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• Nature of neuroimaging databases
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• Brede demo
• Machine learning for meta analysis
• Search for similar volumes
• A Science 2.0 interface to populate imaging databases
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What is Knowledge discovery?

Fayyad et al.: From Data Mining To Knowledge Discovery: An Overview. In 
Advances In Knowledge Discovery And Data Mining , eds. U.M. Fayyad et 
al. AAAI Press/The MIT Press, Menlo Park, CA., 1996, pp. 1-34. 

Knowledge discovery can broadly be defined as 
‘extraction of implicit and potentially useful information 
from data’. 

A distinction can be made between data mining and 
knowledge discovery: The knowledge discovery process 
takes the raw results from data mining and place it in 
context.

The useful information – cf. search – is uncovered through 
the use of machine learning techniques and often involves 
visualization.
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Knowledge discovery in bio-medicine

• Neuroimaging and other bio-medical areas are characterized by an 
extremely heterogenous, chaotic, and noisy data collection process. 

• Biological variability is ~infinite compared to other database 
applications such e.g. “market basket analysis”

• Increasing specialization in the bio-sciences calls for knowledge 
discovery for inventions to transcend from anecdote to science, i.e., for 
efficient division of labour

• The traditional “review/meta analysis” mechanism is hampered by the 
exponentially increasing volume of scattered results across a vast set of 
journals/conferences/e-lists

James A. Evans  Electronic Publication and the Narrowing of 
Science and Scholarship Science 18 July 2008:
Vol. 321. no. 5887, pp. 395 - 399
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Why is the databasing progress so slow in neuroimaging?

• Hints
– Neuroimaging findings are more ill-defined than e.g. 

sequence information in bioinformatics?

– The rewards from sharing are less obvious in 
neuroimaging?

– Angst …imaging is so hard thus… my competitors will             
find errors / spot a Nobel prize   … in my data
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Nature of neuroimaging databases

• Database
– Neuroimaging results: Data sets (fMRIDC, Neurogenerator)
– Neuroimaging results: Activation foci/coordinates
– Neuroimaging results: Metadata paradigm subject social networks etc
– Database model / Ontologies
– Links to neuroscience databases, behavior
– Inclusion criteria
– Search functionality

• Challenges
– Lack of interoperability at the group level, consortia level, between sub-

disciplines (e.g. PET vs fMRI vs EEG)
– Poor specification of targets, biology and behavior

• Knowledge discovery tools
– Machine learning tools for meta-analysis can operate in noise
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Fox and Lancaster’s BrainMap®

Laird, Lancaster, Fox: Neuroinformatics (2005)

Volume
Papers: 1515 
Experiments: 6943 
Locations: 55549 

Paradigm Classes: 77 
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Brede database and search engine

• Main component 
– data from functional neuroimaging papers reporting activation foci as 

Talairach coordinates. 

• Structure initially inspired by BrainMap

• Sandbox for knowledge discovery in neuroimaging

• Distributed with the Brede neuroinformatics toolbox. 

• Designed, programmed, and maintained by Finn Årup Nielsen
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Brede database identifiers

WOBIB identifier for a 'bib' structure, i.e., a published paper. This contains one of 
more 'exp' structures.

WOEXP identifier for a 'exp' structure, i.e., an experiment in a scientific paper. This 
can, e.g, correspond to a 'contrast'. An 'exp' structure might have one or more 'loc' 
structures. 

WOEXT identifier for a 'ext' structure: An 'external component', e.g., a cognitive 
component. Each 'exp' structure in the Brede database will usually have one or more 
WOEXT associated with it. 

WOPER identifier for a 'per' structure: a person, usually an author 

WOROI identifier for a 'roi' structure: a region of interest, i.e., a brain area referred 
to by lobar anatomy, or a functional or Brodmann area. 
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Database inter-operability

The Brede database is hyper-linked to other neuroscience databases

• Each 'bib' item is linked to Entrez-PubMed. E.g WOBIB: 52 is linked to PMID: 12507950. 

• Some Brede items are linked to items in fMRIDC. 

• Some 'ext' items are linked to MeSH terms of the U. S. National Library of Medicine. These 
are linked to the MeSH Browser, e.g., The Brede database 'Pain' (WOEXT: 40) is linked to 
MeSH 'Pain' (MeSH UID: D010146). 

• Some of the 'ext' items that are associated with genes are linked to standard 
bioinformatics databases such as Ensembl, Entrez-Protein, Genecards, GenomeNet, 
GENSAT, PubGene, see, e.g., the 5-HT2A receptor. Other 'ext' items are linked to 
SenseLab (e.g., WOEXT: 233 - GABA-A receptor), OMIM (e.g., WOEXT: 346 -
Apolipoprotein E gene) and the English version Wikipedia. 

