b. Formulation of the asymptotic problems



Ansatz
• Go back to the finite game

• Ansatz{ at equilibrium

αi,?
t = αN(

t,Xi
t , µ̄

N
t
)
≈ α

(
t,Xi

t , µ̄
N
t
)

◦ particle system at equilibrium

dXi
t ≈ b

(
Xi

t , µ̄
N
t , α(t,Xi

t , µ̄
N
t )

)
dt + σ

(
Xi

t , α(t,Xi
t , µ̄

N
t )

)
dW i

t

◦ particles should decorrelate as N ↗ ∞

◦ µ̄N
t should stabilize around some deterministic limit µt

•What about an intrinsic interpretation of µt ?

◦ should describe the global state of the population in equilibrium

◦ in the limit setting, any particle that leaves the equilibrium
should not modify µt { leaving the equilibrium means that the cost
increases{ any particle in the limit should solve an optimal control
problem in the environment (µt)0≤t≤T
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Matching problem of MFG
• Define the asymptotic equilibrium state of the population as the
solution of a fixed point problem

(1) fix a flow of probability measures (µt)0≤t≤T (with values in
P2(Rd))

(2) solve the stochastic optimal control problem in the environment
(µt)0≤t≤T

dXt = b(Xt, µt, αt)dt + σ(Xt, µt)dWt

◦ with X0 = ξ being fixed on some set-up (Ω,F,P) with a
d-dimensional B.M.

◦ with cost J(α) = E
[
g(XT , µT ) +

∫ T
0 f (Xt, µt, αt)dt

]
(3) let (X?,µ

t )0≤t≤T be the unique optimizer (under nice assumptions)
{ find (µt)0≤t≤T such that

µt = L
(
X?,µ

t
)
, t ∈ [0,T]

• Not a proof of convergence!
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Part II. From propagation of chaos to MFG

c. Forward-backward systems



PDE point of view: HJB
• PDE characterization of the optimal control problem when σ is
the identity

• Value function in environment (µt)0≤t≤T

u(t, x) = inf
α processes

E
[
g(XT , µT ) +

∫ T

t
f (Xs, µs, αs)ds|Xt = x

]

• U solution Backward HJB

(
∂tu +

∂2
xxu
2

)
(t, x) + inf

α scalar

[
b
(
x, µt, α

)
∂xu(t, x) + f

(
x, µt, α

)]︸                                            ︷︷                                            ︸
standard Hamiltonian in HJB

= 0

• H(x, µ, α, z) = b(x, µ, α) · z + f (x, µ, α)

◦ α?(x, µ, z) = argminα∈AH(x, µ, α, z){ α? = α?(x, µt, ∂xu(t, x))

• Terminal boundary condition: u(T , ·) = g(·, µT )

• Pay attention that u depends on (µt)t!
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Fokker-Planck
• Need for a PDE characterization of (L(X?,µ

t ))t

• Dynamics of X?,µ at equilibrium

dX?,µ
t = b

(
X?,µ

t , µt, α
?(X?,µ

t , µt, ∂xu(t,X?,µ
t ))

)
dt + dWt

• Law (X?,µ
t )0≤t≤T satisfies Fokker-Planck (FP) equation

∂tµt = −div
(
b(x, µt, α

?(x, µt, ∂xu(t, x))︸                          ︷︷                          ︸
b?(t, x)

µt
)

+
1
2
∂2

xxµt

•MFG equilibrium described by forward-backward in∞ dimension

Fokker-Planck (forward)
HJB (backward)

◦ ∞ dimensional analogue of

ẋt = b(xt, yt)dt, x0 = x0

ẏt = −f (xt, yt)dt, yT = g(xT )
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Optimal control and FBSDEs
• Environment (µt)0≤t≤T is fixed and cost functional of the type

J(α) = E
[
g(XT , µT ) +

∫ T

0
f (Xt, µt, αt)dt

]
◦ assume f and g continuous and at most of quadratic growth

• Interpret optimal paths as the forward component of an FBSDE 
On (Ω,F,P) with F generated by (ξ, (Wt)0≤t≤T )

Xt = X0 +

∫ t

0
b
(
Xs, µs,Ys,Zs

)
ds +

∫ t

0
σ(Xs, µs)dWs

Yt = G(XT , µT ) +

∫ T

t
F

(
Xs, µs,Ys,Zs

)
ds −

∫ T

t
ZsdWs

◦ σ invertible, H strict convex in α and coeff. bounded in x⇒
((G,F) = (g, f ))⇒ represent value function!

◦ H strict convex in (x, α)⇒ Pontryagin! ((G,F) = (∂xg, ∂xH)) (σ
indep. of x)⇒ represent gradient value function!

◦ choose (µt)0≤t≤T as the law of optimal path! ⇒ characterize by
FBSDE of McKean-Vlasov type
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MKV FBSDE for the value function
• Consider, on (Ω,F,P), the MKV FBSDE

Xt = ξ +

∫ t

0
b
(
Xs,L(Xs), α?

