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Outline 

•  Very brief introduction to accelerated molecular dynamics methods 

Then I will focus on one recent advance: 

•  Local formulation of hyperdynamics for large systems 
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The time-scale problem 

We have some material system (e.g., adatoms on a surface or a 
strained region of solid).  

On some time scale, activated events will take place. 

Using molecular dynamics (MD), we can run about 1 microsecond 
-- might not even see first event. 

We need some other way to predict the long-time evolution. 
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The system vibrates in a 3N-dimensional basin many times before finding an 
escape path.  For each possible escape path, there is an associated section of 
dividing surface and a rate constant for escape through that dividing surface. 

Infrequent event system 
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Transition State Theory (TST) 

    TST escape rate = equilibrium flux through dividing surface at x=q 

                                                    (exact flux) 

                                               (harmonic approx.) 

     -  classically exact rate if no recrossings or correlated events 
     -  no dynamics required 
     -  excellent approximation for materials diffusion 
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The Problem 

Often we don’t know what the possible escape paths are.  
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The system vibrates in 3N-dimensional basin many times before finding an escape 
path.  The trajectory finds an appropriate way out (i.e., proportional to the rate 
constant) without knowing about any of the escape paths except the one it first 
sees.  In the AMD methods, we exploit this property, letting the trajectory find an 
appropriate escape path, but we carefully trick it into doing this more quickly. 

Accelerated Molecular Dynamics 
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AMD methods 

We coax the trajectory into finding its own way out of the state, 
and then we repeat that procedure for the next state, and so on.   

This approach (if it works) allows us to follow the state-to-state 
dynamics out to much longer times than we can reach with direct 
MD. 
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Hyperdynamics 

Parallel Replica Dynamics 

Temperature Accelerated Dynamics 

Accelerated Molecular Dynamics Methods 

• Parallelizes time. 
• Very general -- any exponential process. 
• Gives exact dynamics if careful. 
• Boost requires multiple processors 
  (AFV, Phys. Rev. B, 1998) 

• Raise temperature of MD in this basin. 
•  Intercept and block every attempted escape. 
• Accept event that would have occurred first at 

the low temperature. 
• More approximate; good boost.  
 (M.R. Sorensen and AFV, J. Chem. Phys., 2000) 

• Design bias potential that fills basins. 
• MD on biased surface evolves correctly from 

state to state. 
• Accelerated time is statistical quantity. 
 (AFV, J. Chem. Phys., 1997) 
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FIG. 1.  κ-dynamics trajectories are sampled from a TS surface that divides initial state i from 
possible final states j and l. Trajectories are followed until one is found which starts in i and goes 
directly to a product state without recrossing the TS. 

New AMD-like method: Kappa Dynamics 

Lu, Makarov and Henkelman, J. Chem. Phys. 133, 201101 (2010).  

No TST assumption 

Exponential boost 

Very parallelizable 

Requires accurate 
sampling 
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FIG. 1.  κ-dynamics trajectories are sampled from a TS surface that divides initial state i from 
possible final states j and l. Trajectories are followed until one is found which starts in i and goes 
directly to a product state without recrossing the TS. 

New AMD-like method: Kappa Dynamics 

Lu, Makarov and Henkelman, J. Chem. Phys. 133, 201101 (2010).  

No TST assumption 

Exponential boost 

Very parallelizable 

Requires accurate 
sampling 
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AMD methods 
•  Significant speedup over standard MD when barriers are high 

relative to temperature 
•  Often encounter unexpected behavior (e.g., surprising reaction 

mechanisms) 
•  The low-barrier problem is our biggest challenge for future 
•  Computational scaling with system size is also an important issue 

•  Spatially parallel TAD 
 [Shim, Amar, Uberuaga, and Voter, Phys. Rev. B 76, 

205439 (2007)] 
•  Today’s talk (local hyperdynamics) 

•  Recent introduction/review of the AMD methods:   
 Perez et al, Acc. Comp. Chem. Res., 5, 79 (2009). 
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Hyperdynamics 
Builds on umbrella-sampling techniques (e.g., Valleau 1970’s) 

Assumptions: 
- infrequent events 

- transition state theory (no recrossings)   

