Tubular Surface Evolutions for Segmentation of Tubular Structures With Applications to the Cingulum Bundle From DW-MRI

Ganesh Sundaramoorthi

CS Dept., UCLA

IPAM Brain Imaging Workshop

Joint Work With ...

- Vandana Mohan, John Melonakos, Prof. Allen Tannenbaum
- Schools of ECE and BME, Georgia Tech/Emory

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction to Fiber Bundle Segmentation and Motivation Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Energy Models for Extracting Tubular Fiber Bundles A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

Optimization of Tubular Energies: Sobolev Gradient Flows

Experimental Result

Summary

Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Outline

Introduction to Fiber Bundle Segmentation and Motivation Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Energy Models for Extracting Tubular Fiber Bundles A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

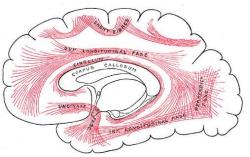
Optimization of Tubular Energies: Sobolev Gradient Flows

Experimental Result

Summary

Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

The Cingulum Bundle and Other Fiber Pathways

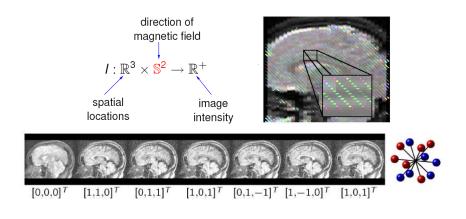


- 5-7mm in diameter fiber bundle: interconnects limbic system
 - fibers are mostly parallel, sometimes intersecting
- forms a "ring-like belt" around the corpus callosum
- Involved with executive control and emotional processing

May be linked to schizophrenia

Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Imaging the Cingulum Bundle in the Brain: DW-MRI



Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Imaging the Cingulum Bundle in the Brain: DW-MRI

We show visualization of DW-MRI and the cingulum bundle: Movie.

Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Outline

Introduction to Fiber Bundle Segmentation and Motivation Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Energy Models for Extracting Tubular Fiber Bundles A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

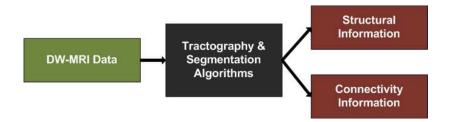
Optimization of Tubular Energies: Sobolev Gradient Flows

Experimental Result

Summary

Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

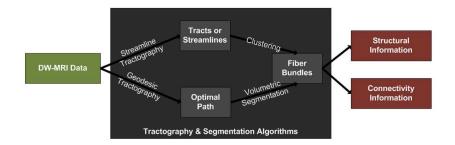
DW-MRI for Structural and Connectivity Information



・ロト ・四ト ・ヨト・ヨト・

Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Overview of Our Approach for Fiber Bundle Analysis



Sundaramoorthi et al. Tubular Segmentation of Cingulum Bundle

・ロト ・ 四ト ・ ヨト ・ ヨト ・

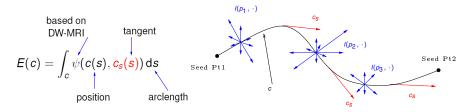
э

Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Our Approach: Geodesic Tractography

Detecting A Single Fiber (Melonakos et al., IEEE PAMI 2008)

Given two seed points, find *optimal path* between them. Let $c : [0, 1] \rightarrow \mathbb{R}^3$

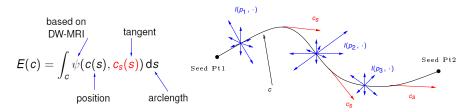


Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Our Approach: Geodesic Tractography

Detecting A Single Fiber (Melonakos et al., IEEE PAMI 2008)

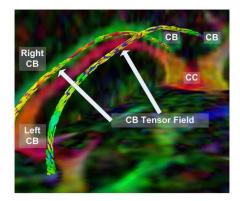
Given two seed points, find *optimal path* between them. Let $c : [0, 1] \rightarrow \mathbb{R}^3$



Globally minimize: fast sweeping (Kao et al. 2003) for some ψ

Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Our Approach: Geodesic Tractography