(
Xs,L(Xs),Zsσ

−1(Xs,L(Xs))
))

ds

+

∫ t

0
σ
(
Xs,L(Xs)

)
dWs

Yt = g
(
XT ,L(XT )

)
+

∫ T

t
f
(
Xs,L(Xs), α?

(
Xs,L(Xs),Zsσ

−1(Xs,L(Xs))
))

ds −
∫ T

t
ZsdWs

• Connection with PDE formulation

Ys = u(s,Xs), Zs = ∂xu(s,Xs)σ(Xs, µs)

• Unique minimizer for each (µt)0≤t≤T if

◦ b, f , g, σ, σ−1 bounded in (x, µ), Lipschitz in x

◦ b linear in α and f strictly convex and loc. Lip in α, with Lip(f )
at most of linear growth in α
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MKV FBSDE for the Pontryagin principle
• Consider, on (Ω,F,P), the MKV FBSDE

Xt = ξ +

∫ t

0
b
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Xs,L(Xs), α?

(
Xs,L(Xs),Ys
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ds +

∫ t
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σ(L(Xs))dWs

Yt = ∂xg(XT ,L(XT ))

+

∫ T

t
∂xH

(
Xs,L(Xs), α?

(
Xs,L(Xs),Ys

)
,Ys

)
ds −

∫ T

t
ZsdWs

• Connection with PDE formulation

Ys = ∂xu(s,Xs), Zs = ∂2
xu(s,Xs)σ(µs)

• Unique minimizer for each (µt)0≤t≤T if

◦ σ indep. of x and b(x, µ, α) = b0(µ) + b1x + b2α

◦ ∂xf , ∂αf , ∂xg L-Lipschitz in (x, α)

◦ g and f convex in (x, α) with f strict convex in α
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Seeking a solution
• Any way{ two-point-boundary-problem⇒

◦ Cauchy-Lipschitz theory in small time only

◦ if Lipschitz coefficients (including the direction of the measure)
{ existence and uniqueness in short time (see later on)

{ existence and uniqueness of MFG equilibria in small time

• What about arbitrary time?

◦ existence{ fixed point over the measure argument by means of
compactness arguments

Schauder’s theorem

◦ uniqueness{ require additional assumption

• Other question{ connection with social optimization?

◦ potential games{MFG solution is also a social optimizer (but
for other coefficients)
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Part III. Solving MFG

a. Schauder fixed point theorem without common
noise



Statement of the Schauder fixed point theorem
• Generalisation of Brouwer’s theorem from finite to infinite
dimension

• Let (V , ‖ · ‖) be a normed vector space

◦ ∅ , E ⊂ V with E closed and convex

◦ φ : E → E continuous such that φ(E) is relatively compact

◦ ⇒ existence of a fixed point to φ

• In MFG{ what is V , what is E, what is φ?

◦ recall that MFG equilibrium is a flow of measures (µt)0≤t≤T

E ⊂ C
(
[0,T],P2(Rd)

)
◦ need to embed into a linear structure

C
(
[0,T],P2(Rd)

)
⊂ C

(
[0,T],M1(Rd)

)
◦ M1(Rd) set of signed measures ν with

∫
Rd |x|d|ν|(x) < ∞
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Compactness on the space of probability measures

• EquipM1(Rd) with a norm ‖ · ‖ and restrict to P1(Rd) such that

◦ convergence of (νn)n≥1 in P1(Rd) implies weak convergence

∀h ∈ Cb(Rd,R), lim
n→∞

∫
Rd

hdνn =

∫
Rd

hdν

◦ if (νn)n≥1 has uniformly bounded moments of order p > 2

Unif. square integrability⇒ W2(νn, ν)→ 0

◦ says that the input in the coefficients varies continuously!

b(x, νn, y, z), σ(x, νn), F(x, νn, y, z), G(x, νn)

• Compactness if (νn)n≥1 has bounded moments of order p > 2

◦ (νn)n≥1 admits a weakly convergent subsequence

◦ then convergence for W2 by unif. integrability and for ‖ · ‖ also



Compactness on the space of probability measures

• EquipM1(Rd) with a norm ‖ · ‖ and restrict to P1(Rd) such that

◦ convergence of (νn)n≥1 in P1(Rd) implies weak convergence

∀h ∈ Cb(Rd,R), lim
n→∞

∫
Rd

hdνn =

∫
Rd

hdν

◦ if (νn)n≥1 has uniformly bounded moments of order p > 2

Unif. square integrability⇒ W2(νn, ν)→ 0

◦ says that the input in the coefficients varies continuously!

b(x, νn, y, z), σ(x, νn), F(x, νn, y, z), G(x, νn)