AFV, J. Chem. Phys. 106, 4665 (1997) 

V+ΔV 

V 
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Hyperdynamics 
Builds on umbrella-sampling techniques (e.g., Valleau 1970’s) 

Assumptions: 
- infrequent events 

- transition state theory (no recrossings)   

AFV, J. Chem. Phys. 106, 4665 (1997) 

Procedure: 
-  design bias potential ΔV (zero at dividing surfaces; causes no recrossings) 

-  run thermostatted trajectory on the biased surface (V+ΔV) 

-  accumulate hypertime as 

         thyper= ΣΔtMDexp[ΔV(R(t))/kBT] 

V+ΔV 

V 
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Hyperdynamics 
Builds on umbrella-sampling techniques (e.g., Valleau 1970’s) 

Assumptions: 
- infrequent events 

- transition state theory (no recrossings)   

AFV, J. Chem. Phys. 106, 4665 (1997) 

Procedure: 
-  design bias potential ΔV (zero at dividing surfaces; causes no recrossings) 

-  run thermostatted trajectory on the biased surface (V+ΔV) 

-  accumulate hypertime as 

         thyper= ΣΔtMDexp[ΔV(R(t))/kBT] 

Result: 
      - state-to-state sequence correct 

-  time converges on correct value in long-time limit (vanishing relative error) 

V+ΔV 

V 
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Hyperdynamics – the bias potential 

Designing valid and effective bias potential is a key challenge. 

Bias potential can be a function of 
 - the shape of the energy surface (AFV, 1997) 
 - the energy (Steiner, Genilloud and Wilkins, 1998) 
         (Hamelberg, Mongan & McCammon, 2004) 
 - the geometry  
  - bond lengths, Miron and Fichthorn, 2003, 2005 
  - local strain, Hara and Li, 2010 

Must be careful that bias is zero on all dividing surfaces or 
dynamics will be wrong. 

When barriers are high relative to T, boost can be many orders of 
magnitude. 
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Hyperdynamics bias potential 

An extremely simple form:   flat bias potential 

Steiner, Genilloud, and Wilkins, Phys. Rev. B  57, 10236 (1998).  

- no more expensive than normal MD (negative overhead(!)) 

-  very effective for low-dimensional systems 

- diminishing boost factor for more than a few atoms. 

V+ΔV 

V 
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Bond-boost bias potential 

R.A. Miron and K.A. Fichthorn  J. Chem. Phys. 119, 6210 (2003) 

Assumes any transition will signal itself by significant changes in 
bond lengths 

Bias potential is turned on near the minimum in the potential 
basin, but turns off when any bond is stretched beyond a 
threshold value 

Features: 
 - fairly general 
 - very low overhead 
 - purely geometric - behaves better than earlier bias 
   potentials based on slope and curvature of potential 
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Co/Cu(001) growth using 
bond-boost hyperdynamics   

Miron and Fichthorn Phys. Rev. B 72, 035415 (2005) 

T=250K T=310K 

Simulation of growth at 1 ML/s 
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Simplified bond-boost bias potential 

Based on Miron-Fichthorn 2003 form, but simplified. 

Bias potential turns off when the relative distortion  
[εij =  (rij-rij

min)/rij
min] of any bond exceeds a threshold value q 

(as in Miron-Fichthorn 2003). 

Simplification: ΔV depends purely on coordinate (εmax) of most-
distorted bond.  Only one bond at a time has any bias force. 

εmax 

0 

q -q 

ΔV(εmax) = S [1-(εmax/q)2] 

S 
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Simple bond-boost bias example 

Simple bond-boost bias potential 

Cu adatom on Cu(100) surface 

Hop barrier = 0.53 eV 

                      boost factor 
  T(K)      hop time      (S=0.4 eV)    

350 K      1.36 µs *     1.1x103  

300 K      27 µs          3.1x104        
200 K      0.8 s           1.1x108 

*At T=350K, the hyperdynamics rate 
matches full harmonic TST (“Vineyard”) 
rate within 5% error bars (743 events). 
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Hyperdynamics on large systems 

Whenever system is near a dividing surface, ΔV must be zero. 

