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Cingulum Bundle ... A Structure of Importance
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The Cingulum Bundle and Other Fiber Pathways

I 5-7mm in diameter fiber bundle:
interconnects limbic system

I fibers are mostly parallel,
sometimes intersecting

I forms a “ring-like belt” around the
corpus callosum

I Involved with executive control and
emotional processing

I May be linked to schizophrenia
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Imaging the Cingulum Bundle in the Brain: DW-MRI

We show visualization of DW-MRI and the cingulum bundle: Movie.
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Cingulum Bundle ... A Structure of Importance
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DW-MRI for Structural and Connectivity Information
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Overview of Our Approach for Fiber Bundle Analysis
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Our Approach: Geodesic Tractography

Detecting A Single Fiber (Melonakos et al., IEEE PAMI 2008)

Given two seed points, find optimal path between them.
Let c : [0, 1] → R3

cs
I(p1, ·)

I(p2, ·)

I(p3, ·)

cs

Seed Pt1

Seed Pt2

c

cs

Globally minimize: fast sweeping (Kao et al. 2003) for some ψ
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Cingulum Bundle ... A Structure of Importance
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Our Approach: Volumetric Segmentation Method

Volumetric Surface Methods Applied to DW-MRI

Surface Obtained From DT-MRI

Image from Lenglet et al., Trans.
Med. Imaging, 2006

I DTI Volumetric Segmentation:

I Region-Based Methods (e.g. Lenglet
et al., Wang and Vemuri)

I Edge-Based Method (Melonakos et
al.)

I We Tailor Above Methods to Fiber
Bundles

I Shape Prior Needed
I Challenge: Non-homogeneity of

statistics of the cingulum bundle
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Cingulum Bundle ... A Structure of Importance
Methods for DW-MRI Fiber Bundle Analysis

Non-Uniform Statistics of Cingulum Bundle

Sagittal Slice of DT-MRI of a Brain

CB = Cingulum bundle
CC = Corpus Callosum
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Modeling the Cingulum Bundle as a Tubular Surface

Why Model the Cingulum Bundle as a Tubular Surface?
I Natural Shape Prior:

I Cingulum Bundle is approximately tubular
I DW-MRI is noisy and filled with irrelevant features; cingulum bundle

hard to segment without prior
I Significant Dimension Reduction:

I Segmentation reduced from detecting a surface to a curve
I Statistical Shape Analysis of Tubular Surfaces is Easier

I Main point of segmenting the cingulum bundle: population studies,
where statistical analysis must be performed to compare controls and
disease cases
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Modeling the Cingulum Bundle as a Tubular Surface
I Given center-line: c : [0, 1] → R3, and radius function: r : [0, 1] → R+

I Define the tubular surface, S : S1 × [0, 1] → R3, as

S(θ, u) = c(u) + r(u)[n1(u) cos θ + n2(u) sin θ]

where n1, n2 : [0, 1] → R3 are normals to the curve c: orthonormal, smooth,
and c′(u) · ni(u) = 0

I Tubular Surface Identified With a 4-D Curve: S ⇔ c̃ = (c, r) ∈ R4

c

c(u)

r(u)
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Segmentation Algorithm: Variational Approach

I Formulate energies on 4D curves, c̃,
(S ⇔ c̃)

I Weighted length energies:

I Ψ(p̃ = (p, r), v) to
incorporate statistics of
DW-MRI local to p̃, v

I Rather than one set of
global statistics

v

r

p
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Segmentation Algorithm: Variational Approach

Example 1: Choice of Ψ

D((p, αr), v)

v

p
r

D((p, r), v)

I Let I be DW-MRI

I Ψ1 minimized when mean of I inside disc,
µD(p,r ,v), maximally different from mean of
I outside, e.g.

Ψ1(p̃, v) =
1

1 + ‖µD(p̃,v) − µD((p,αr),v)\D(p̃,v)‖2

Need to define mean and norm for pixel-wise DW-MRI data
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Segmentation Algorithm: Variational Approach

Defining Mean and Norm for DW-MRI (Easier than DT-MRI)

I DW-MRI: I : R3 × S2 → R+

I DW-MRI sampled uniformly
directionally at each pixel, p ∈ R3

I Addition: add corresponding values
at directions

I(p1, ·) I(p2, ·)

Given f1, ·, fn : S2 → R+ (DW-MRI at n different spatial locations):

mean of f1, . . . , fn(v) :=
1
n

N∑
i=1

fi(v), ‖fi‖2 =

∫
S2
|fi(v)|2 dS(v)
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Segmentation Algorithm: Variational Approach

Example 2: Choice of Ψ

p

v
v⊥(θ)

Ψ2(p, r , v) = r
∫ 2π

0
φ(p + rv⊥(θ)) dθ

v⊥(θ) = n1 cos θ + n2 sin θ

φ(x) =
1

|B(x ,R)|

∫
B(x,R)

‖I(y , ·)−µB(x,R)(·)‖2 dy

I B(x ,R) is a ball

I φ is an “edge-detector”

I Corresponding energy to Ψ2 is related to
a weighted surface area.
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Energy Optimization: Gradient Descent/Ascent

