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Modeling and Simulation of SAW Driven Microfluidic Biochips

e Multiphysics: Coupling of piezoelectrics and compressible Navier-Stokes
e Multiscale: Homogenization of the Navier-Stokes equations

¢ Multilevel: Simulation by multilevel finite element discretizations

Optimization of SAW Driven Microfluidic Biochips
¢ Projection Based Model Reduction

¢ Domain Decomposition & Balanced Truncation

¢ Optimal Design of Capillary Barriers
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Applications of Active Microfluidic Biochips

Biochips of the microarray type are controllable
biochemical labs (lab-on-a-chip) that are used
for combinatorial chemical and biological analy-
sis in pharmocology, molecular biology, and cli-
-nical diagnostics.

The current trend is to design active biochips
based on nanopumps featuring piezoelectrically
actuated SAWs (Surface Acoustic Waves) pro-
pagating on the surface of the chip like a minia-
turized earthquake. The elastic waves interact
Biomedical Analysis with the fluid and produce a streaming pattern.
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Application of Active Microfluidic Biochips
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Acoustic streaming induced
by surface acoustic waves

The surface acoustic waves are excited by inter-
digital transducers and are diffracted into the
device where they propagate through the base
and enter the fluid filled microchannel creating

a sharp jet on a time-scale of nanoseconds.

The acoustic waves undergo a significant damping
along the microchannel resulting in an acoustic
streaming on a time-scale of milliseconds.

The induced fluid flow transports the probes to

reservoirs within the network where a chemical
analysis is performed.
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Coupling Surface Acoustic Waves and Fluid Flow
Piezoelectric Equations
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Piezoelectrically Actuated Surface Acoustic Waves

Piezoelectric effect in materials with a polar axis:

‘éﬁé{;ﬁjﬁ zﬁﬁ Outer ele;:tric field E causes mechanical displacement
| | | <. 0 :
lﬁ‘é[@% 1 81;]; -~ Vio(wE) =0 inQ:=02x(0,T),

V-DWE) =0 inQ:=02x(0,T).
The stress tensor o(u, E) is related to the linearized
strain tensor e(u) = 5(Vu+ (Vu)t) by the generalized

Hooke’s law
O'ij<u, E) = Cjjkl €k1<U> + e Ey .

The displacement field satisfies the constitutive equation
Di(u,E) = € Ej + P

with the polarization P; = eje(u).
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Surface Acoustic Waves: Time-Harmonic Approach

SAWs are usually excited by interdigital transducers located at I'q, operating at

a frequency f ~ 100 MHz with wavelength A =40 pm. The time-harmonic ansatz
leads to the saddle point problem

0P
/Cijkl €k1<11) Eij<\_/'> dx — w? /ui v; dx + /ekij — €ij(\_/'> dx = <o, v>,VvEV,
0 0 o o Ox T
ov 0d 0¥
gk Eplu) — d — i —dx =<D,¥>, veW,
g/ze’]k eii(u) ox, X éej ox; Ox X =< >, Ue

n K

Interdigital transducer Position of IDT on PE substrate
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Time-Harmonic Approach: Fredholm Alternative
The saddle point problem can be written in operator form as follows
(A-wlju + B® =f,
Bu - Cé=g¢g.
Here, A: VCHY(Q)¢ -~ V*, B:HY(Q)— V*and C: W C H(Q) — W* are boun-
ded linear operators. Moreover, A is symmetric, V-elliptic, and C is symme-
tric and W-elliptic. Elimination of ® results in the Schur complement system

()  Sgu = (S—wTu=f+BC'g , S=A+BC'Bx.
Theorem. The Schur complement S has at most countably many real eigenva-

lues w? > 0.i € IN. If w? is not an eigenvalue of S, then () has a unique solution
u € V. Otherwise, () is solvable, if f + BC 'g € Ker S°. In either case

<S,V, W >
(k| inf su | VW > | > 068 >0.
vA0 w0 [[Vlielw]ig
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Finite Element Discretization of the Time-Harmonic Problem

Discretization in space by P1 conforming FE elements w.r.t. an adaptively gene-
rated hierarchy of triangulations leads to the discrete saddle point problem resp.
to the discrete Schur complement system