• Compactness if (νn)n≥1 has bounded moments of order p > 2

◦ (νn)n≥1 admits a weakly convergent subsequence

◦ then convergence for W2 by unif. integrability and for ‖ · ‖ also



Application to MKV FBSDE

• Choose E as continuous (µt)0≤t≤T from [0,T] to P2(Rd)

sup
0≤t≤T

∫
Rd
|x|4dµt(x) ≤ K for some K

• Construct φ{ fix (µt)0≤t≤T in E and solve

Xt = ξ +

∫ t

0
b
(
Xs, µs,Ys,Zs

)
+

∫ t

0
σ
(
Xs, µs

)
dWs

Yt = G
(
XT , µT

)
+

∫ T

t
F
(
Xs, µs,Ys,Zs

)
ds −

∫ T

t
ZsdWs

◦ let φ
(
µ = (µt)0≤t≤T

)
= (L(Xµt ))0≤t≤T

• Assume bounded coefficients and E[|ξ|4] < ∞

◦ choose K such that E[|Xµt |
4] ≤ K

⇒ E stable by φ

◦ W2(L(Xµt ),L(Xµs )) ≤ CE
[
|Xµt − Xµs |2

]1/2
≤ C|t − s|1/2
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Conclusion

• Consider continuous µ = (µt)0≤t≤T from [0,T] to P2(Rd)

◦ for any t{ (φ(µ))t in a compact subset of P2(Rd)

◦ [0,T] 3 t 7→ (φ(µ))t is uniformly continuous in µ

◦ by Arzelà-Ascoli⇒ output lives in a compact subset of
E ⊂ C([0,T],P2(Rd)) (and thus of C([0,T],M1(Rd))

• Continuity of φ on E{ stability of the solution of FBSDEs with
respect to a continuous perturbation of the environment

• Refinements to allow for unbounded coefficients

◦ for the Value-Function FBSDE { b linear in α, f strictly
convex in α, with derivatives in α at most of linear growth in α

◦ Pontryagin principle

{ b linear in (x, α) and f convex in (x, α) with derivatives at
most of linear growth with weak-mean reverting conditions

〈x, ∂xf (0, δx, 0)〉 ≥ −c
(
1 + |x|

)
and 〈x, ∂xg(0, δx)〉 ≥ −c

(
1 + |x|

)
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Linear-quadratic in d = 1
• Apply previous results with

◦ b(t, x, µ, α) = atx + a′tE(µ) + btαt

◦ g(x, µ) = 1
2
[
qx + q′E(µ)

]2! (mean-reverting) qq′ ≥ 0

◦ f (t, x, µ, α) = 1
2
[
α2 +

(
mtx + m′tE(µ)

)2]! (mean-rev.) mtm′t ≥ 0

• Compare with direct method { Pontryagin

dXt =
[
atXt + a′tE(Xt) − b2

t Yt
]
dt + σdWt

dYt = −
[
atYt + mt

(
mtXt + m′tE(Xt)

)]
dt + ZtdWt

YT = q
[
qXT + q′E(XT )

]
◦ take the mean

dE(Xt) =
[
(at + a′t)E(Xt) − b2

t E(Yt)
]
dt

dE(Yt) = −
[
atE(Yt) + mt(mt + m′t)E(Xt)

]
dt

E(YT ) = q(q + q′)E(XT )

• existence and uniqueness if q(q + q′) ≥ 0, mt(mt + m′t) ≥ 0
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◦ b(t, x, µ, α) = atx + a′tE(µ) + btαt

◦ g(x, µ) = 1
2
[
qx + q′E(µ)

]2! (mean-reverting) qq′ ≥ 0

◦ f (t, x, µ, α) = 1
2
[
α2 +

(
mtx + m′tE(µ)

)2]! (mean-rev.) mtm′t ≥ 0

• Compare with direct method { Pontryagin

dXt =
[
atXt + a′tE(Xt) − b2

t Yt
]
dt + σdWt

dYt = −
[
atYt + mt

(
mtXt + m′tE(Xt)

)]
dt + ZtdWt

YT = q
[
qXT + q′E(XT )

]
◦ take the mean

dE(Xt) =
[
(at + a′t)E(Xt) − b2

t E(Yt)
]
dt
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[
atE(Yt) + mt(mt + m′t)E(Xt)

]
dt

E(YT ) = q(q + q′)E(XT )
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Part III. Solving MFG

b. Uniqueness criterion



A counter-example to uniqueness
• Consider the MKV FBSDE

dXt = b
(
E(Yt)

)
dt + dWt, X0 = x0

dYt = −f
(
E(Xt)

)
dt + ZtdWt, YT = g

(
E(XT )

)
◦ take bounded and Lipschitz coefficients{ existence of a

solution

◦ uniqueness may not hold!

◦ completely different of the system with b(Yt), f (Xt) and g(XT )
for which uniqueness holds true!

• Proof { take the mean

dE(Xt) = b
(
E(Yt)

)
dt, E(X0) = x0

dE(Yt) = −f
(
E(Xt)

)
dt, E(YT ) = g

(
E(XT )

)
◦ led back to counter-example for FBSDE{ choose b, f and g

equal to the identity on a compact subset
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Lasry Lions monotonicity condition
• Recall following FBSDE result

◦ ∃! may hold for the Pontryagin system if convex g and H

◦ convexity! monotonicity of ∂xg and ∂xH

◦ what is monotonicity condition in the direction of the measure?