E(c̃) =

∫
c̃
Ψ(c̃(s̃), c̃s̃(s̃)) ds̃

I Why Gradient Ascent/Descent?
I Global techniques (e.g. minimal paths) do not apply to direction-based

energies
I Not interested in global optimum: Ψ2

I Gradient flow: ∂t c̃ = ±∇E(c̃)
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Gradient Flow of Tubular Energy
Given the energy

E(c̃) =

∫
c̃
Ψ(c̃(s̃), c̃s̃(s̃)) ds̃

we get the following gradient flow:

Well-posedness: Ψ + Ψvv must be positive definite (negative definite for ascent
flow)

I For Ψ1 and Ψ2, this condition is NOT satisfied

I Flow is ILL-POSED
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Calculating Gradient Flows of Geometric Energies
1. Compute

dE(c) · h =
d
dt

E(c + th)|t=0︸ ︷︷ ︸
change in E in direction h

for generic c and h.

2. Manipulate dE(c) · h into the form∫
c

h(s) · v(s) ds

where v is some perturbation of c.

3. v is the gradient: direction which
maximizes E fastest.

4. Gradient descent flow: ∂tC = −v(C).

h(s1)

h(s2)

h(s3)

c

c : S1 → R2, and h : S1 → R2 is a
vector field on c (i.e., a perturbation or
deformation of c)
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Traditional Norm That Led To Ill-posed Flows: L2

Norm on deformations assumed in deformable model literature:
Geometric L2-type norm
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Gradient Depends on Norm on Deformations of Curve
Proposition
The gradient ∇E(c) is the vector in TcM that satisfies (if dE(c) 6= 0)

dE(c) · (∇E(c))

‖∇E(c)‖c
= sup

h∈TcM\{0}

| dE(c) · h|
‖h‖c

.

I Thus, gradient is the most efficient perturbation, i.e., maximizes

change in energy by moving in direction h
cost of moving in direction h

I By choosing different ‖ · ‖c than we obtain a different path to minimize
E without changing E .
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Proposed Norm: Sobolev-type Norm

Geometric Sobolev-type norm (open curves)

(Sundaramoorthi et al., Int. J. Computer Vision 2007, 2008, IEEE Trans. PAMI 2008 and
separately Charpiat et al. Int. J. Computer Vision 2007)
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Original Motivation for Sobolev Norms

Energy, E , is not changing; the scale that
is used to measure cost (length) of a
perturbation is changing.

Diagram:

I Represents local neighborhood of
curve c ∈ M.

I Spatial scale is relative to “distance” in
M measured through ‖ · ‖H0 or ‖ · ‖H1 .

I
6 means energy E = 6 at particular

point (curve).

7
6

5

5

8 9
9

6

6

2

−∇L2 E(c)

(M, L2)

c

7
2

55 6

9
9 8

6
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−∇SobE(c)
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c
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Original Motivation for Sobolev Norms

Sobolev Norms Favor Coarse Scale Motions

‖h‖2
c,H0 :=

∫
c
|h(s)|2 ds

vs.

‖h‖2
c,Sob = L

∫
c
|Dsh(s)|2 ds
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Original Motivation: Sobolev Norms Robust to Noise and
Local Minima
Region-Based Segmentation: (E = Chan-Vese energy, TIP 2001)

−∇L2 E + ακN

−∇L2 E + βκN
(β >> α)

−∇SobE
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−∇L2 E + ακN

−∇L2 E + βκN
(β >> α)

−∇SobE
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Sobolev Stabilizes L2 Flows Involving Length

Let E be an energy, one can show that

∇SobE = K ∗ ∇L2E

important property:

K ′′(s) =
1
L2

(
1
L
− δ(s)

)

Plot of K:
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If E(c) = length of c, then ∇L2E(c) = −css and

∇SobE(c) = K ∗ (−css) =
c − c

L

(c is the centroid of c).
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Fiber Bundle Extraction: Two Step Approach

Given: Two seed regions (beginning and end of fiber bundle)
1. Find an open curve, cinit : [0, 1] → R3 in fiber bundle.

I Rough estimation of a curve in bundle required (e.g. geodesic
tractography)

cinit

Seed Region

Seed Region

2. Initialize tubular surface: c̃(0) = (c(0), r(0)) = (cinit , 1)

3. Optimize tubular surface energy
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Tubular Energy Optimization Procedure
Iterate:

1. Evolve interior of 4D curve with fixed endpoints

c̃t = ±∇SobE(c̃)

= ±K (Ψp̃)± ∂ŝK (cΨv

p
1 + (rs̃/|cs̃|)2 + Ψc̃s̃),

2. Evolve the endpoints of 4D curve (valid for e.g. Ψ2)

c̃t(0) = ∓cΨv

s
1 +

„
rs̃

|cs̃|

«2

∓Ψc̃s̃

c̃t(1) = ±cΨv

s
1 +

„
rs̃

|cs̃|

«2

±Ψc̃s̃
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Result of the Segmentation Method
3D Views of Result
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Some Results of the Segmentation Method
A Slice-Wise View of Result
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I Method for fiber bundle extraction:
I E.g. Geodesic tractography for single fiber
I Initialization for volumetric segmentation

I Modeled certain fiber bundles as tubular region
I Future Work: Statistical analysis of cingulum bundles and functions

defined on the cingulum bundle
I Tubular model makes it easy
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Thank you.
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