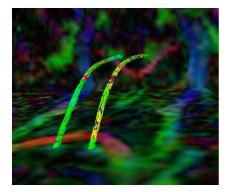


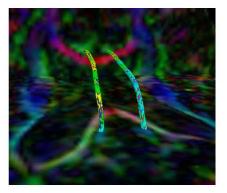
Sundaramoorthi et al. Tubular Segmentation of Cingulum Bundle

・ロト ・四ト ・ヨト・ヨト・

Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Our Approach: Geodesic Tractography

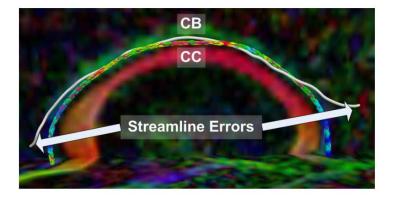




・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Our Approach: Geodesic Tractography



Sundaramoorthi et al. Tubular Segmentation of Cingulum Bundle

Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Our Approach: Volumetric Segmentation Method

Volumetric Surface Methods Applied to DW-MRI

Surface Obtained From DT-MRI

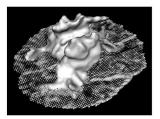


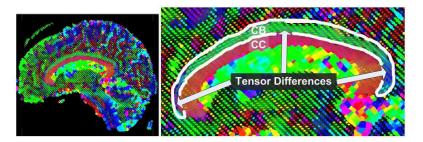
Image from Lenglet et al., Trans. Med. Imaging, 2006

- DTI Volumetric Segmentation:
 - Region-Based Methods (e.g. Lenglet et al., Wang and Vemuri)
 - Edge-Based Method (Melonakos et al.)
- We Tailor Above Methods to Fiber Bundles
 - Shape Prior Needed
 - Challenge: Non-homogeneity of statistics of the cingulum bundle

Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Non-Uniform Statistics of Cingulum Bundle

Sagittal Slice of DT-MRI of a Brain



CB = Cingulum bundleCC = Corpus Callosum

イロト イヨト イヨト イ

A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

Outline

Introduction to Fiber Bundle Segmentation and Motivation Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Energy Models for Extracting Tubular Fiber Bundles A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

Optimization of Tubular Energies: Sobolev Gradient Flows

Experimental Result

Summary

A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

Modeling the Cingulum Bundle as a Tubular Surface

Why Model the Cingulum Bundle as a Tubular Surface?

- Natural Shape Prior:
 - Cingulum Bundle is approximately tubular
 - DW-MRI is noisy and filled with irrelevant features; cingulum bundle hard to segment without prior

Significant Dimension Reduction:

Segmentation reduced from detecting a surface to a curve

Statistical Shape Analysis of Tubular Surfaces is Easier

 Main point of segmenting the cingulum bundle: *population studies*, where statistical analysis must be performed to compare controls and disease cases

A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

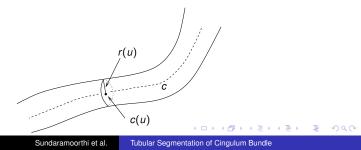
Modeling the Cingulum Bundle as a Tubular Surface

- ▶ Given center-line: $c : [0, 1] \to \mathbb{R}^3$, and radius function: $r : [0, 1] \to \mathbb{R}^+$
- Define the *tubular surface*, $S : \mathbb{S}^1 \times [0, 1] \to \mathbb{R}^3$, as

 $S(\theta, u) = c(u) + r(u)[n_1(u)\cos\theta + n_2(u)\sin\theta]$

where $n_1, n_2 : [0, 1] \to \mathbb{R}^3$ are normals to the curve *c*: orthonormal, smooth, and $c'(u) \cdot n_i(u) = 0$

▶ Tubular Surface Identified With a 4-D Curve: $S \Leftrightarrow \tilde{c} = (c, r) \in \mathbb{R}^4$



A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

Outline

Introduction to Fiber Bundle Segmentation and Motivation Cingulum Bundle ... A Structure of Importance Methods for DW-MRI Fiber Bundle Analysis

Energy Models for Extracting Tubular Fiber Bundles A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

