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Abstract. We investigate the characteristic wave velocities in spherical
electromagnetic cloaks, namely, phase, ray, group and energy-transport
velocities. After deriving explicit expressions for the phase and ray velocities
(the latter defined as the phase velocity along the direction of the Poynting
vector), special attention is given to the determination of group and energy-
transport velocities, because a cursory application of conventional formulae for
local group and energy-transport velocities can lead to a discrepancy between
these velocities if the permittivity and permeability dyadics are not equal over
a frequency range about the center frequency. In contrast, a general theorem
can be proven from Maxwell’s equations that the local group and energy-
transport velocities are equal in linear, lossless, frequency dispersive, source-
free bianisotropic material. This apparent paradox is explained by showing that
the local fields of the spherical cloak uncouple into an E wave and an H wave,
each with its own group and energy-transport velocities, and that the group and
energy-transport velocities of either the E wave or the H wave are equal and thus
satisfy the general theorem.
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1. Introduction

Invisibility cloaking has received considerable attention since the theory was first presented
in [1] and experimentally demonstrated to within an approximation in [2]. The approach
presented in [1] provides a conceptually simple method for designing a cloak. One can imagine
that the trajectories of electromagnetic waves passing through a region of warped space must
conform to the local metric. Once the desired trajectory is determined through a transformation
applied to Cartesian straight trajectories, the differential operators in Maxwell’s equations in
the transformed space lead to space-dependent coefficients that can be reinterpreted in terms
of constitutive relations of an anisotropic, inhomogeneous medium. In [3], it was shown that
cloaking can be reformulated as a boundary value problem with a single first-order Maxwell
differential equation for linear anisotropic media, leading to explicit formulae for the relative
permittivity and permeability dyadics and fields of ideal spherical and circular cylindrical
annular cloaks.

Causality-energy conditions imply that electromagnetic incident fields with a finite
bandwidth cannot be perfectly cloaked [3]. Consequently, it is desirable to evaluate the
performance degradation of electromagnetic cloaks as a function of the frequency for
permittivity and permeability dyadics that satisfy realistic causality-energy relations [4]–[8].
Toward this end, we investigate some characteristic wave velocities of spherical electromagnetic
cloaks as determined by the Poynting vector, the local differential propagation constant, and
the phase velocity. Of particular interest are the group and energy-transport velocities, which
provide information on the potential cloaking bandwidth.

Explicit formulae are provided for the phase velocity and the Poynting vector inside an
ideal spherical cloak illuminated by a plane wave. It is shown that the ‘complex’ Poynting vector
is real-valued and divergence-free inside the cloak, and that it is aligned with the ‘compressed’
rays obtained with the radial transformation function [9]. On the other hand, the phase velocity
is not aligned with the Poynting vector, thus leading to the definition of a ‘ray velocity’ as the
phase velocity along the direction of the Poynting vector.

The calculation of the group and energy-transport velocities requires a realistic frequency
dependence for the permittivity and permeability dyadics. Since the frequency dependences of
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these two dyadics may be significantly different in an anisotropic material, it is useful to assume
physics-based forms for these functions in order to investigate the degradation in cloaking as
a function of frequency about a center frequency ω0 at which the relative permittivity and
permeability dyadics are equal. We calculate the local group velocity vg = ∇k ω(k) and the
energy-transport velocity defined as the time-average Poynting vector S(k) divided by the
energy density U (k) [ve = S(k)/U (k)] for a general spherical cloak. If the variation with
frequency of the relative permeability and permittivity dyadics are the same, we find that the
group and energy-transport velocities are identical (vg = ve). However, if the variation with
frequency of the relative permeability and permittivity dyadics are different, it appears that the
group and energy-transport velocities are not necessarily equal even at the center frequency
where the relative permeability and permittivity are the same [4].