(Ah - w2Ih)uh + Bh (I)h = fh

) o Spouy = (Sp—wu, = £, + BuGC;lan
Biuy, — Cpdp = g h,wUh (Sh h)Up h hCp 8n

where S;, = A, + BthlBi‘l.
Theorem. Assume that the continuous operator S, fulfills the inf-sup condition

(+*). Then, there exist hy;, > 0 and (,,;, > 0 such that for all h < h,y, its dis-
crete counterpart Sy, , satisfies

< S >
inf  sup | < SV, Wi > | > By 2 Buin -
Vi #0 wyp #0 thHl,QHWhHLQ
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Construction of Multilevel Preconditioners

Assume that w € IR has been chosen such that
inf su VAU
u4o0v=o [U[V]

Choose P! as the block diagonal preconditioner

u
P

A, B
Bt -C

>~, > 0 where AU = (

[

Pl = (18 (Qj) s.th. I‘7§1 2'z < 2'P7lz < ’7731sz.

Theorem. Under the previous assumptions there holds
vp VIV < VIPI2A P2V < Ty | A VIV
Corollary. Let v,,v5,7¢ be lower bounds for the spectrum of A, A, C. Then

[T (va +[CI 7 Bhun) vV < VIATESATAY < 3t (A +cT B vV
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Realization of A and C by multilevel preconditioners of BPX-type and

Multilevel Preconditioned Iterative Solution

¢ solution of the preconditioned Schur complement system by CG,
¢ solution of the preconditioned saddle point problem by BICGSTAB , GMRES.

Level SC-CG BICGST GMRES Level | SC-PCG PBICGST | PGMRES
time | iter | time | iter | time | iter time | iter | time | iter | time | iter

3 015 | 74 | 0.10 | 65 | 0.14 | 17 5 2.5 48 1.1 33 1.2 6

4 1.4 | 148 | 0.75 | 137 | 1.7 56 6 12 52 5.2 39 5.9 7

5 29 | 311 | 7.6 | 324 | 32 | 206 7 70 55 23 41 25 7

6 440 | 872 | 75 | 678 | 530 | 758 8 290 | 57 92 44 | 100 8
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Performance of the Multilevel Preconditioned Iterative Solver
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Numerical Simulation: Surface Acoustic Waves

Electric Potential Wave (100 MHz) Displacement Vectors
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Numerical Simulation: Surface Acoustic Waves

Displacement Wave Amplitude Displacement Wave Amplitude
in xy-direction in xy-direction
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Numerical Simulation: Surface Acoustic Waves

Phaseshift of x;- and x,-displacements Bulkwave excitation (200 MHz)
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Homogenization of the

Compressible Navier-Stokes Equations
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Acoustic Streaming: Compressible Navier-Stokes Equations

The piezoelectrically actuated SAWs penetrate into
the microchannel and generate a two-scale fluid flow.

(00 vT)Y) = Ve Av(E+ ) V(Ty).

ap :
LiNbOy 8t2 +Vepyv) =0 inQy:=Qyx(0,Ty) .

with boundary conditions

plasti chip

v(ix+u(x,t),t) = {;:(X,t) on I'yp .

Two time-scales:
o Penetration of SAWs into channel (nanoseconds)

¢ Induced acoustic streaming (milliseconds)
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Separation of Time-Scales by Homogenization

Consider the expansion of v, p, and p in the scale parameter € > 0 (max. dis-
placement of the walls):

p=po+ep +ep + 0F,

p=py+ep +ep + 0,

v=vy+ev + eV + 0.

Collecting all terms of order O(e) results in the linear system

ov :
Poatl—ﬂAVl— <€+g) V;V'V1)+VP1=0 in Q,
£+p0V'V1:g in Qz,
. u
P1 = C(2) pr In Qy , vi= ot onlsp,

where v; = ev/,v? := e2v" etc. and ¢2 = ayp;  (small signal sound speed).

