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Results.

Rate Control under Heavy Traffic with Strategic Servers (Bayraktar, B. and
Cohen (2016)).

N-player game for single server queues.

Each server has a cost function it seeks to minimize.

Objective: Compute (near) Nash equilibria.

Asymptotic Model: Mean Field Game for reflected diffusions.
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Results.

Rate Control under Heavy Traffic with Strategic Servers (Bayraktar, B. and
Cohen (2016)).

N-player game for single server queues.

Each server has a cost function it seeks to minimize.

Objective: Compute (near) Nash equilibria.

Asymptotic Model: Mean Field Game for reflected diffusions.

Controlled Weakly Interacting Large Finite State Systems with Simultaneous

Jumps (B. and Friedlander (2016)).

Rate Control for large finite state jump Markov processes.

Central Controller.

Objective: Optimize system performance.

Asymptotic Model: Drift Control for Degenerate Time - Inhomogeneous Diffusions.
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Results.

Coding and Load Balancing Mechanisms in Cloud Storage Systems (B. and
Friedlander (2017)).

Large number of file stored “in pieces” over a large number of servers.

Each file stored in equally sized pieces across L servers s.t. any k pieces recover
the full file.

Objective: Model Simplification (LLN and CLT for fluctuations).

Asymptotic Model: SDE in ℓ2 driven by cylindrical Brownian motion.

Power of d Schemes on Erdős-Rényi Graphs (B., Mukherjee and Wu (2017)).

Each server has an associated queue in infinite capacity buffer.

An Erdős-Rényi graph (possibly time varying) describes the neighborhood of any
server.

An arriving job chooses a server at random which then queries d − 1 neighbors
at random and sends the job to shortest queue.

Objective: LLN (Annealed and Quenched).

Asymptotic Model: Same infinite system of ODE as the ‘fully connected’
system. (npn → ∞)
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Rate Control with Strategic Servers.

Sequence of d single server queues. (arrival rate λn, service rate µn)

Critically Loaded: n−1/2(λn − µn) → c .

Limit (under usual scaling) given by a reflected BM.

I.e. if Qn
i (t) is queue length of i -th queue then Q̃n

i

.
= Qn

i /
√
n converges to a

BM with drift c , reflected at 0.

Here consider a setting where each server can exercise control of arrival/service
rates. [Arise in service networks, cloud computing, limit order books...]
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Rate Control with Strategic Servers.

control can depend on ‘everything’ up to current time.

...also rates can depend on queue state and the empirical measure.

Each server aims to minimize its individual cost.

Interested in (near) Nash equilibria.

For large d (even with diffusion approximations) computing Nash eqilibria is
computationally intractable.

Approach: Heavy traffic + large d asymptotic regime.
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Problem Setting.

Fix T (time horizon) and L (buffer size). Control set: U a compact
set.

Controlled rates:

λN,i(t) = aN + λ(t, ν̃N(t), Q̃N
i (t), αN

i (t))
√
N + o(

√
N),

µN,i(t) = aN + µ(t, ν̃N(t), Q̃N
i (t), αN

i (t))
√
N + o(

√
N).

Q̃N = QN/
√
N , ν̃N(t) = 1

N

∑N
i=1 δQ̃N

i
(t).

V N,i ,ZN,i unit rate independent Poisson processes.

State equation:

Q
N,i

(t) = Q
N,i

(0) + V
N,i

(∫

t

0
1
{Q̃N,i (s)<L}

λ
N,i

(s)ds

)

− Z
N,i

(∫

t

0
1
{Q̃N,i (s)>0}

µ
N,i

(s)ds

)

.
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Problem Setting.

Skorohod map:

For ψ ∈ D([0,T ] : R) with ψ(0) ∈ [0, L], say
(ϕ, ζ1, ζ2) ∈ D([0,T ] : R3) solves the Skorohod problem for ψ if:

For every t ∈ [0,T ], ϕ(t) = ψ(t) + ζ1(t)− ζ2(t) ∈ [0, L].