This apparent discrepancy between the values of the local group velocity and the energy-
transport velocity is paradoxical in view of the general theorem provable from Maxwell’s
equations for linear, lossless, frequency dispersive and anisotropic material, namely that the
local group velocity and the energy-transport velocity are identically equal. In order to resolve
this apparent paradox, we provide an especially transparent derivation of this general theorem
and examine its application to the material of dispersive spherical cloaks [10].

The paper is organized as follows: section 2 summarizes the results for the phase and ray
velocities in spherical cloaks at their operational frequencies. Section 3 provides an especially
transparent proof of the equality between the local group velocity and the energy-transport
velocity in linear, lossless, frequency dispersive and bianisotropic material. In section 4, the
electromagnetic fields of the spherical cloaks are shown to uncouple into E and H waves, and
the local group and energy-transport velocities are proven equal for the individual E and H
waves. Numerical results for the ray, group and energy-transport velocities are presented in
section 5 and the paper ends with a concluding section 6.

2. Ray and phase velocities in spherical cloaks

The boundary value formulation of electromagnetic cloaking presented in [3] is based on the
requirements that the cloaking occurs for all possible incident fields, the cloaks have continuous
tangential components of E and H fields across their outer surfaces, and the normal components
of the D and B fields are zero at the inner material surfaces of the cloaks. The tangential-
field boundary conditions at the outer surface of a cloak ensure zero scattered fields, and the
normal-field boundary conditions at the inner surface of a cloak are compatible with zero total
fields inside the interior cavity of the cloak. For a cloak consisting of a spherical annulus of
anisotropic material with inner radius a and outer radius b, these boundary conditions lead to the
following expressions for the relative permittivity and permeability dyadics at the operational
frequency ω0

ε(ω0)

ε0

=
µ(ω0)

µ0

=
1

f ′(r)

[
f (r)

r

]2

r̂r̂ + f ′(r)(θ̂ θ̂ + φ̂φ̂), (1)

where ε0 and µ0 are the free-space permittivity and permeability, respectively, r is the radial
coordinate of a spherical coordinate system (r, θ, φ) with origin at the center of the spherical
cloak, f (r) is the ‘compressed radial coordinate function’ satisfying the boundary conditions
f (a) = 0 and f (b) = b, and the prime superscripts denote differentiation with respect to r .
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The field distributions associated with the relative permittivity–permeability dyadic
in (1) are

E(r) =

[
f ′(r) −

f (r)

r

]
E inc

r [ f (r), θ, φ]r̂ +
f (r)

r
Einc[ f (r), θ, φ], (2a)

H(r) =

[
f ′(r) −

f (r)

r

]
H inc

r [ f (r), θ, φ]r̂ +
f (r)

r
Hinc[ f (r), θ, φ], (2b)

where (Einc, Hinc) are the incident fields.
The particularly simple choice for the radial function

f (r) =
b(r − a)

(b − a)
, r ∈ [a, b] (3)

yields the spherical cloak of Pendry et al [1].

2.1. Poynting vector and phase velocity

It is interesting to investigate the simple case of a plane wave impinging on the spherical cloak.
It is not restrictive to assume that the plane wave travels in the −ẑ-direction with electric field
polarized along ŷ, that is

Einc(r) = E0e−i(ω0/c)ẑ·rŷ = E0e−i(ω0/c)r cos θ ŷ, (4a)

Hinc(r) = H0e−i(ω0/c)ẑ·rx̂ =
1

ζ0
E0e−i(ω0/c)r cos θ x̂, (4b)

where ζ0 is the free-space impedance and an exp(−iω0t), ω0 > 0 time dependence has been
assumed and suppressed. Inserting these equations into (2), one obtains

E(r) = E0

[
f ′(r) sin θ sin φr̂ +

f (r)

r

(
cos φφ̂ + cos θ sin φθ̂

)]
e−i(ω0/c) f (r) cos θ , (5a)

H(r)=
E0

ζ0

[
f ′(r) sin θ cos φr̂ −

f (r)

r

(
sin φφ̂ − cos θ cos φθ̂

)]
e−i(ω0/c) f (r) cos θ . (5b)