The linear system describes the propagation of damped acoustic waves.
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Acoustic Streaming by Time-Averaging

Collecting all terms of order O(¢*) and performing the time-averaging

1 to+T q
W) ! wdt |
=g )
where T := 27 /w, we arrive at the Stokes system:
ov :
—1n Avy — (£+g) V(V-vy) + Vp2 = (- py Btl — po[Vvilvi) in Qs ,

po V-va = (=V-(pv1)) in,
Vo = <[ } > on I‘27D .

The Stokes system describes the stationary flow pattern caused by the high
frequency surface acoustic waves (acoustic streaming).
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Periodic Solutions and Oscillating Equilibrium States

Theorem (Existence and uniqueness of periodic solutions)

Assume that the forcing term is a periodic function of period T. Then, the
compressible Navier-Stokes equations have a unique weak periodic solution

(Vper, Pper) € H'((0, T); H™H(Q) x Lg(€2)) -

Theorem (Convergence to an oscillating equilibrium state)

Let (V,D) resp. (Vper, Pper) be extensions of the solution resp. the periodic
solution of the Navier-Stokes equation with periodic forcing term to arbi-
trary large 7 > 0 and assume (V",p") , (¥}, D) € L*((0,7);H), where

pper
H:=L%*Q) x L3(2). Then, there holds
[(¥(t), B(t)) = (Vper(t), Bperlt)) 1 < C 712
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Numerical Simulation Tools for the Homogenized Navier-Stokes Equations
o First Order System (Periodic Navier-Stokes Equations)

o Discretization in time by the ®-scheme until a specific condition for

periodicity is reached.

o Discretization in space by Taylor-Hood elements w.r.t. adaptive gene-

rated hierarchies of simplicial triangulations.

o Second Order Equations (Time-Averaged Stokes System)

o Same techniques as for the time-harmonic acoustic problem.
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Numerical Simulation: Acoustic Streaming

Effective force Velocity field
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Numerical Results: Pressure Distribution and Effective Force

Left: Pressure p'!) at t =1.42 us , Right: Effective force (with reflection)




Department of Mathematics, University of Houston
Institut fiir Mathematik, Universitit Augsburg

Numerical Simulation: Acoustic Streaming

Nt it et

AL S ISR A S O A AW R W e it
' Wi 1l '|'|"Il i.__ll_l F g M
I ! W

Strong damping of SAWs after penetration into fluid
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Numerical Results: Snapshot of Velocity Field

v in mmfs
0.0173
I:0.0‘l S6
: fo.o121
0.01049
0.008G6
0.00693
0.00519

0.003496

0.00173

2.21e-38

Acoustic streaming: Velocity field v? in slab x5 > 0
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Left: Experimental measurement , Right: Results of numerical simulation
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Optimal Design of Microfluidic Biochips
Projection Based Model Reduction
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Shape Optimization of the Stokes System

Left: Microfluidic biochip with lithographically produced

network of channels and reservoirs.

Given a velocity field v¢ = (v{, v{)" and a pressure

distribution p!, we want to design the microfluidic bio-
chip such that

T

1
V7%171"9 J(v,p,0) = 5 / / <|V—Vd\2+\p—pd]2+a \u]2> dx dt
0 €)6)

subject to the PDE constraints (Stokes flow) on the state (v,p)

@—uAerVp = u in (0),

ot
Vv = 0 inQ(0),
and subject to bilateral constraints on the design variable 6.
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Semi-Discretized Shape Optimization Problem for the Stokes System

Let ©:= {0 c RS | 6™ <6, <™ 1<i<d}, and A(§), M(8) € ™ B() € R™ as well as
C(8) € R¥®, D(0) € R™ F(#) € R¥* and d(t) € R4

Consider the optimization problem
T

Higf@J(v,p,H) , J(v,p,0) = /\C(O)V(t)+D(0)p(t)+F(0)u(t)—d(t)]z dt

subject to

(Méw g) u (pgg) o (ggzi BT0<0>> (pﬁ;) . (Ifégou(t) e
Mv(0) =v°,
where K(0) € R™X L(0) ¢ Iijik.

o
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Semi-Discretized Time-Dependent Stokes System

Hessenberg index 2 differential-algebraic system:

(FO&G () () (o venm
Mv(0) = v’ .