Optimization of Tubular Energies: Sobolev Gradient Flows

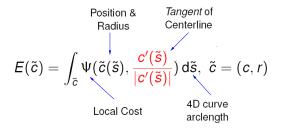
Experimental Result

Summary

A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

Segmentation Algorithm: Variational Approach

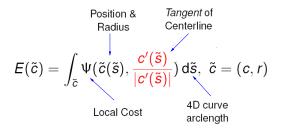
- Formulate energies on 4*D* curves, \tilde{c} , $(S \Leftrightarrow \tilde{c})$
- Weighted length energies:



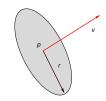
A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

Segmentation Algorithm: Variational Approach

- Formulate energies on 4*D* curves, \tilde{c} , $(S \Leftrightarrow \tilde{c})$
- Weighted length energies:

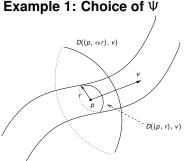


- Ψ(p̃ = (p, r), v) to incorporate statistics of DW-MRI *local* to p̃, v
- Rather than one set of global statistics



A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

Segmentation Algorithm: Variational Approach



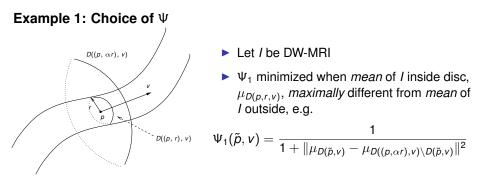
Let / be DW-MRI

• Ψ_1 minimized when *mean* of *I* inside disc, $\mu_{D(p,r,v)}$, *maximally* different from *mean* of *I* outside, e.g.

$$\Psi_1(\tilde{p}, v) = \frac{1}{1 + \|\mu_{D(\tilde{p}, v)} - \mu_{D((p, \alpha r), v) \setminus D(\tilde{p}, v)}\|^2}$$

A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

Segmentation Algorithm: Variational Approach



Need to define mean and norm for pixel-wise DW-MRI data

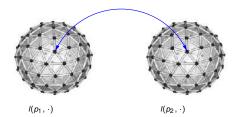
・ロト ・ 日 ・ ・ ヨ ・ ・

A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

Segmentation Algorithm: Variational Approach

Defining Mean and Norm for DW-MRI (Easier than DT-MRI)

- ▶ DW-MRI: $I : \mathbb{R}^3 \times \mathbb{S}^2 \to \mathbb{R}^+$
- ► DW-MRI sampled uniformly directionally at each pixel, p ∈ ℝ³
- Addition: add corresponding values at directions

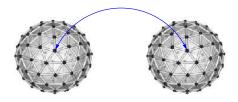


A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

Segmentation Algorithm: Variational Approach

Defining Mean and Norm for DW-MRI (Easier than DT-MRI)

- ▶ DW-MRI: $I : \mathbb{R}^3 \times \mathbb{S}^2 \to \mathbb{R}^+$
- ► DW-MRI sampled uniformly directionally at each pixel, p ∈ ℝ³
- Addition: add corresponding values at directions



 $I(p_2, \cdot)$

Given $f_1, \cdot, f_n : \mathbb{S}^2 \to \mathbb{R}^+$ (DW-MRI at *n* different spatial locations):

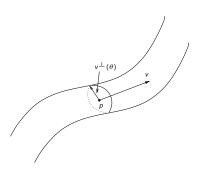
mean of
$$f_1, \ldots, f_n(v) := \frac{1}{n} \sum_{i=1}^N f_i(v), \qquad ||f_i||^2 = \int_{\mathbb{S}^2} |f_i(v)|^2 \, \mathrm{d}S(v)$$

A Tubular Model for the Cingulum Bundle Constructing Energies on Tubular Surfaces

Segmentation Algorithm: Variational Approach

 ϕ

Example 2: Choice of Ψ



$$\Psi_2(p, r, v) = r \int_0^{2\pi} \phi(p + rv^{\perp}(\theta)) d\theta$$
$$v^{\perp}(\theta) = n_1 \cos \theta + n_2 \sin \theta$$
$$(x) = \frac{1}{|B(x, R)|} \int_{B(x, R)} \|I(y, \cdot) - \mu_{B(x, R)}(\cdot)\|^2 dy$$

- B(x, R) is a ball
- ϕ is an "edge-detector"
- Corresponding energy to Ψ₂ is related to a weighted surface area.