From these fields, a simple expression can be derived for the time-average Poynting vector as

S =
1

2
<e[E(r) × H∗(r)] =

1

2ζ0
|E0|

2

{
f ′(r) f (r)

r
sin θ θ̂ −

[
f (r)

r

]2

cos θ r̂

}
. (6)

The ‘complex’ Poynting vector, E × H∗/2, inside the cloak is real, and this is true whenever
the incident field exhibits a local plane-wave structure in the region captured by the space
compression. Furthermore, it is easily verified that ∇ · S = 0 everywhere, a result that confirms
that there is no power loss at any point of the cloak. The unit vector ŝ in the direction of the
Poynting vector within the material of the spherical cloak is given by

ŝ =
sin θ f ′(r)θ̂ − cos θ [ f (r)/r ]r̂√
[sin θ f ′(r)]2 + [cos θ f (r)/r ]2

. (7)

This unit vector ŝ defines the tangent to the power-flow rays at each point in the material of the
cloak and can be interpreted in terms of a generalized ray-direction, thus leading to pictures that
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Figure 1. Power flux and wave fronts inside an ideal spherical cloak with b = 2a
for plane wave illumination. The function f is given in (3). (a) Generalized ray
trajectories; (b) direction of the tangent to the wavefronts and (c) direction of the
normal to the wavefronts.

resemble ray-path propagation in inhomogeneous isotropic media. However, conventional ray
interpretation is not fully possible because of the anisotropy of the medium.

The generalized ray-paths inside the cloak are plotted in figure 1(a) from (7) for the case
b = 2a. It is apparent that the rays penetrate the cloaking material while avoiding the central
free-space cavity.

Within the transformational optics framework (see, for instance [1]), the power-flow rays
are directly defined from a mapping of the free-space incident ray-fields to the incident ray-fields
‘compressed’ within the spherical cloak material by the coordinate transformation function
f (r). We shall now show that the rays obtained from this mapping are identical to the power-
flow rays obtained from the Poynting vector. Indeed, the equation of the incident ray-field at
a distance ρ0 from the z-axis is r = ρ0/sinθ , while the equation of the ‘compressed’ ray-field
within the material of the spherical cloak is f (r) = ρ0/sin θ from which we obtain

dr = −
f (r) cos θ

f ′(r) sin θ
dθ. (8)

The unit tangent vector t̂ at a generic point in the cloak is

t̂ =
θ̂rdθ + r̂dr√
(dr)2 + (rdθ)2

, (9a)

which (8) converts to

t̂ =
sin θ f ′(r)θ̂ − cos θ [ f (r)/r ]r̂√
[sin θ f ′(r)]2 + [cos θ f (r)/r ]2

. (9b)

Comparing (9b) with (7) shows that t̂ = ŝ, that is, the unit tangent vector at any point of the rays
formed by simply mapping the original rays through the field transformation function f (r) is
equal to the unit vector in the direction of the Poynting vector at that point. We have proven this
for each straight-line ray of an incident plane wave illuminating the spherical cloak. However,
because the incident rays of any source (lying outside the cloak) illuminating the spherical

New Journal of Physics 11 (2009) 113011 (http://www.njp.org/)

http://www.njp.org/


6

cloak are straight lines in free space, each incident ray can be considered locally as part of
a plane wave with an unlimitedly high frequency. Thus, the proof holds for any incident ray
illuminating the spherical cloak. In other words, the rays defined by the Poynting vector in a
spherical cloak illuminated by an arbitrary incident field are identical to the rays formed by
mapping the incident rays through the compression function f (r).