Theorem (Continuous Dependence on the Data).
Let A/ M € R™" B € R™" m < n, and assume

(i) M is symmetric positive definite,

(i) A is symmetric positive definite on Ker B,
(iii) B has full row rank m.

Then there holds

() o W+ G ( 2 ) |
ol Julgz + |
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Proof. We introduce
II=1-B"BM'BY'BM!

as the projection onto Ker B! along Im B and split v(t) = vy(t) + vp(t), where
vi(t) € Ker B and  vp(t) .= M 'BYBM 'B") 'Lu(t)

is a particular solution of the second equation of the Stokes system.
The Stokes system transforms to

HM]_'IT%VH(t) = —QA_HTVH(t) + IKu(t) , te€(0,T],

=A

OMI v(0) = TIv° .

=M
The pressure p can be recovered according to
~ d
p(t) = (BM BT} (BM( - Ava(t) + Ku(t)) — Lut)
where K .= K — AM~'BT(BM'B") L.
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Projection Based Model Reduction
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Projection Based Model Reduction

- y(t) = Ay(t)+Bu(t), - y(t) = f(y(t)ult)t),
z(t) = Cy(t) z(t) = gly(t),t)

Replace y(t) € RN by Vy(t) , §(t) € R* , n < N, where V € RN and multiply
the state equation by W' ¢ R™™ (WTV =1 ¢ R™™).

— ¥(t) = WIAVy(t)+ W Bu(t), — J(t) = WIE(VF(t)ult).t),
zt) = Cy(t) t) = g(Vy(t)t)

Issues: Construction of the projectors, accuracy of the ROM.
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Projection Based Model Reduction
o Proper Orthogonal Decomposition (POD)

— Wide range of applicability (incl. nonlinear problems),
— Data driven,
— Quality of ROM depends on the selection of snapshots.

o Balanced Truncation Model Reduction (BTMR)

— Theory & Algorithms for linear time-invariant systems,
— Extension to nonlinear problems in progress (no theory so far).

o Reduced Basis Methods (RBM)

— In theory applicable to a large problem class,
— Can be tailored to different measures of approximation,
— Ideal formulation computationally intractable (approximate variants).
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Projection Based Model Reduction

Antoulas [2005] , Bai/DeWilde/Freund [2005]
Benner /Freund /Sorensen/Varga [2006] , Benner/Mehrmann/Sorensen [2005]
Dullerud /Paganini [2000] , Freund [2003]
Grepl/Patera [2005] , Grepl/Maday/Nguyen/Patera [2007]

Volkwein [2008] , Zhou/Doyle/Glover [1996]
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Balanced Truncation Model Reduction
for the Semi-Discrete Stokes System
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BTMR for DAEs including semi-discrete Stokes systems

Antil/Heinkenschloss /H [2009]
Cao/Li/Petzold /Serban [2000]
Mehrmann /Stykel [2005]

Stykel [2006,2008]
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Balanced Truncation MR of the Stokes Optimality System
a) State Equations

(o) a () = =(2'5) i)« ()we - ecom,
z(t) = Cv(t) + Dp(t) + Fut) , t€(0,T],
)

~ ~——

b) Adjoint Equations:

(S0 () -0 () ($)n - eom
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Balanced Truncation MR of the Stokes Optimality System

Projection Method: Choose matrices V, W € R"*P such that
v=0Iov w=1oIw , WMV =1.

Multiplying the state equations by W' and the adjoint equations by V! results in:
Reduced Order Optimality System

d . ~
&VH“) = —AVH<t> + Ku<t> , te <0aT]7

AN

Z(t) = Con(t) + Gu(t) —ﬁ%u(t) . te(0,T],
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Realization of the Balanced Truncation Model Reduction

Compute the controllability and observability Gramians P,Q € R™" as the solutions of the
Lyapunov equations

APM + MPA + KK' =0 , AQM + MQA + C'C = 0.
Factorize P = UU', Q = EE' and perform the Singular Value Decomposition
U'ME = ZS,Y' |, S, = diag(oy,-++,00), 01> 051, 1<i<n-1.
Compute V, W according to
V = UZS,"? | W = EY,S,"2.

where 1 <p <n is chosen such that o,,; < 7o, for some 7 > 0.