• Lasry Lions monotonicity condition

◦ b, σ do not depend on µ

◦ f (x, µ, α) = f0(x, µ) + f1(x, α) (µ and α are separated)

◦ monotonicity property for f0 and g w.r.t. µ∫
Rd

(
f0(x, µ) − f0(x, µ′)

)
d
(
µ − µ′

)
(x) ≥ 0∫

Rd

(
g(x, µ) − g(x, µ′)

)
d
(
µ − µ′

)
(x) ≥ 0

• Example : h(x, µ) =

∫
Rd

L
(
z, ρ ? µ(z)

)
ρ(x − z)dz where L is↗ in

second variable and ρ is even
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Monotonicity restores uniqueness
• Assume that for any input µ = (µt)0≤t≤T unique optimal control α?,µ

◦ + existence of an MFG for a given initial condition

• Lasry Lions⇒ uniqueness of MFG equilibrium!

◦ if two different equilibria µ and µ′{ α?,µ , α?,µ
′

Jµ
(
α?,µ

)︸   ︷︷   ︸
cost under µ

< Jµ
(
α?,µ

′)
and Jµ

′(
α?,µ

′)︸     ︷︷     ︸
cost under µ′

< Jµ
′(
α?,µ

)

so that
Jµ
′(
α?,µ

)
− Jµ

′(
α?,µ

′)
+ Jµ

(
α?,µ

′)
− Jµ

(
α?,µ

)
> 0

Jµ
′(
α?,µ

)
− Jµ

(
α?,µ

)
−

[
Jµ
′(
α?,µ

′)
− Jµ

(
α?,µ

′)]
> 0

E
[

g(X?,µ
T , µ′T ) − g(X?,µ

T , µT )︸                          ︷︷                          ︸∫
Rd

(
g(x, µ′T ) − g(x, µT )

)
dµT (x)

−
(
g(X?,µ′

T , µ′T ) − g(X?,µ′

T , µT )
)︸                              ︷︷                              ︸∫

Rd

(
g(x, µ′T ) − g(x, µT )

)
dµ′T (x)

+. . .
]
> 0

◦ same for f0 ⇒ LHS must be ≤ 0
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Part IV. Solving MFG with a Common Noise

a. Formulation



MFG with a common noise

•Mean field game with common noise B

◦ asymptotic formulation for a finite player game with

dXi
t = b

(
Xi

t , µ̄
N
t , α

i
t
)
dt + σ

(
Xi

t , µ̄
N
t
)
dW i

t + σ0(Xi
t , µ̄

N
t
)
dBt

◦ uncontrolled version{ asymptotic SDE with µ̄N
t replaced by

L(Xt|(Bs)0≤s≤T ) = L(Xt|(Bs)0≤s≤t)

◦ particles become independent conditional on B and converge to
the solution

dXt = b
(
Xt,L(X|B)

)
dt + σ

(
Xt,L(X|B)

)
dWt + σ0(Xt,L(X|B)

)
dBt

• Equilibrium as a fixed point { time [0,T], state in Rd

◦ candidate{ (µt)t∈[0,T] F
B prog-meas with values in space of

probability measures with a finite second moment P2(Rd)

◦ representative player with control α

dXt =
(
b(Xt, µt) + αt

)
dt + σdWt + ηdBt

 X0 ∼ µ0, σ, η ∈ {0, 1}, W and B Rd-valued ⊥⊥ B.M.
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dXi
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◦ cost functional J
(
α
)

= E
[
g
(
XT , µT

)
+

∫ T

0

(
f
(
Xt, µt

)
+ 1

2 |αt|
2
)
dt

]
◦ find (µt)t∈[0,T] such that µt = L(Xoptimal

t |(Bs)0≤s≤T )
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Forward-backward formulation

• Forward-backward formulation must account for (µt)0≤t≤T random

◦ systems of two forward-backward SPDEs [Carmona D,
Cardaliaguet D Lasry Lions]

 one backward stochastic HJB equation [Peng]

dtu(t, x) +
(
b(x, µt) · Dxu(t, x) +

σ2+η2

2 ∆xu(t, x)︸                                       ︷︷                                       ︸
Laplace generator

+ f (x, µt) − 1
2 |Dxu(t, x)|2︸                      ︷︷                      ︸

standard Hamiltonian in HJB

+ ηdiv[v(t, x)]︸        ︷︷        ︸
Ito Wentzell cross term

)
dt−ηv(t, x) · dBt︸        ︷︷        ︸

backward term

= 0

with boundary condition: u(T , ·) = g(·, µT )

 one forward stochastic Fokker-Planck equation

dtµt =
(
−div

(
µt[b(x, µt) − Dxu(t, x)]

)
dt +

σ2+η2

2 trace
(
∂2

xxµt
))

dt

− ηdiv
(
µtdBt

)
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Forward-backward formulation