The equiphase wavefronts are obtained by equating the argument of the exponential in
equations (5) to a constant: f (r)cos θ = constant, so that f ′(r)cos θdr − f (r) sin θdθ = 0. The
unit tangent vector to these equiphase wavefronts is then

τ̂ =
θ̂rdθ + r̂dr√
(dr)2 + (rdθ)2

=
sin θ [ f (r)/r ]r̂ + f ′(r) cos θ θ̂√

f ′(r)2 cos2 θ + [sin θ f (r)/r ]2
, (10)

which is plotted in figure 1(b). Comparing (10) with (7) shows that the tangents to the wavefronts
are rotated 90◦ with respect to the Poynting vector lines (power-flow rays). This occurs at any
plane of constant φ and holds for any compression function f (r).

The local differential propagation constant normal to the equiphase wavefront surfaces is
given by

k0 = −
ω0

c
∇[ f (r) cos θ ] =

ω0

c

[
f (r)

r
sin θ θ̂ − f ′(r) cos θ r̂

]
(11)

and its direction is shown in figure 1(c). It is worth noting that the local normal to the wavefronts
is not aligned with the Poynting vector, in contrast to what happens for conventional rays. The
magnitude of the local differential phase velocity normal to the wavefronts is

v0 =
ω0

|k0|
=

c

| f ′(r)|
√

cos2 θ + {sin θ f (r)/[r f ′(r)]}2
, (12)

where c is the free-space speed of light. The magnitude of the phase velocity along the Poynting-
vector rays is therefore

vray =
v0

|ŝ · k̂0|
=

c

| f ′(r)|

√
cos2 θ + [sin θ r f ′(r)/ f (r)]2. (13)

Along the ray path inside the cloak, the generalized rays propagate with an average phase
velocity greater than the speed of light and recover, as they exit, the same phase as the plane
wave along the straight path. The latter statement can be easily verified by considering an
incident ray at a distance ρ0 from the z-axis, as shown in figure 2. In the absence of the cloak,
the time delay accumulated by the ray along the path from the point A to the point B is

T =
2

c
|z0|, (14)

where 2z0 is the distance between A and B. On the other hand, in the presence of the cloak, the
time delay is

T ′
=

∫ L

0

dl

vray
= −

θ0∫
π−θ0

f (r)

c sin θ
dθ = −

ρ0

c

θ0∫
π−θ0

dθ

sin2 θ
=

2

c
ρ0 cot θ0 =

2

c
|z0|. (15)

Hence, as expected, all the rays travel from one side of the cloak to the other in the same time
as they would take in the absence of the cloak.
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Figure 2. Geometry for the calculation of the time delay inside the cloak.

3. Group and energy-transport velocities in bianisotropic media

Consider Maxwell’s equations in k–ω space for lossless, homogeneous, spatially non-
dispersive, source-free media

k × E(k) − ωB(k) = 0, (16a)

k × H(k) + ωD(k) = 0, (16b)

with bianisotropic constitutive relations

D(k) = ε(ω) · E(k) + τ (ω) · H(k) (17a)

B(k) = µ(ω) · H(k) + ν(ω) · E(k) (17b)

in which the exp[i(k · r − ωt)] space-time dependence has been suppressed, where the
rectangular components of the propagation vector k can take any values on the real line,
(−∞, −∞, −∞) < (kx , ky, kz) < (+∞, +∞, +∞). In a lossless medium, the permittivity,
permeability and magnetoelectric constitutive dyadics obey the relations

µ = µ∗

t , ε = ε∗

t ν = τ ∗

t . (18)

Elimination of all the fields but E from (16) and (17) gives [11, section 2.3]

[(k + ωτ ) · µ−1
· (k − ων) + ω2ε] · E = 0, (19)

from which the dispersion equation follows:

Det[(k + ωτ ) · µ−1
· (k − ων) + ω2ε] = 0, (20)

where k is the antisymmetric dyadic defined as

k =

 0 −kz ky

kz 0 −kx

−ky kx 0

 . (21)
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Because the medium is lossless and k is a real propagation vector, energy conservation requires
that the solutions ω(k) to (20) be real. Also, it can be proven [12] that for lossless, homogeneous,
spatially non-dispersive, bianisotropic material that is also reciprocal, solutions for a given ω

come in pairs with propagation vectors k and −k∗, which equals −k for the real k propagation
vectors considered here in three-dimensional (3D) Fourier k-space.