Note that VIPW = WIQV =S,
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Balanced Truncation Model Reduction of the Optimality System

Theorem (Balanced Truncation Error Bound).

Let z(t),q(t),t € [0,T], and z(t),q(t),t € [0, T], be the observations/outputs of the full order
and the reduced order optimality system and let o;,1 <i < n, be the Hankel singular values
from the singular value decomposition. Then, there holds

2=l <2 fulie (o + - + o),

la=dl <2 &l (o0 + - + o)
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ROM Based Shape Optimization:

Domain Decomposition & Balanced Truncation
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Domain Decomposition and Balanced Truncation Model Reduction

For design problems associated with linear state equations,
where the design only effects a relatively small part of the
computational domain, the nonlinearity is thus restricted

to that part and motivates to consider a combination
of domain decomposition and BTMR.

Such a design problem is, for instance, the optimal design
of capillary barriers in microfluidic biochips between the
channels and the reservoirs where the objective is to design
the barriers such that a filling of the reservoirs with a pre-
cise amount of DNA or proteins is guaranteed.
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Domain Decomposition & Balanced Truncation

Antil /Heinkenschloss/H [2009]
Antil/Heinkenschloss/H /Sorensen [2009]
Heinkenschloss /Sorensen/Sun [2008]

Sun/Glowinski/Heinkenschloss/Sorensen [2008]
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Domain Decomposition and Balanced Truncation Model Reduction
Consider a decomposition of the spatial domain €2(6) such that

QO) = [ULO) . UNWO)=0 , T():=0N00).

0 () 0

Domain decomposed shape optimization problem

inf J<V7p70> ) ‘]<Vap70> - J1<V7p> + J2<V7p70>7
6cO

where
J1<V,p> = / ‘C1V1<t> + D1p1<t> + F1U.<t> - d<t>’2 dt ,

5(v,p, 6 /£ r(t),t,0) dt .
0
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DDBT Model Reduction: Domain Decomposed State Equation

The domain decomposed semi-discretized state equations are as follows:

M;O]|] 0O 0] 0 0 Vi Ay B 0 0 | Ar 0 Vi K,
0 0‘ 0 O’ 0 0 P1 B11 0 ’ 0 0 ’ Blp 0 P1 L1
I N N T -
0 0| My6) 0 0 0 |d|wva|_ | 0 0 [ Axn(6) By(0) | Ax(6) 0 v, K,(0)
00| 0 0| 0 0 |dt]| p 0 0 | Bx(0) 0 | By(d) 0 P2 Ly(0)
N T e -
0 O ‘ 0 0 ’ M[‘(a) vr AI‘l BFII‘I« ’ Am(@) BEF(B) ’ A[T(e) Bg(@) vr Kr 0)

Balanced truncation model reduction is applied to the subproblem associated with subdomain 2;.
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DDBT Model Reduction: Optimality System Associated with {2,

State equations associated with subdomain 2;:
(v 0 )a ()= a5 (o) - (o) Gl )+ (5w
z1(t) = Cyvi(t) + Fipa(t) + Fopo(t) + Dyu(t) — d(t).

Adjoint state equations associated with subdomain ;:
(M 0)d AN (A BRY () (A 0 (Nl (CTY
0 0)dt\st) ) "\ Bu 0 )\ kit Bir 0 )\ kolt) Fl )7

ql(t) = K}‘)\l(t) + Lrll‘lil(w + Drll‘Zl (t)
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DDBTMR: Reduced Optimality System Associated with 24

Reduced state equations associated with subdomain €;:

d (%)
— Wi(t)= — WTALV¥i(t) - WIB; | Dolt) |,
dt
u(t)
Zyr(t) N () g V()
Zpr(t) | = C1Vivi(t)+ Dy | Po(t) | - Hy i polt) |
71(t) u(t) u(t)

Reduced adjoint state equations associated with subdomain €;:

d ~ R _ [ A )
—— M(t) = VITAHWl)\l(t)JrVITCl( oft) )
—74(t)
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DDBTMR: Optimality System Associated with €25(6) and T'(6)