ζi are nonnegative and nondecreasing, ζ1(0) = ζ2(0) = 0, and

∫

[0,T ]

1(0,L](ϕ(s))dζ1(s) =

∫

[0,T ]

1[0,L)(ϕ(s))dζ2(s) = 0.

Write Γ(ψ) = (ϕ, ζ1, ζ2) and refer to Γ as the Skorohod map.
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Problem Setting.

State evolution using the Skorokhod map:

(Q̃N
i , Ỹ

N
i , R̃

N
i )(t)

= Γ

(

Q̃N
i (0) +

∫ ·

0
b̃Ni (s)ds + ÃN

i (·)− D̃N
i (·) + o(1)

)

(t), t ∈ [0,T ].

b̃Ni (t)
.
= b(t, ν̃N(t), Q̃N

i (t), αN
i (t)), b

.
= λ− µ,

Ỹ
N
i (t)

.
=

1
√

N

∫

t

0
1
{Q̃N

i
(s)=0}

µ
N
i (s)ds, R̃

N
i (t)

.
=

1
√
N

∫

t

0
1
{Q̃N

i
(s))=L}

λ
N
i (s)ds.

〈ÃN
i , Ã

N
j 〉(t) = δij

1

N

∫

t

0
1
{Q̃N

i
(s)<L}

λ
n
i (s)ds, 〈D̃N

i , D̃
N
j 〉(t) = ...
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Control Problem.

UN is the class of all admissible controls αN = (αN,1, . . . , αN,N).

Cost for initial condition Q̃N(0) and control αN :

J
N,i

(Q̃
N
(0);α

N
)

.
= E

[

∫

T

0
f (t, ν̃

N
(t), Q̃

N,i
(t), α

N,i
(t))dt + g(ν̃

N
(T ), Q̃

N,i
(T ))

−
∫

T

0
y(t, ν̃

N
(t))dỸ

N,i
(t) +

∫

T

0
r(t, ν̃

N
(t))dR̃

N,i
(t)

]

.

Asymptotic Nash Equilibrium: Sequence of admissible controls
{α̃N,i : 1 ≤ i ≤ N}N∈N is an asymptotic Nash equilibrium if for every
j , and every sequence of admissible controls {βN}∞N=1 for the j-th
player,

lim sup
N→∞

JN,j(Q̃N(0); α̃N,1, . . . , α̃N,N)

≤ lim inf
N→∞

JN,j(Q̃N(0); α̃N,1, . . . , α̃N,j−1, βN , α̃N,j+1, . . . , α̃N,N).
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Mean Field Game.

(Lasry and Lions (2006), Huang, Malhamé and Caines (2006), Carmona and
Delarue (2013), Carmona and Lacker (2015)...).

... a fixed point problem on PT ,L = P(C ([0,T ] : [0, L])).

For fixed x ∈ [0, L] and ν ∈ PT ,L consider a stochastic control problem:

Filtered probability space: Ξ = (Ω,F , {Ft},P ,B).

An admissible pair on Ξ: Stochastic processes (α,Z ), such that

α = {α(s)}0≤s≤T is a U-valued Fs -progressively measurable process,

Z = {Z (s)}0≤s≤T is a [0, L]× R+ × R+ valued Fs-adapted continuous process.

such that (α,Z ) satisfy...
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Mean Field Game.

Z (t) = (X ,Y ,R)(t) = Γ

(

x +

∫ ·

0
b̄(s)ds + σB(·)

)

(t), t ∈ [0,T ],

where

b̄(s)
.
= b(s, ν(s),X (s), α(s)), s ∈ [0,T ],

and ν(s) is the marginal of ν at time instant s and σ =
√
2a.

Denote by A(Ξ, x , ν) the collection of all admissible pairs (α,Z ).
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Mean Field Game.

