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Program Overview

The program is built around two major themes:

• Materials Defects:

– Defects are those things we often neglect so that our cal-
culations are easier.

– Defects present a huge challenge for mathematical model-
ing and simulation, as anything that breaks up the regular,
homogeneous structure of a calculation requires special
consideration.

– Examples include grain boundaries, dislocations, cracks,
surface reconstructions, impurities, vacancies, . . .

• Multiscale Modeling and Computation



Grain Boundaries
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Dislocations
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Multiscale Modeling Paradigms
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• Quantum Mechanics and DFT

• Classical Mechanics and MD

• Statistical Mechanics and MC

• Continuum Mechanics and Numerical PDE



Molecular Dynamics

• In the classical regime, MD is the fundamental model
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Failure of MD at Small Scales

• MD would be sufficient for Materials Science applications at
small scales if the potentials φ(x) were accurate.

• One reason these fail, is that they are limited to two-, three-,
etc. body interactions:

φ =
∑
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φij +
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φijk + . . .

• They are typically fit to model particular materials in particular
regimes, and they do not transfer well to other scenarios.

• When new potentials are being fit, new regimes are encoun-
tered or greater accuracy is desired, one must turn away from
this empirical approach and use a “first principles” approach.



Electronic Structure

• This means solving some version of the many-body Schrodinger
equation.

• In the Born-Oppenheimer approximation, the heavy, atomic
nuclei are treated as classical, stationary point particles, and
only the relatively light electrons are treated in the non-localized,
quantum mechanical way.

• This reduces the many-body problem to:
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where Ψ is a function of the coordinates of just the elec-
trons, i.e. a 3*(number of electrons) dimensional eigenvalue
problem!



Variational Principle

• The expected value of the energy is a functional of the many-
body wavefunction:

E[Ψ] =

∫

Ψ∗ĤΨdx

〈Ψ|Ψ〉
≡

〈Ψ|Ĥ|Ψ〉

〈Ψ|Ψ〉

• If one takes Ψ0 to be the ground-state, one can use this to
construct a “first-principles” energy landscape.

• It is easy to show, that for any choice of Ψ, one has

E[Ψ] ≥ E0.



Density Functional Theory

• Solving the electronic structure problem is hopeless for large
systems of particles.

• The vast majority of materials science energy-landscape cal-
culations approximate the ground state energy via the electron
density:

ρ(r1) = N

∫ ∫

. . .

∫

||Ψ(x1,x2, . . . , xN)||2ds1dx2 . . . dxN .

• The function ρ ≥ 0 is the number-density of electrons.

• The Hohnberg-Kohn theorems guarantee the existence of func-
tionals that are equivalent to the many-body Schrodinger elec-
tronic structure problem:

Ev[ρ] ≥ E0.

• While standard approximations are widely used, the function-
als are not actually known, nor are there any rigorous esti-
mates of their accuracy.



Failure of MD at Large Scales

• MD would be sufficient for Materials Science applications at
large scales if it were faster.

• The reason for the failure is the extremely small time-steps
that are needed to resolve the chaotic motion that invariably
arises with many body interactions:

• This makes determining even the equilibrium behavior diffi-
cult, and nonequilibrium even harder.



Monte Carlo

There are two broad classes of statistical approaches:

• (Equilibrium) Monte Carlo

• Dynamic or Kinetic Monte Carlo

Often, these methods are appropriate for bridging length and time
scales between MD and Continuum Mechanics.



Equilibrium Monte Carlo

This approach is based directly on statistical mechanics and al-
lows one to compute average properties of a collection particles,
producing thermodynamic quantities.

• Canonical Ensemble This is by far the most common type
of simulation, aiming to evaluate the average properties of a
collection of N particles in a volume V interacting with an
environment at a fixed temperature T .

• Other commonly used ensembles include the micro-canonical
Ensemble (N−V −E) and Grand/ macro-canonical (µ−V −T)
ensemble.



Kinetic Monte-Carlo Simulations

• Configuration space is typically discrete, e.g. occupation ar-
rays for a fixed lattice.

• Dynamics are imposed via a Markov Chain model

• Transition rates are based on configuration changes

• Example: qi = ν exp
(

−∆φ

kbT

)

, ∆φ = ES + mEN



Continuum Models

• Includes fluid dynamics, elasticity, thermodynamics, diffusion
processes, porous media, . . .

• Common threads are

– a continuum assumption—the idea that mass, velocity,
etc. can be represented at each point in space by a con-
tinuous and smoothly varying field rather than a discrete
system of particles.

– one or more conservation laws.

• Similarly, interfaces are often modeled as smooth curves or
“phase” fields.

• ⇒ PDE’s in 3D space & time

• The bulk of traditional applied math/numerical analysis/front
tracking methods are focused on this regime.



Larger Scale Defects

• At larger scales, models are often further coarse-grained.

• For example, mushy zones are arrays of dendrites.

• These are often modeled as reactive porous media.

• Chimneys are sold-free channels caused by convection.

• This leaves behind larger scale defects known as freckles.



Tutorial Schedule

• Peter Voorhees (Northwestern University) “Line and Planar
Defects in Materials”

• Danny Perez (Los Alamos National Laboratory) “Introduction
to Molecular Dynamics”

• Kristen Fichthorn (Pennsylvania State University) “An Intro-
duction to Theoretical Methods for Describing Rare Events”

• Tony Lelivre (Ecole des Ponts ParisTech) “Monte Carlo meth-
ods in molecular dynamics”

• Maria Emelianenko (George Mason University) “Mathematical
modeling of interfacial dynamics in polycrystals”

• Peter Smereka (University of Michigan) “Theory and Appli-
cation of Simplified Kinetic Monte Carlo Models”

• Gabor Csanyi (University of Cambridge) “State of the art: a
broad-brush survey of interatomic potentials”



Program

• Materials Defects: Tutorials. September 11 - 14, 2012.

• Workshop I: Quantum and Atomistic Modeling of Materials
Defects. October 1 - 5, 2012.

• Workshop II: Atomistic and Mesoscale Modeling of Materials
Defects. October 22 - 26, 2012.

• Workshop III: Mesoscale and Continuum Scale Modeling of
Materials Defects. November 13 - 16, 2012.

• Workshop IV: Computational Methods for Multiscale Model-
ing of Materials Defects. December 3 - 7, 2012.

• Culminating Workshop at Lake Arrowhead (by invitation only).
December 9 - 14, 2012.