State and adjoint state equations associated with the subdomain €,(6):
" o) (o)== (ot ™57 ) () ~(aaia o) (i) = ()0

(M50 0)E (20)= - (520 %50 ()~ (e o) (i) - (Setiedeinnid) )

State and adjoint state equations associated with the interface I'(0):

o) ()= (ol 7 ) (i) () - (557 57 (55 (e

(M 0) 5 ()= - Ul B0 ) o) (- (5 ™5™ () - (i) )

_|_
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Theorem [AHHO09] (Reduced Order Optimization Problem).

The reduced order optimality system obtained by Domain Decomposition and
Balanced Truncation Model Reduction represents the first order necessary
optimality conditions for the reduced order optimization problem

AN

ng(g:j(H) ) J<0> = 316’\1@17{’\1“@0) +32<§27ﬁ27%\r7ﬁ070>7

where the the reduced order funtionals jl and 32 are given by
T

J (VI p17VF pO /|Z1 dt ) J2(§27ﬁ27efaﬁ079> ::/£<{’\27ﬁ27{7\ryﬁ07t70)dt'
0
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Analysis of the Modeling Error
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Analysis of the Modeling Error

Full Order Model Reduced Order Model
J(0°) = inf J(6 JO) = inf J(0
) = inf_J(0) @) =, inf_ Ji6)

Goal: Derive upper bound for the modeling error
16"-8' < C (ap+1+-~+an)

in terms of the Hankel singular values in the BTMR of the optimality system
for the fixed subdomain (2;.
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Analysis of the Modeling Error

Lemma [AHHO09]. Assume that the objective functional J is strongly convex
. T . u
(A) (VJ<9> - VJ<9>) B-0) > k||d-0|

Then, if 8 € © and § € © are the solutions of the full order and the reduced
order optimization problem, there holds

0" =07 < &7 [VI(O)-VIE )|

Proof. Obviously, we have

VIO -6) > 0

Vi8> 0} = (VJ<9*>—V3<9*>)T<9*—H*> > 0.

Combining this with the strong convexity of J allows to conclude.
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The estimation of the gradients requires some more assumptions on the

objective functionals:

(Ay) The objective functional J; does not explicitly depend on the pressure,
i.e., it is supposed to be of the form

J1<V1> = %/ ‘C1V<t> + Dﬂl(t) - d<t)|2 dt.

0
(A3) The integrand £ in the ob jective functional

Jo(xg, X1, 0 /K Xg, Xr, t,0) dt,

where X, = (vy, p2)T, xr == (vr, pO)T, satisfies the Lipschitz conditions

/ ! / 1/2
Vb2, 50,,0) - vwe<x2,><r,t,e>u < Ly (2 =+ e =72}
uniformly in 6 € © and t € |0, T|, where w € {vy, v, pa, Po}-
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Theorem [AHHO09] (Estimation of the Gradients of the Objective Functionals).
Assume that (A), (A3) hold true and suppose that the Jacobians of the
matrices My (6), Mr(0) etc. are uniformly bounded in 6.

Then, there exists a constant C > 0 such that for 6 € ©

wae-vie) < of (23] (ke

where x; — X, etc. are given by

X § = V2 _02 XT §F = VI _GF
2_ 2_ A~ - — A~
P2 — P2 ’ Po—Do )’

o~ Az-Xz T }\I‘_XI‘
Mo 'UJ2_<H,2—R2> ) Hr 'LIJF_(KO_’?’O :

Xr —Xr
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Proof. For 0 there holds .
vI39)e = / (V4l(x2, %, t,0))70 dt +
0

T

/ (m ) ( (D0P2(9>g>x2<t) - (DeNz(H)%)u(t> ) it

Likewise, we have

AN

vJ9)Te =

°>H

<
<>
~
ol
o
<)
e
—
=
s
D
(@
=+
_|_
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Assumptions on the Semi-Discrete Domain Decomposed State Equations

(A4) The matrix A(f) € R™" is symmetric positive definite and the
matrix B(#) € IR™" has rank m. The generalized eigenvalues of
(A(0),M(0)) have positive real part.