Cost function in the MFG. Given ν ∈ PT ,L, x ∈ [0, L] and a system Ξ, let
(α,Z ) ∈ A(Ξ, x , ν). Define

Jν(x , α,Z )
.
= E

[

∫ T

0
f (s, ν(s),X (s), α(s))ds + g(ν(T ),X (T ))

−
∫ T

0
y(s, ν(s))dYs +

∫ T

0
r(s, ν(s))dRs

]

.

Value function:
Vν(x) = inf

Ξ
inf

(α,Z)∈A(Ξ,x ,ν)
Jν(x , α,Z ).

Denote by Vν(t, x) the value function for the control problem over [t,T ].
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Mean Field Game.

A solution to the MFG with initial condition x ∈ [0, L] is defined to be a
ν ∈ PT ,L such that there exist a system Ξ and an (α,Z ) ∈ A(Ξ, x , ν) such
that Z = (X ,Y ,R) satisfies

Vν(0, x) = Jν(0, x , α,Z ).

P ◦ X−1 = ν

If there exists a unique such ν, we refer to Vν(0, x) as the value of the MFG
with initial condition x .
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Solving the Mean Field Game.

Condition A: Functions b, f , g , y , r are Lipschitz. For every
(t, η, x , p) ∈ [0,T ] × P([0, L]) × [0, L] × R, there is a unique α̂(t, η, x , p) ∈ U

such that
α̂(t, η, x , p) = argmin

u∈U

h(t, η, x , u, p).

h(t, η, x , u, p) = f (t, η, x , u) + b(t, η, x , u)p.

For c ∈ (0,∞), let Mc be the collection of all ν ∈ PT ,L such that

sup
0≤s<t≤T

W1(ν(t), ν(s))

(t − s)1/2
≤ c

and let

M0 = ∪c>0Mc .
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Solving the Mean Field Game.

Under Condition A, for ν ∈ M0, Vν is the unique H2+ 1
2
solution of:

−Dtφ− H(t, ν(t), x ,Dφ) − 1

2
σ2D2φ = 0, (t, x) ∈ [0,T ]× [0, L],

with BC: φ(T , x) = g(ν(T ), x),

Dφ(t, 0) = y(t, ν(t)), and Dφ(t, L) = r(t, ν(t)), t ∈ [0,T ],

where H(t, η, x , p) = infu∈U h(t, η, x , u, p).

α(u, ω)
.
= α̂(u, ν(u),X (u, ω),DVν(u,X (u, ω))) is the (essentially unique)

optimal feedback control.
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Solving the Mean Field Game.

Fix ν and denote the state process under the optimal feedback control for the
associated stochastic control problem by X ν .

Define Φ on M0 as Φ(ν)
.
= P ◦ (X ν)−1.

Theorem. Under Condition A Φ has a fixed point ν̄. This fixed point is a
solution of the MFG.

Proof idea: Schauder’s fixed point theorem.

Main technical step: Proving the continuity of Φ.

Under an additional monotonicity condition the solution is unique.
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Asymptotic Nash Equilibrium.

Given a solution ν̄ of MFG, define ‘feedback controls’ for the N-player game as

α̃N,i (t)
.
= α̂(t, ν̄(t), Q̃N,i(t),DVν̄(t, Q̃

N,i(t))).

Condition B. The drift b(t, η, x , α) ≡ b(t, x , α). Initial conditions are
exchangeable and Q̃N,i(0) → x for some x ∈ [0, L].

For a control βN , let

α̃N
−1(t)

.
= (βn, α̃N,2(t), . . . , α̃N,N(t)).

Theorem. Under Conditions A and B, α̃N is an asymptotic Nash equilibrium:

lim sup
N→∞

JN,1(Q̃N(0), α̃N ) = Vν̄(0, x) ≤ lim inf
N→∞

JN,1(Q̃N(0), α̃N
−1).
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Proof Sketch.

Step 1 As N → ∞, ν̃N−1 → ν̄, where ν̃N−1 =
1

N−1

∑N−1
i=2 δQ̃N,i .