• Forward-backward formulation must account for (µt)0≤t≤T random

◦ systems of two forward-backward SPDEs

◦ systems of two forward-backward McKV SDEs [Carmona D,
Buckdahn (al.), Lacker]

{ two ways: represent the value function or optimal control

• Representation of the value function σ = 1

dXt = b
(
Xt,L(Xt|B)

)
dt − Ztdt + dWt + ηdBt

dYt = −f
(
Xt,L(Xt|B)

)
dt − 1

2 |Zt|
2dt + ZtdWt + ζtdBt

YT = g
(
XT ,L(XT |B)

)
• Representation of the optimal control (Pontryagin)

dXt = b
(
Xt,L(Xt|B)

)
dt − Ytdt + σdWt + ηdBt

dYt = −dt + ZtdWt + ζtdBt

YT = ∂xg
(
XT ,L(XT |B)

)
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(
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H(x,µ,y)=b(x,µ)·y+f (x,µ,y)
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YT = ∂xg
(
XT ,L(XT |B)

)
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{ two ways: represent the value function or optimal control

• Representation of the value function σ = 1

dXt = b
(
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)
• Analysis of these equations?



Part IV. Solving MFG with a Common Noise

b. Strong solutions



Implementing Picard theorem
• Easiest way to construct solutions is to implement Picard theorem

◦ shall see next how to make use of Schauder’s theorem

• Forward-backward system of McKean-Vlasov type

dXt =
(
b
(
Xt,L(Xt|B)

)
− Zt

)
dt + dWt + ηdBt

dYt = −
(
f
(
Xt,L(Xt|B)

)
+ 1

2 |Zt|
2
)
dt + ZtdWt + ζtdBt

YT = g
(
XT ,L(XT |B)

)
◦ Zt should be ∂xu(t,Xt){ bounded and x-Lipschitz coefficients

⇒ L∞ bound

 replace quadratic term by general bounded f



Implementing Picard theorem
• Easiest way to construct solutions is to implement Picard theorem

◦ shall see next how to make use of Schauder’s theorem

• Forward-backward system of McKean-Vlasov type

dXt =
(
b
(
Xt,L(Xt|B)

)
− Zt

)
dt + dWt + ηdBt

dYt = −f
(
Xt,L(Xt|B),Zt

)
dt + ZtdWt + ζtdBt

YT = g
(
XT ,L(XT |B)

)
◦ Cauchy-Lipschitz theory in small time only!

• Theorem If K-Lipschitz coefficients⇒ ∃! for T ≤ c(K)

◦ for any initial condition X0 ∈ L2(Ω,F0,P;Rd)

• Question How to go further?



Decoupling field (T ≤ c(K))
• Recall non MKV case{ ∃U : [0,T] × Rd → R such that

Yt = U(t,Xt) ⇔ U(t, x) = Y t,x
t (with Xt,x

t = x)

◦ keep fact for extending solutions is to bound Lipx(U)

•MKV setting{ state variable is in Rd × P2(Rd)

 need to construct U(t, x, µ) t ∈ [0,T], x ∈ Rd, µ ∈ P2(Rd)

• Two-step procedure [Crisan Chassagneux D, Buckdahn (al.)]

◦ 1st step{ MKV FBSDE with Xt ∼ µ, Xt ⊥⊥ (W,B)

dXs =
(
b
(
Xs,L(Xs|B)

)
− Zs

)
ds + dWs + ηdBs

dYs = −f
(
Xs,L(Xs|B),Zs

)
ds + ZsdWs + ζsdBs, YT = g

(
XT ,L(XT |B)

)

◦ 2nd step{ non-MKV FBSDE with xt = x and 1st step input

dxs =
(
b
(
xs,L(Xs|B)

)
− zs

)
ds + dWs + ηdBs

dys = −f
(
xs,L(Xs|B), zs

)
dt + zsdWs + ςsdBs, yT = g

(
xT ,L(XT |B)

)
◦ let U(t, x, µ) = yt ⇒ Yt = U(t,Xt, µ) = U(t,Xt,L(Xt|B))
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Controlling the Lipschitz constant
• Non-MKV setting{ may control the Lipschitz constant by
monotonicity or ellipticity conditions

 start with monotonicity{ B has no role⇒ simplify η = 0

• Come back to cost structure{ monotonicity of f (same with g)∫
Rd

[f (x, µ) − f (x, µ′)]d(µ − µ′)(x) ≥ 0 [Lions]

• Theorem [L, C C D, Cardaliaguet (al.)] If b ≡ 0, f and g bounded,
monotone and Lipschitz⇒ bound on LipµU and ∃! on any [0,T]

• Strategy Investigate derivative of the flow in L2

 for ξ, χ ∈ L2(Ω,F0,P;Rd)(
∂χXξ

s , ∂χYξ
s , ∂χZξs

)
= lim

ε→0

1
ε

(
Xξ+εχ

s − Xξ
s ,Y

ξ+εχ
s − Yξ

s︸                       ︷︷                       ︸
in E[ sup

0≤s≤T
| ·s |

2]