Energy Optimization: Gradient Descent/Ascent

$$E(\tilde{c}) = \int_{\tilde{c}} \Psi(\tilde{c}(\tilde{s}), \frac{\tilde{c}_{\tilde{s}}(\tilde{s})}{\delta}) d\tilde{s}$$

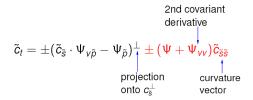
- Why Gradient Ascent/Descent?
 - Global techniques (e.g. minimal paths) do not apply to direction-based energies
 - Not interested in global optimum: Ψ₂
- Gradient flow: $\partial_t \tilde{c} = \pm \nabla E(\tilde{c})$

Gradient Flow of Tubular Energy

Given the energy

$$E(ilde{c}) = \int_{ ilde{c}} \Psi(ilde{c}(ilde{s}), ilde{c}_{ ilde{s}}(ilde{s})) \, \mathsf{d} ilde{s}$$

we get the following gradient flow:



ヘロト 人間 ト 人間 ト 人間 トー

Gradient Flow of Tubular Energy

Given the energy

$$E(ilde{c}) = \int_{ ilde{c}} \Psi(ilde{c}(ilde{s}), ilde{c}_{ ilde{s}}(ilde{s})) \, \mathsf{d} ilde{s}$$

we get the following gradient flow:

$$\tilde{c}_{t} = \pm (\tilde{c}_{\tilde{s}} \cdot \Psi_{v\tilde{p}} - \Psi_{\tilde{p}})^{\perp} \pm (\Psi + \Psi_{vv})\tilde{c}_{\tilde{s}\tilde{s}}$$
projection curvature
onto c_{ϵ}^{\perp} vector

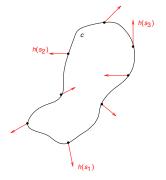
Well-posedness: $\Psi + \Psi_{\nu\nu}$ must be positive definite (negative definite for ascent flow)

- For Ψ_1 and Ψ_2 , this condition is NOT satisfied
- Flow is ILL-POSED

Calculating Gradient Flows of Geometric Energies

1. Compute

$$\underbrace{\frac{dE(c) \cdot h = \frac{d}{dt} E(c + th)|_{t=0}}{\text{change in } E \text{ in direction } h}}_{\text{for generic } c \text{ and } h.}$$



Calculating Gradient Flows of Geometric Energies

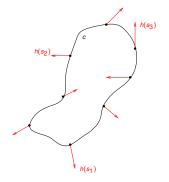
1. Compute

 $\underbrace{\frac{dE(c) \cdot h = \frac{d}{dt}E(c + th)|_{t=0}}_{\text{change in } E \text{ in direction } h}}_{\text{for generic } c \text{ and } h.}$

2. Manipulate $dE(c) \cdot h$ into the form

$$\int_c h(s) \cdot \mathbf{v}(s) \,\mathrm{d}s$$

where v is some perturbation of c.



Calculating Gradient Flows of Geometric Energies

1. Compute

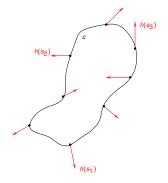
 $\underbrace{\frac{dE(c) \cdot h = \frac{d}{dt}E(c + th)|_{t=0}}_{\text{change in } E \text{ in direction } h}}_{\text{for generic } c \text{ and } h.}$

2. Manipulate $dE(c) \cdot h$ into the form

$$\int_c h(s) \cdot \mathbf{v}(s) \,\mathrm{d}s$$

where v is some perturbation of c.

3. *v* is the *gradient*: direction which maximizes *E* fastest.