For a 4x larger system, the trajectory is near a dividing surface 
~4x more often, causing a lower overall boost factor. 

For very large systems, the boost decays to unity – i.e., there is 
no speedup, no matter what form of bias potential is used. 

system size 

bo
os

t 

e.g.,  
Miron and Fichthorn 
saw boost~N-0.9  
and Hara and Li saw 
boost~N-1 
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Local Hyperdynamics 
          S.Y. Kim, D. Perez, and AFV (to be submitted). 

Modified formulation of hyperdynamics that gives constant boost for 
arbitrarily large systems. 

Key concept: Most systems we are interested in are intrinsically local in 
their behavior.  A transition, or near-transition, in one region of system 
should not have any significant effect on atoms that are far away. 
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Local hyperdynamics – key components 

 - define a local bias energy and local bias force 

 - relax the requirement of conservative dynamics  
 - this bias force can be nonzero in one region even if there   
   is a transition-causing distortion in another region,  
   provided it is far away 

The method is probably not exact, but we have some understanding of 
the error terms, and why they should largely cancel. 

Tests on various systems show the method is very accurate. 
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Local hyperdynamics - procedure 

Each bond (i) has its own local domain (I). 
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Local hyperdynamics - procedure 

Each bond (i) has its own local domain (I). 
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Local hyperdynamics - procedure 

Each bond (i) has its own local domain (I). 
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Local hyperdynamics - procedure 

Each bond (i) has its own local domain (I). 

D 
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Local hyperdynamics - procedure 

Each bond (i) has its own local domain (I). 

Each domain has its own bias energy ΔVI=CIΔVbias(RI(t)) and boost factor BI 
based on the geometry RI within the domain (exactly like a global 
hyperdynamics in that domain). 

The bias energy in domain I is used to determine the force only on bond i.  
E.g., with a simple bond-boost bias there is a force on a bond if and only if 
it is the most distorted bond in its own domain. 
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Local hyperdynamics - procedure 

Each bond (i) has its own local domain (I). 

Each domain has its own bias energy ΔVI=CIΔVbias(RI(t)) and boost factor BI 
based on the geometry RI within the domain (exactly like a global 
hyperdynamics in that domain). 

The bias energy in domain I is used to determine the force only on bond i.  
E.g., with a simple bond-boost bias there is a force on a bond if and only if 
it is the most distorted bond in its own domain. 

A domain-bias multiplier (CI) is adjusted for each domain to make its 
average boost <BI> match the target boost factor Btarget. 
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Why it is not conservative 

The force on bond i (the center of domain I) is taken to be 

 fi=-δΔVI/δxi . 

However, the force on bond j is given by 

 fj=-δΔVJ/δxj , 

so this is not conservative dynamics. 

bond i 

domain I 
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Why it is not conservative 

The force on bond i (the center of domain I) is taken to be 

 fi=-δΔVI/δxi . 

However, the force on bond j is given by 

 fj=-δΔVJ/δxj , 

so this is not conservative dynamics. 

bond i 

domain I 

(“PowerPoint tex”: δ means partial derivative) 
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Why it should work  

domain I 

NOTE: here each dot is a bond 

small average force error 
on bonds near center 

larger force error 

no force error on bond i 

Average force error on some bond j = <fj(RI) – fjglobal(RI)> 

D 

L 

Atoms near the center of domain I experience forces that closely 
approximate the forces in a global hyperdynamics on domain I with 
the same bias potential.  

ΔVI
global=CIΔVbias(RI(t)) 

L 
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The error terms 

The force on bond j, which is based on domain J 

 fj=-δΔVJ/δxj    

is different than the force that bond i (domain I) thinks that bond j will have  

 fj(I)=-δΔVI/δxj.   

