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Results.

@ Rate Control under Heavy Traffic with Strategic Servers (Bayraktar, B. and
Cohen (2016)).

o N-player game for single server queues.
@ Each server has a cost function it seeks to minimize.
o Objective: Compute (near) Nash equilibria.

@ Asymptotic Model: Mean Field Game for reflected diffusions.
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Results.

@ Rate Control under Heavy Traffic with Strategic Servers (Bayraktar, B. and
Cohen (2016)).

o N-player game for single server queues.
@ Each server has a cost function it seeks to minimize.
o Objective: Compute (near) Nash equilibria.

@ Asymptotic Model: Mean Field Game for reflected diffusions.

@ Controlled Weakly Interacting Large Finite State Systems with Simultaneous
Jumps (B. and Friedlander (2016)).

@ Rate Control for large finite state jump Markov processes.
@ Central Controller.
@ Objective: Optimize system performance.

o Asymptotic Model: Drift Control for Degenerate Time - Inhomogeneous Diffusions.
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Results.

@ Coding and Load Balancing Mechanisms in Cloud Storage Systems (B. and
Friedlander (2017)).

@ Large number of file stored “in pieces” over a large number of servers.

@ Each file stored in equally sized pieces across L servers s.t. any k pieces recover
the full file.

o Objective: Model Simplification (LLN and CLT for fluctuations).
@ Asymptotic Model: SDE in £, driven by cylindrical Brownian motion.

@ Power of d Schemes on Erdés-Rényi Graphs (B., Mukherjee and Wu (2017)).
@ Each server has an associated queue in infinite capacity buffer.

An Erdés-Rényi graph (possibly time varying) describes the neighborhood of any
server.

©

©

An arriving job chooses a server at random which then queries d — 1 neighbors
at random and sends the job to shortest queue.

©

Objective: LLN (Annealed and Quenched).

Asymptotic Model: Same infinite system of ODE as the ‘fully connected’
system. (np, — o)
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Rate Control with Strategic Servers.

@ Sequence of d single server queues. (arrival rate \", service rate p")

o Critically Loaded: n=Y2(\" — ") — c.

@ Limit (under usual scaling) given by a reflected BM.

o le. if Q"(t) is queue length of i-th queue then C:),” = Q"//n converges to a
BM with drift ¢, reflected at 0.

@ Here consider a setting where each server can exercise control of arrival /service

rates. [Arise in service networks, cloud computing, limit order books...]
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Rate Control with Strategic Servers.

@ control can depend on ‘everything' up to current time.
@ ...also rates can depend on queue state and the empirical measure.

Each server aims to minimize its individual cost.

[

©

Interested in (near) Nash equilibria.

[

For large d (even with diffusion approximations) computing Nash eqilibria is
computationally intractable.

[

Approach: Heavy traffic + large d asymptotic regime.
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N
Problem Setting.

@ Fix T (time horizon) and L (buffer size). Control set: U a compact
set.

@ Controlled rates:
AVI() = aN + A(t, 7V(1), QY (1), o (1)) VN + o(V'N),
pi(e) = aN + (e, 7V(2), QM (2), o (1)) VN + o(V'N).

N
o QM =Q"/VN, ?N(t) = %Zizl%/\l(t)-
o VN:i ZN.i ynit rate independent Poisson processes.

o State equation:
. . . t . . t .
QMi(e) = @V(0) 4 v (/0 I{ON.;(S)<L}AN"(s)ds) — ZM (/0 1{@,\,,,(5»0}#“’(5)(15) :
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N
Problem Setting.

@ Skorohod map:

For ¢ € D([0, T] : R) with ¢(0) € [0, L], say
(v, ¢1,¢2) € D([0, T] : R3) solves the Skorohod problem for ) if:

e Forevery t € [0, T], o(t) = ¥(t) + (i (t) — &(t) € [0, L].

@ (; are nonnegative and nondecreasing, (1(0) = (2(0) =0, and

/ 10.(9(5))dca(s) = / 1o.)(9(5))dCa(s) = 0.
[0,7] [0,7]

Write T'(¢)) = (g, (1, ¢2) and refer to I' as the Skorohod map.
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N
Problem Setting.