Depending on the values of the constitutive dyadics, more than one characteristic value
of each positive or negative ω(k) may satisfy (20) and each of these characteristic values
generally has a different associated characteristic field solution to (16) and (17). If this is the
case, that is, there exists more than one characteristic wave solution to (16) and (20), then in
the following derivations, ω(k) refers to any one of these characteristic values and the fields
are those associated with that particular characteristic value.

3.1. Wavepacket and group velocity

The real space-time fields in the medium can be expressed as a four-fold integral consisting of
a 3D Fourier transform of the fields in k space and an analytic Fourier transform over positive
frequencies ω [13, chapter 5]. Moreover, for any one characteristic value of ω(k) > 0 obtained
from the dispersion equation (20), the frequency Fourier transform reduces to this one discrete
value and we have for the electric field

E(r, t) = 2<e
∫
k±

E(k)ei[k·r−ω(k)t]dk, (22)

with dk = dkxdkydkz and the integration limits k± are (−∞, −∞, −∞) < (kx , ky, kz) <

(+∞, +∞, +∞). A wavepacket is defined by assuming that the wave propagation vectors are
concentrated about a central propagation vector k0 such that E(k) ≈ 0 unless |k − k0|/|k0| =

|1k|/|k0| � 1. Assuming ω(k) is expandable about k0, we have

ω(k) = w(k0) + ∇kω(k0) · 1k + O
[
|1k|

2
]

(23)

so that E(r, t) in (22) can be approximated as

E(r, t) ≈ 2<e

ei[k0·r−ω0t]
·

∫
1k

E(1k + k0)e
i1k·[r−∇kω(k0)t]d1k

 (24a)

or simply

E(r, t) ≈ <e
{
g[r − ∇kω(k0)t]e

i[k0·r−ω0t]
}
, (24b)

where ω0 = ω(k0) and g(r) is an envelope function that varies slowly over a distance equal to
the wavelength λ0 = 2π/|k0| in the medium. The velocity of this envelope or wavepacket is
called the group velocity and is determined from (24b) as

vg(k0) = ∇kω(k0), (25)

which is not necessarily in the same direction as the phase velocity vp = (ω0/|k0|)k̂0. As
previously explained, if the material is reciprocal, the group velocities in the ±k0 directions
are equal and thus only values of (k0x , k0y, k0z) > 0 as well as ω(k) > 0 need to be considered
for reciprocal material.
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3.2. Proof that group and energy-transport velocities are equal

Taking the differential of (16a) and (16b) dotted into H∗ and E∗, respectively, one obtains

[dk × E + k × dE − d(ωB)] · H∗
= 0, (26a)

[dk × H + k × dH + d(ωD)] · E∗
= 0. (26b)

By subtracting these two equations and then using the constitutive and lossless relations in (17)
and (18) for bianisotropic media leads to

dk · S(k) = U (k)dω = U (k)dk · ∇kω(k), (27)

where

S = <e[E(k) × H∗(k)]/2 (28)

is the time average Poynting vector (power flow per unit area) and

U (k) =

[
E∗

·
∂(ωε)

∂ω
· E + H∗

·
∂(ωµ)

∂ω
· H + E∗

·
∂(ωτ )

∂ω
· H + H∗

·
∂(ων)

∂ω
· E

]
/4 (29)

is the energy density in a lossless, homogeneous, frequency dispersive (but spatially non-
dispersive), bianisotropic medium [14]. Since (27) holds for all dk, it follows that

∇kω(k) = S(k)/U (k), (30)

where

ve(k) = S(k)/U (k) (31)

is the ‘energy-transport velocity’ for a wavepacket with phase velocity in the k-direction. The
relationships in (25), (30) and (31) can be summarized in the one extended equation

vg(k0) = ∇kω(k0) = S(k0)/U (k0) = ve(k0), (32)

which says that the group and energy-transport velocities of a wavepacket are equal in a lossless,
homogeneous, frequency dispersive (but spatially non-dispersive), bianisotropic medium.