The size of this force error depends on the “I crescent” and the “J crescent”. 

domain I 
(centered 
on bond i) 

domain J 

J crescent I crescent 
i j 

(NOTE: here a dot is a bond) 
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The error terms 

The force on bond j, which is based on domain J 

 fj=-δΔVJ/δxj     (= -CJ 2(εj /q2) δεj/δxj   if εj is largest in J, else 0) 

is different than the force that bond i (domain I) thinks that bond j will have  

 fj(I)=-δΔVI/δxj.    (= -CI 2(εj /q2) δεj/δxj   if εj is largest in I, else 0) 

The size of this force error depends on the “I crescent” and the “J crescent”. 

domain I 
(centered 
on bond i) 

domain J 

J crescent I crescent 
i j 

(NOTE: here a dot is a bond) 
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The domain crescent cases when CI=CJ 
(for simple bond boost bias) 

Bond j is the most distorted bond in domain I+J 
   exact (fj(I)=fj) 

Some other bond k in I∧J is the most distorted in domain I+J    
   exact (fj(I)=fj=0) 

Bond j is the most distorted in domain I, but there is an even more 
distorted bond in the J crescent (that j sees but i does not see)   

   error (fj(I)≠0, fj=0) 

Bond j is the most distorted in domain J, but there is an even more 
distorted one in the I crescent (that i sees but j does not see)       

   error (fj(I)=0, fj≠0) 

The most distorted bond in domain I is in the I crescent and most 
distorted bond in domain J is in the J crescent 
    exact (fj(I)=fj=0) 

case  

1 

2 

3 

4 

5 

I J 

j 
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The domain crescent cases when CI=CJ 
(for simple bond boost bias) 

Bond j is the most distorted bond in domain I+J 
   exact (fj(I)=fj) 

Some other bond k in I∧J is the most distorted in domain I+J    
   exact (fj(I)=fj=0) 

Bond j is the most distorted in domain I, but there is an even more 
distorted bond in the J crescent (that j sees but i does not see)   

   error (fj(I)≠0, fj=0) 

Bond j is the most distorted in domain J, but there is an even more 
distorted one in the I crescent (that i sees but j does not see)       

   error (fj(I)=0, fj≠0) 

The most distorted bond in domain I is in the I crescent and most 
distorted bond in domain J is in the J crescent 
    exact (fj(I)=fj=0) 

case  

1 

2 

3 

4 

5 

I J 

j 

If I-crescent and J-crescent are statistically equivalent, 
then CI = CJ, and error 3 and error 4 cancel in a time average. 
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The domain crescent cases when CI=CJ 
(for simple bond boost bias) 

Bond j is the most distorted bond in domain I+J 
   exact (fj(I)=fj) 

Some other bond k in I∧J is the most distorted in domain I+J    
   exact (fj(I)=fj=0) 

Bond j is the most distorted in domain I, but there is an even more 
distorted bond in the J crescent (that j sees but i does not see)   

   error (fj(I)≠0, fj=0) 

Bond j is the most distorted in domain J, but there is an even more 
distorted one in the I crescent (that i sees but j does not see)       

   error (fj(I)=0, fj≠0) 

The most distorted bond in domain I is in the I crescent and most 
distorted bond in domain J is in the J crescent 
    exact (fj(I)=fj=0) 

case  

1 

2 

3 

4 

5 

I J 

j 

Å If I-crescent and J-crescent are NOT statistically equivalent, error 3 and error 4 
do not directly cancel, but CJ/CI changes in right direction to compensate this.  
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The boostostat 
Instead of pre-adjusting the {CI} values for the current state, we have found that 
we can simply apply a “boostostat” to gently but constantly push on these {CI} 
values during the simulation to move the boost for each domain towards the correct 
target boost. 

For each domain I at each MD step:  

 CI(t+Δt) =  CI(t) – αBΔtMD[BI(t) - Btarget]/Btarget 

where  
	

αB = boostostat coupling strength    (~109 - 1010 s-1) 
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The boostostat 
Instead of pre-adjusting the {CI} values for the current state, we have found that 
we can simply apply a “boostostat” to gently but constantly push on these {CI} 
values during the simulation to move the boost for each domain towards the correct 
target boost. 

For each domain I at each MD step:  

 CI(t+Δt) =  CI(t) – αBΔtMD[BI(t) - Btarget]/Btarget 

where  
	

αB = boostostat coupling strength    (~109 - 1010 s-1) 

αB=1X1010 s-1 
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Local hyperdynamics – rate tests  

Narrow strip of Ag(100), 8 adatoms, top layer and adatoms free to move 
(72 moving atoms), periodic in x, EAM potential. 