@ State evolution using the Skorokhod map:

o bN(t) = b(t, N(t), QN(t),aM (1)), b= A — i,
VN = % /Ot1{@i,\,(s):0}u{"(s)ds, RN(t) = %‘/Otl{@l!\/(s)):u);v(s)di

- - 1 rt . .
(A/{V,A;V>(t):6ijﬁ/o L aN<n MO, BN BNy = ...
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Control Problem.

N,1

o UV is the class of all admissible controls oV = (a1, ... aMN:N).

@ Cost for initial condition QV(0) and control a:

VRO E E[/O'T F(e, 7" (1), " 1(8), &M (8t + g5 (T), @M (T))

T

_ /Ty(t, f/N(t))d\'/N’i(t)Jr/ (e, 2V ()R (2)].
Jo J0o

@ Asymptotic Nash Equilibrium: Sequence of admissible controls
{aN:1 <i < N}pen is an asymptotic Nash equilibrium if for every
J,» and every sequence of admissible controls {ﬁN}j’V":l for the j-th

player,
limsup M (QN(0): a1, ..., aM M)
N—oo
< l}vrllgof JN’j(QN(O); &N,l’ o 7&N,j—1, 5N’ dNJ-i-l’ o ’&N,N)‘
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N
Mean Field Game.

o (Lasry and Lions (2006), Huang, Malhamé and Caines (2006), Carmona and
Delarue (2013), Carmona and Lacker (2015)...).

@ ... a fixed point problem on P7; = P(C([0, T] : [0, L])).

@ For fixed x € [0, L] and v € Py consider a stochastic control problem:
@ Filtered probability space: = = (Q, F, {F:}, P, B).

@ An admissible pair on =: Stochastic processes («, Z), such that
o a = {a(s)}o<s<T is a U-valued Fs-progressively measurable process,

o Z={Z(s)}o<s<T is a [0, L] x Ry x Ry valued Fs-adapted continuous process.
such that («, Z) satisfy...
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N
Mean Field Game.

Z(t)=(X,Y,R)(t)=T <X + /0. B(s)ds + aB(-)) (t), telo,T],
where

b(s) = b(s,v(s), X(s),a(s)), s €[0, T],

and v(s) is the marginal of v at time instant s and o = v/2a.

@ Denote by A(Z, x, v) the collection of all admissible pairs («, Z).
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N
Mean Field Game.

@ Cost function in the MFG. Given v € P7;, x € [0, L] and a system =, let
(o, Z) € A(=, x,v). Define

-
J(x,a,Z) = E{/o f(s,v(s),X(s),a(s))ds + g(v(T), X(T))

T T
—/ y(s,V(s))dYer/ r(s,v(s))dRs|.
0 0

@ Value function:

V. (x) = inf inf L(x,a,Z).
( ) = (,Z2)EA(Zx,v) ( )

@ Denote by V,(t, x) the value function for the control problem over [t, T].
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N
Mean Field Game.

@ A solution to the MFG with initial condition x € [0, L] is defined to be a
v € Pt such that there exist a system = and an (¢, Z) € A(Z, x,v) such
that Z = (X, Y, R) satisfies

e V,(0,x) = 4,(0,x,, Z).

e PoX1l=vypy

o If there exists a unique such v, we refer to V,(0, x) as the value of the MFG
with initial condition x.
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-
Solving the Mean Field Game.

@ Condition A: Functions b, f, g, y,r are Lipschitz. For every
(t,m,x,p) €0, T] x P([0, L]) x [0, L] x R, there is a unique &(t,n,x,p) € U
such that

a&(t,n, x, p) = argmin h(t,n, x, u, p).
uel

h(t,n, x,u, p) = f(t,n,x,u) + b(t,n, x, u)p.
@ For c € (0,00), let M. be the collection of all v € Pt such that

Wi (v(t), v(s))
ZRRE V) ¢
ogssgng (t—s)t/2 —

and let

MO = u¢:>0~/\/lc-
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-
Solving the Mean Field Game.

@ Under Condition A, for v € Mg, V,, is the unique H2+% solution of:

D¢ — H(t,v(t),x, Dg) — %020% =0, (t,x)e€[0,T]x][o,L],
with BC: ¢(T, x) = g(v(T), x),
D¢(t,0) = y(t,v(t)), and D¢(t, L) = r(t,v(t)), t € [0, T],
where H(t,n,x, p) = inf,cy h(t,n, x, u, p).

e a(u,w) = &(u,v(u), X(u,w), DV, (u, X(u,w))) is the (essentially unique)
optimal feedback control.
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-
Solving the Mean Field Game.