4. Evaluation of group and energy-transport velocities in a spherical cloak

In order to evaluate the group and energy-transport velocities in a spherical cloak, specific
frequency dependencies must be assumed for the relative constitutive dyadics. These frequency
dependencies may be significantly different for the permittivity and permeability dyadics, but
they are assumed to be equal in accordance with (1) at a center frequency ω0. Reasonable
functional forms for these frequency dependencies will be explicitly given in the next section.
Here, we simply let the relative permittivity and permeability dyadics have the general frequency
dependence

ε(ω)

ε0
= εr(ω)r̂r̂ + εs(ω)(θ̂ θ̂ + φ̂φ̂), (33a)

µ(ω)

µ0
= µr(ω)r̂r̂ + µs(ω)(θ̂ θ̂ + φ̂φ̂), (33b)
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where ε(ω0)/ε0 = µ(ω0)/µ0 such that

εr(ω0) = µr(ω0) = ( f/r)2/ f ′, (34a)

εs(ω0) = µs(ω0) = f ′, (34b)

but they are not necessarily equal for ω 6= ω0. Note that εr, εs, µr, µs are elements of the relative
permittivity and permeability dyadics.

The expressions in (25) and (31) for the group velocity and energy-transport velocity
have been derived under the assumption that the medium is homogeneous. In order to apply
these equations to the inhomogeneous material of the spherical cloak, we let the local values
of ε(ω)/ε0 and µ(ω)/µ0 in (33) form part of an infinite homogeneous medium, insert those
values into (20), and solve for ω(k). (The group and energy-transport velocities evaluated under
this assumption of ‘local homogeneity’ give the ‘ray-optics approximation’ to the velocity
of an actual pulse propagating in an inhomogeneous spherical cloak—an approximation that
becomes more accurate with less variation per wavelength in ε(ω)/ε0 and µ(ω)/µ0 [15, sections
1.6 and 1.7]. The issue that we are addressing here in section 4 is the discrepancy that occurs
between the group and energy-transport velocities if it is not realized that the fields in the
cloak separate into uncoupled E and H waves. This discrepancy exists independently of the
accuracy of the ray-optics approximation of local homogeneity that allows us to apply (25)
and (31).) Letting the local spherical components (kr, kθ , kφ = 0) coincide with the rectangular
components of k of the wavepacket in the associated infinite homogeneous medium, we find
that the dispersion equation (20) can be locally factored as

FE(k, ω)FH(k, ω) = 0, (35)

where

FE(k, ω) =
ω2

c2
−

1

εs(ω)

[
k2

r

µs(ω)
+

k2
θ

µr(ω)

]
, (36a)

FH(k, ω) =
ω2

c2
−

1

µs(ω)

[
k2

r

εs(ω)
+

k2
θ

εr(ω)

]
. (36b)

The individual dispersion equations FE(k, ω) = 0 and FH(k, ω) = 0 admit two, generally
different uncoupled solutions, ω = ωE(k) and ω = ωH(k), respectively, corresponding to a local
E wave (Hφ = 0) and a local H wave (Eφ = 0); specifically

EE(k) = EE0φ̂ ei[k·r−ωE(k)t], (37a)

HE(k)=
EE0

ωEµ0

(
kθ

µr
r̂ −

kr

µs
θ̂

)
ei[k·r−ωE(k)t], (37b)

HH(k) = −HH0φ̂ ei[k·r−ωH(k)t], (38a)

EH(k)=
HH0

ωHε0

(
kθ

εr
r̂ −

kr

εs
θ̂

)
ei[k·r−ωH(k)t]. (38b)

The individual group velocities of the E and H waves in (37) and (38) can be determined
from the identities