Calculating Gradient Flows of Geometric Energies

1. Compute

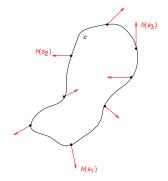
 $\underbrace{\frac{dE(c) \cdot h = \frac{d}{dt}E(c + th)|_{t=0}}{\text{change in } E \text{ in direction } h}}_{\text{for generic } c \text{ and } h.}$

2. Manipulate $dE(c) \cdot h$ into the form

$$\int_c h(s) \cdot \mathbf{v}(s) \,\mathrm{d}s$$

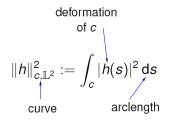
where v is some perturbation of c.

- 3. *v* is the *gradient*: direction which maximizes *E fastest*.
- 4. Gradient descent flow: $\partial_t C = -v(C)$.



Traditional Norm That Led To III-posed Flows: \mathbb{L}^2

Norm on deformations assumed in deformable model literature: Geometric $\mathbb{L}^2\text{-type norm}$



Gradient Depends on *Norm* on Deformations of Curve Proposition

The gradient $\nabla E(c)$ is the vector in T_cM that satisfies (if $dE(c) \neq 0$)

$$\frac{dE(c)\cdot(\nabla E(c))}{\|\nabla E(c)\|_c} = \sup_{h\in T_cM\setminus\{0\}} \frac{|dE(c)\cdot h|}{\|h\|_c}$$

Thus, gradient is the most efficient perturbation, i.e., maximizes

 $\frac{\text{change in energy by moving in direction } h}{\text{cost of moving in direction } h}$

Gradient Depends on *Norm* on Deformations of Curve Proposition

The gradient $\nabla E(c)$ is the vector in T_cM that satisfies (if $dE(c) \neq 0$)

$$\frac{dE(c)\cdot(\nabla E(c))}{\|\nabla E(c)\|_c} = \sup_{h\in T_cM\setminus\{0\}} \frac{|dE(c)\cdot h|}{\|h\|_c}$$

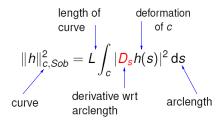
Thus, gradient is the most efficient perturbation, i.e., maximizes

 $\frac{\text{change in energy by moving in direction } h}{\text{cost of moving in direction } h}$

By choosing different || · ||_c than we obtain a different path to minimize *E* without changing *E*.

Proposed Norm: Sobolev-type Norm

Geometric Sobolev-type norm (open curves)



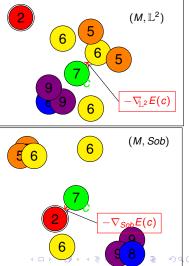
(Sundaramoorthi et al., Int. J. Computer Vision 2007, 2008, IEEE Trans. PAMI 2008 and separately Charpiat et al. Int. J. Computer Vision 2007)

Original Motivation for Sobolev Norms

Energy, E, **is not** changing; the scale that is used to measure cost (length) of a perturbation **is** changing.

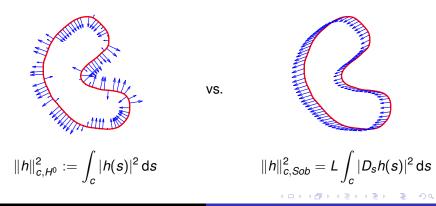
Diagram:

- ► Represents local neighborhood of curve c ∈ M.
- Spatial scale is relative to "distance" in *M* measured through || ⋅ ||_{H⁰} or || ⋅ ||_{H¹}.
 - $\frac{6}{100}$ means energy E = 6 at particular point (curve).



Original Motivation for Sobolev Norms

Sobolev Norms Favor Coarse Scale Motions



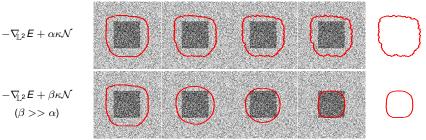
Original Motivation: Sobolev Norms Robust to Noise and Local Minima

Region-Based Segmentation: (E =Chan-Vese energy, TIP 2001)

 $-\nabla_{\mathbb{L}^2}E + \alpha\kappa\mathcal{N}$

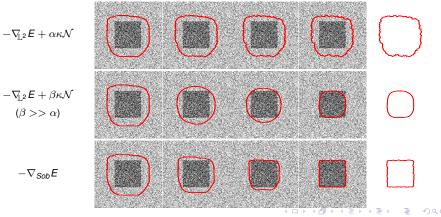
Original Motivation: Sobolev Norms Robust to Noise and Local Minima