Step 2 When players uses α̃N , (Q̃N,i , Ỹ N,i , R̃N,i) converge to

(Q̃ i , Ỹ i , R̃ i) = Γ(x+

∫ ·

0
b(s, Q̃ i (s), α̂(s, ν̄(s), Q̃ i (s),DVν̄(s, Q̃

i (s))))ds+σB i).

The costs converge as well.

This proves: lim supN→∞ JN,1(Q̃N(0), α̃N ) = Vν̄(0, x).

Step 3 When for every i 6= 1, the i -th player uses α̃N,i the limit points of the
cost (for the first player) are costs for the (relaxed version of) stochastic
control problem for ν̄ and so are bounded below by Vν̄(0, x).

This proves: Vν̄(0, x) ≤ lim infN→∞ JN,1(Q̃N(0), α̃N
−1).
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Comments on Step 1: ν̃N−1 → ν̄.

Follows Kotelenez and Kurtz(2010).

Define G̃N,i .= (Q̃N,i , Ỹ N,i , R̃N,i) and

ΞN .
=

1

N − 1

N−1
∑

i=2

δ
G̃N,i .

{G̃N,i}N∈N is C-tight for each i .

If G̃N = (G̃N,i)∞i=2 converges along a subsequence to G̃ , then

(G̃N ,ΞN) → (G̃ ,Ξ), Ξ = lim
m→∞

1

m

m
∑

i=1

δ
G̃ i .
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Comments on Step 1: ν̃N−1 → ν̄.

Characterization. For i ≥ 2, with G̃ i = (Q̃ i , Ỹ i , R̃ i ),

(Q̃ i , Ỹ i , R̃ i) = Γ(x+

∫ ·

0
b(s, Q̃ i (s), α̂(s, ν̄(s), Q̃ i (s),DVν̄(s, Q̃

i (s))))ds+σB i).

This shows that Q̃ i are i.i.d. ν̄. Thus

lim
N→∞

ν̃N−1 = lim
N→∞

ΞN
(1) = Ξ(1) = lim

m→∞

1

m

m
∑

i=1

δ
Q̃ i = ν̄.
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Numerical Approximations.

Construction of an asymptotic Nash equilibrium requires the solution
of the MFG.

Tractable expressions for the MFG solution are not available in
general.

Suitable numerical approximations needed.

We introduce a Markov chain approximation method to construct
numerical solutions of the MFG.
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Outline of the Scheme.

Discretize state space: For h > 0, Sh
.
= {−h, 0, h, . . . , L+ h}.

Introduce a sequence of controlled Markov chains {X k
n }n∈N0 , one for

each value of the discretization parameter hk > 0, where hk → 0 as
k → ∞.

Theorem. Suppose Condition A holds and that the MFG has a unique
solution. Then the law νk ∈ PT ,L of the continuous time
interpolation of X k converges to ν̄ for small T .
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Construction of X k
n .

The k-th chain X k
n is obtained by solving an approximate fixed point

problem.

Fix ν ∈ PT ,L. Formulate a MDP with transition kernel and cost
depending on ν. The cost is the discretized analog of the cost in the
MFG.

Denote the law of the optimal state process (with piecewise linear
interpolation) as Φk(ν).

Approximate Contraction. For some q ∈ (0, 1)

W 2
1 (Φk(ν),Φk(ν

′)) ≤ q(h2k +W 2
1 (ν, ν

′)).
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Construction of X k
n .

Let νm
.
= (Φk)

m(ν). Then

W 2
1 (Φk(ν

m), νm) ≤ q

1− q
h2k + qm−1W 2

1 (ν
2, ν1).

Let

m(k)
.
= min

{

m : qm−1W 2
1 (ν

2, ν1) ≤ q

1− q
h2k

}

.

Then ν̄k
.
= (Φk)

m(k)(ν) converges to ν̄ as k → ∞.
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