∇kωE(k)=
−(∇k FE)ωE

(∂ FE/∂ωE)k
, ∇kωH(k)=

−(∇k FH)ωH

(∂ FH/∂ωH)k
. (39)
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The Poynting vector S(k) and the energy density U (k) for the E and H wave fields can be
determined from (28) and (29), respectively. In all we find for k = k0, after using (11) and (34),
that

∇kωE(k0) = SE(k0)/UE(k0) =

−2c
(

cos θ r̂ −
r f ′

f sin θ θ̂
)

[ ∂

∂ω
(ωεs) + cos2 θ ∂

∂ω
(ωµs) + r2 f ′2

f 2 sin2 θ ∂

∂ω
(ωµr)]ω=ω0

(40a)

∇kωH(k0) = SH(k0)/UH(k0) =

−2c
(

cos θ r̂ −
r f ′

f sin θ θ̂
)

[ ∂

∂ω
(ωµs) + cos2 θ ∂

∂ω
(ωεs) + r2 f ′2

f 2 sin2 θ ∂

∂ω
(ωεr)]ω=ω0

(40b)

which confirms the general result in (32) that the group and energy-transport velocities are equal.
We also note that ŝ(k0) = SE(k0)/|SE(k0)| = SH(k0)/|SH(k0)|. However, the group-energy
velocity in (40a) of the E-wavepacket is not necessarily equal to the group-energy velocity
in (40b) of the H-wavepacket even though ε(ω0)/ε0 = µ(ω0)/µ0, because the frequency
derivatives of the relative permittivity and permeability dyadics are not necessarily equal at
ω0. The necessary and sufficient condition for the group-energy velocities of both the E-wave
and H-wavepackets to be equal can be found by requiring that ωE(k) = ωH(k); specifically

εs(ω)µr(ω) = µs(ω)εr(ω) (41)

for ω in the neighborhood of ω0. Note that (41) does not imply that ε(ω)/ε0 = µ(ω)/µ0.

4.1. Discrepancy between the group and energy-transport velocities if the E- and H-wave
fields are not treated separately

If one does not realize that the fields in the spherical cloak uncouple into E-wave and H-wave
fields with associated wavepackets that travel generally with different group-energy velocities,
then one gets for the group velocity with k = (kr, kθ , kφ = 0)

vg(k) = ∇kω(k) =
−[∇k(FE FH)]ω
[∂(FE FH)/∂ω]k

(42a)

which evaluates as ω → ω0 to [assuming for simplicity that limω→ω0 (FH/FE) = 1]

vg(k0) = ∇kω(k0) = −4c
[

cos θ r̂ −
r f ′

f
sin θ θ̂

]/
[ ∂

∂ω
(ωεs) + cos2 θ

∂

∂ω
(ωµs) +

r 2 f ′2

f 2
sin2 θ

∂

∂ω
(ωµr)

+
∂

∂ω
(ωµs) + cos2 θ

∂

∂ω
(ωεs) +

r 2 f ′2

f 2
sin2 θ

∂

∂ω
(ωεr)

]
ω=ω0

(42b)

and for the energy-transport velocity

ve(k0) =
S(k0)

U (k0)
= −2c

[
cos θ r̂ −

r f ′

f
sin θ θ̂

]/
[ ∂

∂ω
(ωεs)(1 − sin2 θ sin2φ) +

∂

∂ω
(ωµs)(1 − sin2 θ cos2 φ)

+
r 2 f ′2

f 2
sin2 θ

( ∂

∂ω
(ωµr) cos2φ +

∂

∂ω
(ωεr) sin2φ

)]
ω=ω0

. (43)
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Figure 3. Ray and group velocities for different rays inside the cloak for different
values of the incident ray distance from the z-axis, ρ0.

Unless (41) is satisfied, the group and energy-transport velocities in (42b) and (43) are not
equal and neither of them give the group-energy velocity in (40) of the E wave or the H wave.
Failure to recognize that the spherical-cloak material supports two uncoupled wavepackets and
that these wavepackets can have different group-energy velocities if the variation of µ(ω)/µ0

and ε(ω)/ε0 do not satisfy (41) for ω 6= ω0, even though µ(ω0)/µ0 = ε(ω0)/ε0, leads to the
imperfect results in (42b) and (43) for the group and energy-transport velocities in the spherical
cloak, rather than the correct results in (40).