Small enough to run fast, but large enough and complex enough to test 
method. 

Both hops and exchanges can occur. 

Transitions observed and then rejected so the rates stay constant. 

end view side view 

x  
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Local hyperdynamics – rate tests  

Local range set to 10 Å for most tests: 

this bond sees all the bonds 
in the red set of atoms 
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Local hyperdynamics – rate tests  

Hop pathway:    Ea=0.504 eV,   ν0=3.53x1012 Hz 

Exchange pathway:    Ea=0.651 eV,   ν0=6.48x1012 Hz 

Side-hop pathway:    Ea=0.743 eV,   ν0=3.02x1012 Hz 



Los Alamos LA-UR-12-26437 

T=500K 
Target boost = 100 
Average event time = 2.2 ns (hypertime), 22 ps (MD time) 
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(note: different units for αB) 

Local hyperdynamics – rate tests  

αB=2.5X109 s-1 
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Local hyperdynamics – rate tests  

T=500K,  Btarget=100,  αB=5X109,  range=10 Å, full bond boost 

Event type  Vineyard+Kramers    Direct MD         Local Hyperdynamics 
Hop   88.7%      92%    90.9% (431/474) 
Exchange  11%        8%    8.9% (42/474) 
Side-hop  0.3%     ~0.3%   0.2% (1/474) 

Escape time  2.18 ns        2.16 ± .04 ns     2.21 ± 0.1 ns (full BB) 
       2.25 ± 0.1 ns (simple BB) 

Kinetic Temperature       500.1±0.25 K 
<boost>       99.8±0.2 
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Rate test for an asymmetric case  

Tests inequivalent crescents.   

Main unique events: 
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Rate test for an asymmetric case  

T=500K,  Btarget=100,  αB=5X109,  range=10 Å, simple bond boost 

Excellent agreement 
with direct MD 
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Dealing with transitions 

When a transition occurs, in the region of the transition: 
     - the bond definitions must be updated 
     - the local-domain coefficients must be readjusted to maintain target boost 

We have found we can simply let the boostostat make the necessary 
corrections to fix the {Ci} values after each transition.  (Requires a careful 
choice for αB and good starting guesses for Ci’s for new bonds.) 

For a brief period after each transition, the boost values are wrong, but overall 
the rates are still fairly accurate. 
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Boostostatting through a transition 
Ag(100) test system 

•  Defective Ag surface: monomer, 
dimer, vacancy 

•  434 atoms, 218 moving 

•  T=325K, γ=5x1011 s-1,          
locality radius = 10 A 

•  On-the-fly boostostatting,  
αB=5x109 s-1   Btarget=100 

•  Coefficients reset locally to 0.2 eV 
after each transition 

•  About 25 thermally relevant 
transitions. Rates vary over four 
orders of magnitude. 
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Observed processes 
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Ag(100) test results 
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Conclusions from Ag(100) tests   
•  Agreement with Hamonic TST is excellent -- Local 

hyperdynamics rates are only a few percent high.  

•  Readjustment of {CI} following transition can be done on 
the fly without corrupting rates too much (although this will 
be case dependent). 

•  This is one key piece in maintaining true N scaling to 
arbitrarily large systems. (The other one is redefining the 
bonds on the fly when a transition occurs.) 
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Ag(100) tests – Impact of the locality radius 

Too-short locality range (D) increases the rates 
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Ag(100) tests – Impact of the locality radius 

Too-short locality range (D) increases the rates 
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Local hyperdynamics 
Massively parallel implementation 

Shiyu Du, Tim Germann 

10 million atoms for ~10 microseconds 

 - Array of 200 bulk vacancies in EAM Cu 
 - Target boost =20,000 
 - T=350K 
 - ~1 day on 256 processors 

(For this run, the code did not truly scale, 
because entire system was quenched each 
time a transition was detected.) 
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Conclusions 

A new, local formulation of hyperdynamics makes an advance on the 
size-scale problem in accelerated molecular dynamics methods. 

Boost may be modest (perhaps ten to a few powers of ten). 

Should be scalable, with constant boost, to arbitrarily large systems, 
provided the lowest barrier in system does not keep dropping with 
increasing system size. 