, Zξ+εχs − Zξs︸      ︷︷      ︸
in E

∫ T

0
| ·s |

2ds

)

◦ provide a bound for (∂χXξ, ∂χYξ, ∂χZξ)
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Derivative on the Wasserstein space
• Differentiation on P2(Rd) taken from Lions

• Consider U : P2(Rd)→ R

• Lifted-version of U

Û : L2(Ω,P;Rd) 3 X 7→ U(Law(X))

◦ U differentiable if Û Fréchet differentiable

• Differential of U

◦ Fréchet derivative of Û [see also Zhang (al.)]

DÛ(X) = ∂µU(µ)(X), ∂µU(µ) : Rd 3 v 7→ ∂µU(µ)(v) µ = L(X)

◦ derivative of U at µ{ ∂µU(µ) ∈ L2(Rd, µ;Rd)

• Finite dimensional projection

∂xi

[
U

( 1
N

N∑
j=1

δxj

)]
=

1
N
∂µU

( 1
N

N∑
j=1

δxj

)
(xi), x1, . . . , xN ∈ R

d
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Û : L2(Ω,P;Rd) 3 X 7→ U(Law(X))

◦ U differentiable if Û Fréchet differentiable
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Application to the coupled case (b ≡ 0)

• Return to coupled case{ estimate ∂χYξ
0

∂χYξ
0 = ∂xU

(
0, ξ,L(ξ)

)
· χ + Ẽ

[
∂µU

(
0, ξ,L(ξ)

)(
ξ̃
)
· χ̃

]︸                         ︷︷                         ︸
Ω̃ = copy space

◦ Lipµ estimate on U ⇔ bound of E[|∂µU(0, ξ,L(ξ))(ξ)|2]1/2

• Estimate (∂χXt)t first{ dynamics of (Xt)t and (∂χXt)t

◦ ∂2
xxU already estimated! (thanks to Laplace)

• Propagation of monotonicity

EẼ
[
∂χXt·

(
∂x

(
∂µU

)(
t,Xt,L(Xt)

)(
X̃t

)
∂̃χXt

)]
≥ 0⇒ E

[
|∂χXT |

2] ≤ CE
[
|χ|2

]
◦ insert into the backward equation
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Part IV. Solving MFG with a Common Noise

c. Weak solutions



Fixed point without uniqueness
• Solution by compactness argument (without monotonicity)

◦ use of Schauder’s fixed point theorem

• Disentangle sources of noise{ product probability space

Ω = Ω0 ×Ω1, F = F0 ⊗ F1, P = P0 ⊗ P1

◦ (Ω0,F0,P0){ common noise B ; (Ω1,F1,P1){ noise W

• Fixed point (µt)0≤t≤T as F0 prog. meas. process

◦ F0 = FB and F1 = FW ⇒ optimal path under (µt)0≤t≤T given by

dXt =
(
b(Xt, µt) − Zt

)
dt + dWt + ηdBt

dYt = −
(
f (Xt, µt) + 1

2 |Zt|
2
)
dt + ZtdWt + ζtdBt, YT = g(XT , µT )

• Solve µt(ω0) = L(Xoptimal
t | F 0

T )(ω0) for t ∈ [0,T] and ω0 ∈ Ω0

 fixed point in
(
C
(
[0,T],P2(Rd)

))Ω0

◦ much too big space for tractable compactness{ strategy is to
discretize common noise



Discretization method [Carmona D Lacker]

• General principle{ discretization of the fixed point

◦ choice of the conditioning{ Ω0 canonical space for (Bt)0≤t≤T

{ L(Xt | F
0

T ) = L
(
Xt | (Bs)0≤s≤T

)
◦ L

(
Xt | (Bs)0≤s≤T

)
{ L(Xt|process with finite support)

• Choice of the process with finite support

◦ Π projection on spatial grid {x1, . . . , xP} ⊂ R
d

◦ t1, . . . , tN time mesh ⊂ [0,T]

◦ B̂ti = Π(Bti)

• Conditioning

◦ fixed point condition on L(Xt | B̂t1 , . . . , B̂ti) for t ∈ [ti, ti+1]

◦ input{ sequence of processes on each [ti, ti+1] with values in
P2(Rd) and only depending on the realizations of (B̂t1 , . . . , B̂ti)

fixed point in
∏N

i=1 C([ti, ti+1];P2(Rd))iP
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Solution under discrete conditioning
• Solve FBSDE

dXt =
(
b
(
Xt,L(Xt | B̂t1 , . . . , B̂ti)

)
− Zt

)
dt + dWt + ηdBt

dYt = −
(
f
(
Xt,L(Xt | B̂t1 , . . . , B̂ti)

)
+ 1

2 |Zt|
2
)
dt + ZtdWt + ζtdBt

YT = g
(
XT ,L(XT | B̂t1 , . . . , B̂tN )

)
• Strategy for the fixed point

◦ input µ = (µ1, . . . , µN) with

µi ∈ C([ti, ti+1];P2(Rd)){x1,...,xP}
i

◦ µt = µi
t
(
B̂t1 , · · · , B̂ti

)
◦ output given by

{x1, · · · , xP}
i 3 (a1, . . . , ai) 7→ L

(
Xt | B̂t1 = a1, . . . , B̂ti = ai

)
• Stability for FBSDEs { continuity w.r.t input + compactness for
laws⇒ Schauder



Passing to the limit
• Convergent subsequence as N,P→ ∞?