5. Numerical results

In order to numerically evaluate the group and energy-transport velocities inside the spherical
cloak, we shall assume the same realistic frequency variations for the relative permittivity and
permeability dyadics as those adopted in [4]:

• εs(ω) and µs(ω) can be assumed to be slowly varying with frequency since εs(ω0) =

µs(ω0) > 1, and thus approximately constant

εs(ω) = µs(ω) = f ′ (44)

• a Drude model is assumed for εr(ω), namely

εr(ω) = 1 −

ω2
0

[
1 −

( f
r

)2 1
f ′

]
ω2

(45)

• a Lorentz model is assumed for µr(ω), namely

µr(ω) = 1 +
3ω2

0

[
1 −

( f
r

)2 1
f ′

]
ω2

0 − 4ω2
. (46)

Note that these values of εr, εs, µr, µs satisfy (34) at ω = ω0.
The expressions in (44)–(46) for the constituent parameters have been used together

with (3) and (40) to numerically calculate the values of the group-energy velocities at the
frequency ω0 inside a spherical cloak with b = 2a. Figure 3 shows the values obtained for
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(a) (b) (c)

Figure 4. Characteristic wave velocities inside the spherical cloak. (a) Ray
velocity, (b) group-energy-transport velocity for the H waves and (c) group-
energy-transport velocity for the E waves.

different values of the incident ray distance ρ0 from the z-axis. It is apparent that the group-
energy velocities for the E and H waves have similar behaviors but different values inside
the cloak. The corresponding values of the ray velocity given in (13) are also depicted
on the same plot. Finally, bidimensional plots of the ray velocity and the group-energy
velocities for E and H waves are shown in figures 4(a)–(c), respectively. The generalized ray
trajectories [ŝ(k0)], which are the same for both the E and H waves, are also shown in these
figures.

As the plots in figures 3 and 4 indicate, there is an infinitely large pulse time delay for
the ray that is directed toward the center of the cloak, a result found previously by Chen and
Chan [4].

6. Conclusion

Characteristic phase, ray, group and energy-transport velocities have been determined in
spherical electromagnetic cloaks with material constitutive parameters having realistic causal
frequency variations. After providing explicit expressions for the phase and ray velocities,
it is confirmed that the ray travel time across the space occupied by the cloak is the same
with and without the cloaking material. Particular attention is given to the group and energy-
transport velocities. The general theorem stating that the group velocity [∇kω(k0)] equals the
energy-transport velocity [S(k0)/U (k0)] in linear, lossless, homogeneous, frequency dispersive,
source-free, bianisotropic material applies to a single characteristic local wavepacket in that
material. If the dispersion equation allows for more than one characteristic solution and thus
more than one characteristic positive frequency ω(k) and wavepacket, the general theorem
applies to each separate characteristic frequency and wavepacket but not to the combined
dispersion equation and the combined fields of the characteristic waves. The discrepancy
between local group and energy-transport velocities in the anisotropic material of spherical
cloaks, that arises from a cursory application of the formulae for these velocities, is traced to
the failure to recognize that the wavepacket solution in the spherical-cloak material uncouples
into E and H characteristic waves with different characteristic frequencies if the frequency
variation of the relative permittivity and permeability dyadics are not the same. A necessary

New Journal of Physics 11 (2009) 113011 (http://www.njp.org/)

http://www.njp.org/


14

and sufficient condition is determined for the frequency variation of the relative permittivity and
permeability dyadics of the cloak material that produces equal group-energy velocities for the
E- and H-wavepackets. In obtaining these results, we have provided a relatively simple,
transparent derivation of wavepacket group velocity, energy-transport velocity, and their
equality in lossless, homogeneous, frequency dispersive, source-free, bianisotropic material.
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