• Some 'Roi' items (brain regions) are linked to items in the BrainInfo/NeuroNames
database, see, e.g., WOROI: 5 - Posterior cingulate gyrus, or items in the CoCoMac
database, e.g,. WOROI: 96 - Posterior insula;  or the Internet Brain Volume Database 
(IBVD), e.g., Insula. 
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Brede demo

• hendrix.imm.dtu.dk/services/jerne/brede/

http://hendrix.imm.dtu.dk/services/jerne/brede/
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Brede database and search engine

Volume
• Papers: 180 
• Experiments: 586
• Coordinates: 3912 

Features
• Google based search
• Ontology
• On-line visualization
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Machine learning tools in Brede

• SPM reconstruction
• Conditional density modeling for 

novelty detection
• Conditional density modeling for 

paper/exp similarity measure
• Combined text and foci mining



Lars Kai Hansen

IMM, Technical University of Denmark

Reconstruction of SPM’s from foci

Estimate label/metadata conditional densities P(foci(x,y,z)|term) 
with Parzen windows, estimated with LOO cross-validation
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Densities are sampled (if necessary) 
in voxelated space

Peter E. Turkeltaub et al. Meta-Analysis of the Functional Neuroanatomy
of Single-Word Reading: Method and Validation. NeuroImage 16, 765–780 (2002)
Nielsen & Hansen: Modeling of Activation Data in the BrainMap™
Database: Detection of Outliers. Human Brain Mapping 15:146–156(2002)
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Statistical modeling of foci & meta-data

• Density modeling of foci
distribution reveals
novelty/outliers

• Outliers defined as foci
with relative low
probability density

• We model conditional
densities, to increase
outlier sensitivity
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Result

• A list of the globally least
probable entries was
inspected

• Authors contacted to 
check for mistakes or
novelty of interest

• Worst case: 50 cm 
outside brain volume

• Mirroring errors in entry
of coordinates

• Conditional density
allows detection of
outliers wrt label
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Confer with other volume definitions

Nielsen & Hansen: Modeling of Activation Data in the BrainMap™
Database: Detection of Outliers. Human Brain Mapping 15:146–156(2002)
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Meta-analysis example

Mining the posterior cingulate cortex

• PCC is a cyto-
architecturally well 
defined brain region   
(Vogt et al, 2001)

• However, no 
textbook consensus 
about its function!

Finn Årup Nielsen, Daniela Balslev, Lars Kai Hansen, ”Mining the Posterior
Cingulate: Segregation between memory and pain components. NeuroImage, 
27(3):520-532, (2005)
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Text modeling: ”Bag of words”

• 271 abstracts of functional imaging studies that responded to PubMed
query (march 13th, 2003) :

– ("posterior cingulate" OR "posterior cingulum" OR  "retrosplenial" 
OR "retrosplenium") 

– AND
– ("magnetic resonance imaging" OR "positron emission tomography")

• Create term list from abstracts starting from all words (D0 =4792) 
screened with stop word lists to eliminate irrelevant words, PubMed
stopwords, and an in-house manually created list including anatomical
terms irrelevant for ”cognitive” tasks (D=549)

• Form a term x document frequency of occurrence matrix V of dimension 
(549x271)
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Factor model

• Represent the datamatrix by a low-dimensional approximation

1
( , ) ( , ) ( , )K

k
V i j W i k H k j

=
≈ ∑

W

H
DOCUMENTS (N)

v

T
E
R
M

 (
D

)

T
E
R
M

 (
D

)

DOCUMENTS (N)

Component/topic vocabulary Component topic expressions



Lars Kai Hansen

IMM, Technical University of Denmark

Matrix factorization:  SVD/PCA, NMF, Clustering
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Probabilistic interpretation

(Gaussier, Goutte: Relation between PLSA and NMF.., 2005)

Multinomial mixture model, V is a matrix of ’counts’
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Text mining result: “The topic tree”

We created a tree of solutions 
to investigate the stability of 
vocabularies estimated by the 
model for increasing K

Links measure similarity of
vocabularies

Finds independent 
components and locate: 
”memory” and ”pain” 
components. 

Finn Årup Nielsen, Daniela Balslev, Lars Kai Hansen, ”Mining the Posterior
Cingulate: Segregation between memory and pain components”. 
NeuroImage, 27(3):520-532, (2005)
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Hypothesis testing in retrieved components

Extract coordinates for
abstracts associated
with dominant 
components:
”Pain” and ”Memory”

Significant difference
of the coordinate sets 

Not in conflict with major 
reviews
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Similarity metric for search

• Use the correlation 
between reconstructed 
volumes as a distance 
metric

Nielsen, Hansen:” Finding related functional neuroimaging volumes”
Artificial Intelligence in Medicine 30 (2004) 141–151
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Vision/Wishlist for a neuroimaging search engine

• A useful neuroimaging search engine will
1. Index ’published results’ from neuroimaging
2. Index published results from cognitive and behavioral 

psychology
3. Have a query interface that allows query for typical 

situations that arise in writing a neuroimaging paper

• An extremely useful neuroimaging search engine will
1. Index ’published results’ from fields relevant to 

neuroimaging
2. Index raw data from many disciplines
3. Index workflows from many disciplines 
4. Have a proactive query interface, e.g., an interface that 

intercepts the (e.g., SPM) workflow and suggest steps 
based on 2-3.
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A Science 2.0 interface

• How can we make data entry so attractive that  
user generated content can replace our current 
misery?

• BredePlugin for SPM
– Intercepts the SPM pipeline and extract coordinates
– Submit coordinates to Brede
– Obtain list of relevant paper…proactive in relation to 

paper writing

Bart Wilkowski et al.: Coordinate-based meta-analytic search for the SPM pipeline, (Submitted)
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BredePlugin

Envision a two level (Flickr-like) upload of coordinates 
“Private”- shared with designated collaborators 
“Public”- broadcast after publication & edit
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Conclusions

• Knowledge discovery increasingly important for 
neuroimagers?!

• Knowledge discovery is hampered by the slow growth of 
database. An attractive Science 2.0 interface may assist 
(…let’s vote…).

• Machine learning is a platform for producing 
generalizable models and visualizations in complex, 
noisy database.

• Major current advances are based on activation foci 
mining….we need to support the upload of more 
informative data structures…raw data!
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