The matrix Ay;(6) € R™*™ is symmetric positive definite and the

matrix By;(6) € R™"™ has rank m;. The generalized eigenvalues of
(A11(0),M11(6)) have positive real part.
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Lemma [AHHO09] (Estimation of the States and the Observations).

Let x = (xq, %9, xp)" with x; = (v, P1)1,1 <i< 2, xr = (vp, pr

)t and X = (X, X9, Xp)"

with X; =V; , X3 = (Vo,P2)% , Xr = (V1. Po)', be the states satisfying the optima-
lity systems associated with the full order and the reduced order model.

Then, under assumption (A,) and for v,

V2—if\2
VF_i’\F
Pz—ﬁz
Po — Po

71 — /Z\l
ZyT — ZyT
Zpr —ZpT

12

L2

<

(AN

0 _

c(s)

<cf(s)

there exists C > 0 such that

<0'p+1 +-+ an>,
L2

<o-p-|-1 T+ Un)a
L2

<0-p-|-]_+'+0-n>.

L2
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Proof. We construct an auxiliary system which has the same inputs as the
reduced order system:

B (o) = S (i) - s (5w

Z1(t) = Cyi¥ilt) + Fapalt) + Fopolt) + Dyult) — d(t),

) = (o))

Miv1(0) = vi¥ | Lyu(0) = ByM;VY + B rMp(6) vV (6).

Hence, the BT error bound gives

21 - /Z\l u
ZyT — ZyT < 2 <0p+1+“'+0n> vr
Zp7F B ZP,F L2 pO L2
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Cont’d proof. Now, we consider the error in the states
ey = (V1 — V1, V2 — Vo, Vp — i’\F)T . €y:=(P1—P1,P2— P2, Po — ﬁo)T,

which satisfies the system

E(6) Cft <2p§t;> - 4(9)(2;23) + <g1(§t>> , te(0,T]
M(6) = 0,

where g;(t) :=(0,0,Z,r — Z,r)". Theorem 1 implies
P1 — D1
Vo — V2 S C HZV,F - /Z\V,I‘HL2 3 P2 — P2 S C HZV,F -
Vr = Vr 1.2 Po = Po / |12
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Lemma [AHHO09] (Estimation of the Adjoint States).
Let x,xp as in Lemma 1 and assume that p = (uy, p,, uF)T with p; = (A, k)T,

1 <i<2,pp:= (A, ko) and fi = (Biy, iy, fip) " with fi; := >\17H2 <>‘27“2>Ta
fir = (Ar, Ko)! satisfy the optimality systems associated with the full order
and the reduced order model. Then, under assumptions (A,), (A3) and for

/\F
/\F

= (0 there exists C > 0 such that

(iiii)m c(|(2)],
(=), < e ()]s

VAN

> <0p+1 + -+ an),
2

L

VAN

o <o)
2

L
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Optimal Design of Microfluidic Biochips
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DDBT Model Reduction: Shape Optimization of Microfluidic Biochips

Microfluidic biochip (left) and capillary barrier (right)
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Shape optimization of a capillary barrier:
Initial Configuration (left), optimal design (right)
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Convergence of the multishift ADI (left) and Hankel singular values (right)
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DDBT Model Reduction: Shape Optimization of Microfluidic Biochips

€] m | Npgp (@) | Npgp (@)  Npgp () | Npg ()
1167 | 7640 509 7482 351
2 195 | 11668 | 596 11442 370
3201 | 16830 777 16504 451
4802 49238 | 1680 | 48324 766

Grid number £, number of observations m, and Degrees

of freedom (DoF) for the FOM and ROM in (2 and 4
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DDBT Model Reduction: Shape Optimization of Microfluidic Biochips

6" | 9.8997 | 9.7502 | 9.7498 | 9.8997 | 9.1000 | 9.2497 | 9.2504 | 9.0998

9.9016 | 9.7506 | 9.7498 | 9.9013 | 9.0980 | 9.2489 | 9.2500 | 9.0979

Optimal design parameters for the FOM (0*) and the ROM (5*)