◦ use Pontryagin’s principle to describe optimal paths

dXt = b
(
Xt,L(Xt | B̂t1 , . . . , B̂ti)

)
dt − Ztdt + dWt + ηdBt

dZt = −∂xH
(
Xt,L(Xt | B̂t1 , . . . , B̂ti),Zt

)
dt + dMt

ZT = ∂xg
(
XT ,L(XT | B̂t1 , . . . , B̂tN )

)
 (Mt)t martingale, µt = L(Xt | B̂t1 , . . . , B̂ti)

• Tightness of the laws of (XN,P
t , µN,P

t ,ZN,P
t ,MN,P,Bt,Wt)0≤t≤T

• Limit process (X∞t , µ
∞
t ,Z

∞
t ,M

∞
t ,B

∞
t ,W

∞
t )0≤t≤T

◦ identify{ µ∞t as conditional law of X∞t given information?

 pass to the limit in µN,P
t = L(XN,P

t | B̂N,P
t1 , . . . , B̂N,P

ti )

◦ solve optimization problem in environment (µ∞t )0≤t≤T?

 main difficulty{ loss of measurability of µ∞t w.r.t
(B∞s )0≤s≤t ⇒ weak solution only!
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t )0≤t≤T in C([0,T];Rd) by Kolmogorov

◦ tightness of (µN,P
t )0≤t≤T in C([0,T];P2(Rd)) since∫

d
|x|qdµN,P

t (x) = E
[
|XN,P

t |
q|F 0

T
]
, W2

(
µN,P

t , µN,P
s

)2
≤ E

[
|XN,P

t −XN,P
s |

2|F 0
T
]

◦ tightness (ZN,P
t ,MN,P

t )0≤t≤T inD([0,T];Rd) with Meyer-Zheng

 (zn
t )0≤t≤T → (zt)0≤t≤T in dt-measure [Pardoux] for use in BSDE
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∞
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Strong vs. weak solutions
• Limiting FBSDE formulation

dX∞t =
(
b
(
X∞t , µ

∞
t
)
− Z∞t

)
dt + dW∞t + ηdB∞t

dZ∞t = −∂xH
(
X∞t , µ

∞
t ,Z

∞
t
)
dt + dM∞t , Z∞T = ∂xg

(
X∞T , µ

∞
T
)

 necessary condition for optimality only, but not a limitation
{ may pass to the limit in the optimality condition

◦ cost J
(
−Z∞

)
= E

[
g
(
X∞T , µ

∞
T
)

+

∫ T

0

(
f
(
X∞t , µ

∞
t
)

+ 1
2 |Z
∞
t |

2
)
dt

]

•Main question: What is the common information ?

◦ whole information{ F∞ generated by (X∞, µ∞,B∞,W∞)

◦ common environment{ expect (µ∞,B∞)? should satisfy
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∞,B∞) (true)
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∞){ proper noise
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∞
s ,B

∞
s ,W

∞
s , s ≤ T) and

F∞t conditional ⊥⊥ on σ(X∞0 , µ
∞
s ,B

∞
s ,W

∞
s , s ≤ t) (???)
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 observation of private state has no bias on future of the
environment (???)
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Strong vs. weak solutions
• Limiting FBSDE formulation  necessary condition for
optimality only, but not a limitation{ may pass to the limit in the
optimality condition

•Main question: What is the common information ?

◦ whole information{ F∞ generated by (X∞, µ∞,B∞,W∞)

◦ common environment{ replace by (M∞,B∞)

 M∞t limit in law of L(XN,P
·∧t ,W

N,P
·∧t |B

∞)

 fixed pointM∞t = L(X∞·∧t,W
∞
·∧t |M

∞,B∞)

 fixed point⇒ compatibility

• Yamada-Watanabe : strong ! for compatible solutions⇒ weak
solutions are strong

◦ strong solutions{ environment is adapted to B∞

◦ example if monotonicity⇒ close the loop!



Part V. Master Equation

a. Derivation of equation



Setting
• Assume ∃! for value function MKV FBSDE (σ = 1)

dXs =
(
b
(
Xs,L(Xs|B)

)
− Zs

)
ds + dWs + ηdBs

dYs = −f
(
Xs,L(Xs|B),Zs

)
ds + ZsdWs + ζsdBs, YT = g

(
XT ,L(XT |B)

)
◦ Yt = U(t,Xt, µ) = U(t,Xt,L(Xt|B))

• Goal : Expand the right-hand side to identify PDE for U!!!

