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Diffusion Monte Carlo

The original motivation for DMC was to compute averages with
respect to the ground state eigenfunction of

Hψ = −1
2

∆ψ + uψ.

Notice that if ψ solves the PDE

∂tψ = −Hψ

then
ψ(t , x) =

∑
e−λi tφi(x)

So if you can compute averages with respect to ψ∫
ψdx for large t

then you can approximate averages with respect to φ0∫
φ0dx .

We have the Feynman–Kac representation∫
f (x)ψ(t , x) dx = E

[
f (W (t))e−

∫ t
0 u(W (s))ds

]
.

where W is a Brownian motion.
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Using the trapezoidal approximation of the integral:

E
[
f (W (t))e−

∫ t
0 u(W (s))ds

]
≈ E

[
f (W (t))e−

∑bt/dtc
j=1

1
2 (u(W (jdt))+u(W ((j−1)dt))ds

]

This is of the general form

E
[
f (X (tk ))e−

∑k
j=1 v(X(tj−1),X(tj ))

]
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Diffusion Monte Carlo generates an ensemble of points Xi(t) so
that

E

N(tk )∑
i=1

f (Xi(tk ))

 = E
[
f (X (tk ))e−

∑k
j=1 v(X(tj−1),X(tj ))

]
for any reasonable observable f where X (t0),X (t1),X (t2), . . . is
some underlying process.

The ensemble of points evolves in two steps:
1 Evolve each point according to the underlying dynamics for

one increment.
2 To incorporate the additional “weight” factor e−v(X(s−1),X(s))

copy particles with large weight and kill those with low
weight.
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DMC proceeds from and ensemble {Xi(tk−1)} of size N(tk−1) at
“time” tk−1 to an ensemble of size N(tk ) at time tk as follows:

1 : for i = 1 : N(tk−1)

2 : evolve the sample Xi(tk−1)

to time tk : Xi(tk−1)→ X̃i(tk )

3 : generate a random integer Ni ≥ 0

with E [Ni ] = e−v(Xi (tk−1),X̃i (tk ))

4 : add Ni copies of X̃i(tk ) to the

time tk ensemble

5 : set N(tk ) =

N(tk−1)∑
i=1

Ni
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Over the last 40 years or so the basic DMC idea has spread.

For example in Sequential Monte Carlo (e.g. particle filters) one
transforms N samples Xi(tk−1) approximately drawn from some
density pk−1(x) to N samples Xi(tk ) approximately drawn from

pk (y) ∝
∫

e−v(y)p(y |x)pk−1(x)dx

where e−v(y) is some “weight” function (e.g. from data) and
p(y |x) is a transition density.

This is done by
1 Sampling Xi(tk ) ∼ p(x |X (tk−1))

2 Weighting each sample by e−v(Xi (tk ))

3 Resampling from the weighted distribution.
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In the Quantum Monte Carlo application v was specified by the
problem. In other applications we may want to choose v to
achieve some goal.

What if we choose

v(x , y) = G(y)−G(x)?

Then DMC would compute

E

N(tk )∑
i=1

f (Xi(tk ))

 = eG(X(0)E
[
f (X (tk ))e−G(X(tk )

]
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or (by redefining f )

e−G(X(0)E

N(tk )∑
i=1

f (Xi(tk ))eG(Xi (tk )

 = E [f (X (tk ))] .

Recall the branching rule:

3 : generate a random integer Ni ≥ 0

with E [Ni ] = e−(G(X̃i (tk ))−G(Xi (tk−1)))

4 : add Ni copies of X̃i(tk ) to the
time tk ensemble

So if G decreases in a step more copies will be created.

By choosing G to be relatively small in a region we can sample
that region more thoroughly
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So, for example suppose the underlying dynamics is a discrete
sampling (or discrete approximation) X (kdt) of

dX (t) = −∇V (X (t))dt +
√

2µdW (t)

where the invariant measure e−V/µ looks like
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Then we might choose
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if (left) we want to compute an average near the low probability
saddle

or (right) we want to force the system from the left well to the
right well.
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Unfortunately this won’t work.

Note that

G(X (kdt))−G(X ((k − 1)dt)) = O(
√

dt)

so every dt units of time we create or destroy
√

dt samples so if
creation and destruction aren’t carefully balanced expect bad
behaior for small dt .

As the time step dt is taken smaller and smaller the ensemble
size will either blow up or hit zero in a very short time.

Yes... we could only do the killing/cloning step once for every
O(1/

√
dt) evolution steps but if the weights degenerate very

quickly expect bad results.

A small modification borrowed from another rare event scheme
(RESTART/DPR) developed in the computer science
community seems to solve the problem
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In RESTART/DPR:
1 The state space is first partitioned into cells.
2 When an ensemble member crosses from one region to

another a certain number of new ensemble members are
born.

3 These new ensemble members are restricted in what cells
they are allowed to visit... they are killed if they try to visit a
cell that is off limits to them.
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We’ll give each of our DMC particles Xi(tk ) a “ticket” ϑi(tk ) that
tells the trajectory where it’s allowed to visit. When e−v is below
the ticket the particle is killed.
The branching step is now

3 : if e−v(Xi (tk−1),X̃i (tk )) ≥ ϑi generate Ni ≥ 1 with

E [Ni ] = min
{

1,e−v(Xi (tk−1),X̃i (tk ))
}

otherwise Ni = 0

4 : add Ni copies of X̃i(tk ) to the

time tk ensemble

5 : for each new copy generate a ticket

ϑ ∼ U(ev(Xi (tk−1),X̃i (tk )),1)

tickets of surviving particles

are discounted by ev(Xi (tk−1),X̃i (tk ))

The initial ticket ϑ1(t0) is drawn from U(0,1)
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Consider the simple dynamics

X (kdt) = X ((k − 1)dt) +
√

dtξk ξk ∼ N(0,1)

with G(x) = x .
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Modified DMC
DMC

For the new scheme:

sup
dt>0
kdt=t

E
[
(N(t))p] <∞

for all powers p.
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As with DMC the new algorithm produces an unbiased estimate

N(tk )∑
i=1

f (Xi(tk )) of E
[
f (X (tk ))e−

∑k
j=1 v(X(tj−1),X(tj ))

]
You get back DMC if you re-draw all tickets from U(0,1) at each
step.