@ Fix v and denote the state process under the optimal feedback control for the
associated stochastic control problem by X".

@ Define ® on Mg as ®(v) = Po (X)L
@ Theorem. Under Condition A ® has a fixed point . This fixed point is a
solution of the MFG.

o Proof idea: Schauder’s fixed point theorem.

@ Main technical step: Proving the continuity of ®.

@ Under an additional monotonicity condition the solution is unique.

IPAM Workshop on Mean Field Gam7s, Au
24

YU E LTI TG TETEW DI B N TG ST TR AL Scaling Limits for Large Stochastic Network



N
Asymptotic Nash Equilibrium.

@ Given a solution ¥ of MFG, define ‘feedback controls’ for the N-player game as
aNi(t) = a(t, o(t), QN (t), DVi(t, QVI(t))).

o Condition B. The drift b(t,n, x,a) = b(t, x, «). Initial conditions are
exchangeable and Q"/(0) — x for some x € [0, L].

@ For a control GV, let
aly(t) = (87,aV2(t), ..., a"N (b))
@ Theorem. Under Conditions A and B, &" is an asymptotic Nash equilibrium:

limsup JV1(QN(0),aV) = V;(0,x) < lim inf JNLQN(0), aM)).

N—oo
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N
Proof Sketch.

o Step 1 As N — oo, 7N, — 7, where i) = o1 1ZN 15QN,,-.

@ Step 2 When players uses @V, (QN/, YN/, RN/} converge to

RO r(x+/0' b(s, O/ (s), a(s, 7(s), O'(s), DVi(s, O (s))))ds + o B).
The costs converge as well.

@ This proves: limsupy_,.. JV1(QN(0),aV) = V4 (0, x).

@ Step 3 When for every i # 1, the i-th player uses &"/ the limit points of the
cost (for the first player) are costs for the (relaxed version of) stochastic

control problem for 7 and so are bounded below by V;(0, x).

@ This proves: V;(0,x) < liminfy o JYL(QN(0),aN,).
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Comments on Step 1: 7V, — 7.

o Follows Kotelenez and Kurtz(2010).

o Define GV = (QN-/, YN/ RN/ and

o {GN'} yey is C-tight for each /.

o If GN = (GN))2, converges along a subsequence to G, then
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Comments on Step 1: 7V, — 7.
@ Characterization. For i > 2, with G/ = (Qi, )N/", R”'),

(Q, Y Ry =T(x+ / (s, &(s), a(s, #(s), O'(s), DVi(s, &' (5))))ds + 0 BY).

0

@ This shows that @ are i.i.d. 7. Thus

m

N—o0 N—oo m—oo m 4 1
=
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Numerical Approximations.

@ Construction of an asymptotic Nash equilibrium requires the solution
of the MFG.

@ Tractable expressions for the MFG solution are not available in
general.

@ Suitable numerical approximations needed.
@ We introduce a Markov chain approximation method to construct

numerical solutions of the MFG.
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Outline of the Scheme.

o Discretize state space: For h >0, S" = {—h,0,h,..., L+ h}.

@ Introduce a sequence of controlled Markov chains {XX},cx,, one for
each value of the discretization parameter h¥ > 0, where h¥ — 0 as

k — o0.

@ Theorem. Suppose Condition A holds and that the MFG has a unique
solution. Then the law v € P, of the continuous time
interpolation of X* converges to 7 for small T.
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Construction of XK.

@ The k-th chain XX is obtained by solving an approximate fixed point
problem.

o Fix v € Pr . Formulate a MDP with transition kernel and cost
depending on v. The cost is the discretized analog of the cost in the
MFG.

@ Denote the law of the optimal state process (with piecewise linear
interpolation) as ®(v).

@ Approximate Contraction. For some g € (0, 1)

WE(®k(v), ®k(v)) < q(hi + WE (v,1)).
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Construction of XK.

o Let ™ = (®4)"(v). Then

WE (D (v™),v™) < hk—i—q’” W2 (w2, vh).

o Let

m(k)imin{m' ¢TI ) < 1_q }

@ Then 7% = (&,)™K) (1) converges to 7 as k — oc.
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