• Need for second-order derivatives

◦ ∂tU(t, x, µ) and ∂2
xU(t, x, µ) bounded and Lipschitz in (x, µ)

◦ ∂µU(t, x, µ)(v) is differentiable in x, v and µ

◦ ∂x∂µU(t, x, µ)(v), ∂v∂µU(x, µ)(v) bounded and Lipschitz

◦ ∂2
µU(t, x, µ)(v, v′) is bounded and Lipschitz

• Theorem : [Gangbo Swiech, C D D, C D L L] If monotonicity and
smooth coefficients, then U is smooth
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Itô’s formula on P2(Rd)
• Process dXt = btdt + dWt + dBt E

∫ T
0 |bt|

2dt < ∞

◦ disentangle sources of noise{ use product probability space

Ω = ΩB ×ΩW , F = FB ⊗ FW , P = PB ⊗ PW

◦ (ΩB,FB,PB){ B, (ΩW ,FW ,PW){W, L(·|σ(B)) = LW(·)

◦ Ω = ΩB ×ΩW , ΩB carries B, ΩW carries W

◦ µt = L(Xt): conditional law of Xt given B

• U Fréchet differentiable with Rd 3 v 7→ ∂µU(µ, v) differentiable
(v, µ)

◦ Itô’s formula for (U(µt))t≥0?

dU(µt) = EW[
bt · ∂µU(µt)(Xt)

]
+ EW[

Trace
(
∂v∂µU(µt)(Xt)

)]
dt

+
1
2
EW ẼW̃[

Trace
(
∂2
µU

(
µt)(Xt, X̃t)

)]
dt + EW[

∂µU(µt)(Xt)
]
· dBt

◦ ẼW̃ conditional expectation on a copy space ΩB × Ω̃W
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Identification of the master equation
• Identification of the dt terms in the expansion of the identify:

Yt = U
(
t,Xt,L(Xt |B)

)

• Get the form of the full-fledged master equation

∂tU(t, x, µ) −
∫
Rd
∂xU(t, v, µ) · ∂µU(t, x, µ)(v)dµ(v)

+ f (x, µ) −
1
2
|∂xU(t, x, µ)|2 +

1 + η2

2
Trace

(
∂2

xU(t, x, µ)
)

+
1 + η2

2

∫
Rd

Trace
(
∂v∂µU(t, x, µ, v)

)
dµ(v)

+ η2
∫
Rd

Trace
(
∂x∂µU(t, x, µ, v)

)
dµ(v)

+
η2

2

∫
Rd

∫
Rd

Trace
(
∂2
µU

(
t, x, µ, v, v′

))
dµ(v)dµ(v′) = 0

◦ Not a HJB! (MFG , optimization)
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Part V. Master Equation

b. Application



Revisiting the N-player game
• Controlled dynamics

dXi
t =

(
b
(
Xi

t , µ̄
N
t
)

+ αi
t
))

dt + dW i
t + ηdBt

• Cost functionals to player i

Ji(α1, . . . , αN) = E
[
g
(
Xi

T , µ̄
N
T
)

+

∫ T

0

(
f
(
Xi

s, µ̄
N
s
)

+
1
2
|αi

s|
2
)
ds

]
• Rigorous connection between N-player game and MFG?

• Construct approximate Nash equilibria (easier)

◦ limit setting{ optimal control has the form

α?t = −∂xU
(
t,Xt, L(Xt|B)︸  ︷︷  ︸

population at equilibrium

)
◦ in N-player game, use αN,i

t = −∂xU
(
t,Xi

t , µ̄
N
t
)

◦ almost Nash cost decreases at most of εN under unilateral
deviation where εN → 0



Revisiting the N-player game
• Controlled dynamics

dXi
t =

(
b
(
Xi

t , µ̄
N
t
)

+ αi
t
))

dt + dW i
t + ηdBt

• Cost functionals to player i

Ji(α1, . . . , αN) = E
[
g
(
Xi

T , µ̄
N
T
)

+

∫ T

0

(
f
(
Xi

s, µ̄
N
s
)

+
1
2
|αi

s|
2
)
ds

]
• Rigorous connection between N-player game and MFG?

• Prove the convergence of the Nash equilibria as N tends to∞

◦ difficulty{ no uniform smoothness on the optimal feedback
function α?,N w.r.t to N

α?,i,Nt︸︷︷︸
optimal control to player i

= α?,N
(
Xi

t ; X1, . . . ,Xi−1,Xi+1, . . . ,XN︸                           ︷︷                           ︸
states of the others

)
{ no compactness on the feedback functions

◦ weak compactness arguments on the control (notion of relaxed
controls) for equilibria over open loop controls [Lacker, Fischer]

• Construct approximate Nash equilibria (easier)
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◦ use the master equation [C D L L]: expand (U(t,Xi
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N
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