This allows us to prove that (basically in any setting):

The new estimator has lower variance than the old
estimator.

It’s expected cost is easily seen to be the same so the new
algorithm is unambiguously superior.
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In settings in which DMC fails dramatically the improved
algorithm has a nice continuous time limit.

We call the limiting object the Brownian fan.

The Brownian fan is constructed recursively with each
generation being a realization of a poisson point process on an
excursion space with intensity depending on the previous
generation.

So the new algorithm is better in all settings and in some
cases the improvement is really dramatic
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When using the algorithm with v(x , y) = G(y)−G(x) to
compute

E [f (X (tk ))]

it’s natural to ask what is the optimal choice of G.

One has to consider the effect of the choice of G on both the
workload and variance of the resulting estimator.

We have not pursued this but we expect that in the small
temperature limit an optimal strategy could be identified by
following arguments of Dean and Dupuis for DPR.

But these strategies will involve finding, e.g. approximate
transition paths.

Since you can’t expect to do that very accurately you’d like to
see the algorithm behave well with more naive design choices.
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A simple rare event example:

dX (t) = −∇V (X (t))dt +
√

2kTdW (t)

Starting from the lower well and running for 1 unit of time.
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We use our modified DMC scheme with

v(x , y) = G(y)−G(x), G(x) = −λ‖x − xA‖

where xA is the minimum in the lower basin. We want to
compute

PxA (X (1) ∈ B) , B = {x : ‖x − xB‖ < 0.25} .

λ is chosen so that the expected number of particles ending in
B is close to 1.
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kT λ estimate variance
×workload

brute force
variance

16 5 0.5133 0.3357 0.2499
8 15 0.2839×10−1 0.5519×10−2 0.2758×10−1

4 25.5 0.4813×10−5 0.1521×10−8 0.4813×10−5

2 33 0.1262×10−13 0.2133×10−23 0.1262×10−13
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A rare event example:

dX (t) = −∇V (X (t))dt +
√

2µdW (t)

Figure : (Left) Initial configuration xA. (Right) A typical snapshot after
the transition.

The 7 discs interact with each other through

V (x) =
∑
i<j

4
(
‖xi − xj‖−12 − ‖xi − xj‖−6

)
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Using

v(x , y) = G(y)−G(x), G(x) =
λ

µ
min
i≥2

{∥∥∥∥xi −
1
7

∑
j

xj

∥∥∥∥}.
where x1 is the point at the center.

We approximate P(X (2) ∈ B) where B is the event that

mini≥2

{∥∥∥∥xi − 1
7
∑

j xj

∥∥∥∥} < 0.1.

µ λ estimate workload variance
×workload

brute force
variance

0.4 1.9 1.125×10−2 6.451 4.732×10−3 1.112×10−2

0.2 1.3 2.340×10−3 5.818 2.344×10−4 2.335×10−3

0.1 1 7.723×10−5 6.936 7.473×10−7 7.722×10−5

0.05 0.85 9.290×10−8 15.42 1.002×10−11 9.290×10−8

0.025 0.8 1.129×10−13 102.4 1.311×10−21 1.129×10−13

λ is adjusted so that the expected number of particles ending in
B is close to 1.
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A filtering example:
The solution to

dX1(t) = 10(X1(t)− X2(t))dt +
√

2dW1(t)

dX2(t) = (X1(t)(28− X3(t))− X2(t))dt +
√

2dW2(t)

dX3(t) = (X1(t)X2(t)− 8
3

X3(t))dt +
√

2dW3(t)

is hidden from us.
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We see only

dH(t) =

 X1(t)
X2(t)
X3(t)

dt + 0.1 dB(t)
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Our task is to estimate the hidden signal by computing

E
[
(X1(t),X2(t),X3(t)) | FH

t

]
Jonthan Weare Improved DMC



After discretizing a DMC method for sampling from the
conditional distribution of the hidden process given the
observations becomes

3 : if Pi ≥ ϑi generate Ni ≥ 1 with

E [Ni ] = min {1,Pi}
otherwise Ni = 0

4 : add Ni copies of X̃i(tk ) to the

time tk ensemble

5 : for each new copy generate a ticket

ϑ ∼ U(P−1
i ,1)

discount ticket of surviving particles by P−1
i

The initial ticket ϑ1(t0) is drawn from U(0,1) where now

Pi =
exp

(
−‖Xi (t)dt−dH(t)‖2

0.02dt

)
∑

j exp
(
−‖Xj (t)dt−dH(t)‖2

0.02dt

)N
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With 10 particles:

0 2 4 6 8 10 12 14 16 18 20
−20

−10

0

10

20

x

0 2 4 6 8 10 12 14 16 18 20
−40

−20

0

20

40

y

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

time

z

Jonthan Weare Improved DMC



What if we’d done the same thing without the tickets (i.e.
standard DMC)
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