Region-Based Segmentation: (E =Chan-Vese energy, TIP 2001)



Original Motivation: Sobolev Norms Robust to Noise and Local Minima

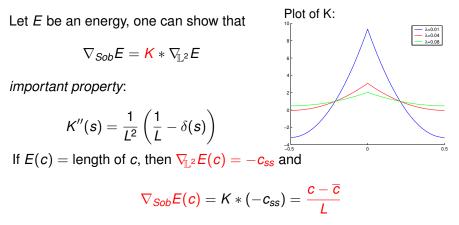
Region-Based Segmentation: (E =Chan-Vese energy, TIP 2001)



Sundaramoorthi et al.

Tubular Segmentation of Cingulum Bundle

Sobolev Stabilizes \mathbb{L}^2 Flows Involving Length



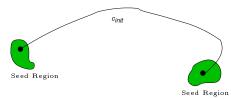
 $(\overline{c} \text{ is the centroid of } c).$

・ロト ・四ト ・ヨト・ヨト・

Fiber Bundle Extraction: Two Step Approach

Given: Two seed regions (beginning and end of fiber bundle)

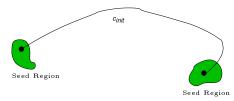
- 1. Find an open curve, $c_{init} : [0, 1] \to \mathbb{R}^3$ in fiber bundle.
 - Rough estimation of a curve in bundle required (e.g. geodesic tractography)



Fiber Bundle Extraction: Two Step Approach

Given: Two seed regions (beginning and end of fiber bundle)

- 1. Find an open curve, $c_{init} : [0, 1] \to \mathbb{R}^3$ in fiber bundle.
 - Rough estimation of a curve in bundle required (e.g. geodesic tractography)



2. Initialize tubular surface: $\tilde{c}(0) = (c(0), r(0)) = (c_{init}, 1)$

Fiber Bundle Extraction: Two Step Approach

Given: Two seed regions (beginning and end of fiber bundle)

- 1. Find an open curve, $c_{init} : [0, 1] \to \mathbb{R}^3$ in fiber bundle.
 - Rough estimation of *a curve* in bundle required (e.g. geodesic tractography)



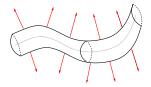
- 2. Initialize tubular surface: $\tilde{c}(0) = (c(0), r(0)) = (c_{init}, 1)$
- 3. Optimize tubular surface energy

Tubular Energy Optimization Procedure

Iterate:

1. Evolve interior of 4D curve with fixed endpoints

$$\begin{split} \widetilde{c}_t &= \pm
abla_{ ext{Sob}} E(\widetilde{c}) \ &= \pm K(\Psi_{\widetilde{p}}) \pm \partial_{\widetilde{s}} K(\widehat{\Psi_v} \sqrt{1 + (r_{\widetilde{s}}/|c_{\widetilde{s}}|)^2} + \Psi \widetilde{c}_{\widetilde{s}}) \end{split}$$

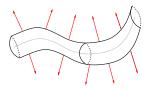


Tubular Energy Optimization Procedure

Iterate:

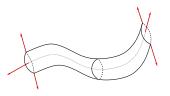
1. Evolve interior of 4D curve with fixed endpoints

$$egin{aligned} & ilde{c}_t = \pm
abla_{ ext{Sob}} E(ilde{c}) \ &= \pm K(\Psi_{ ilde{
ho}}) \pm \partial_{\hat{s}} K(\widehat{\Psi_v} \sqrt{1 + (r_{\hat{s}}/|c_{\hat{s}}|)^2} + \Psi ilde{c}_{\hat{s}}) \end{aligned}$$



2. Evolve the endpoints of 4D curve (valid for e.g. Ψ_2)

$$egin{aligned} & ilde{c}_t(0) = \mp \widehat{\Psi_v} \sqrt{1 + \left(rac{r_{\hat{\mathrm{s}}}}{|c_{\hat{\mathrm{s}}}|}
ight)^2} \mp \Psi ilde{c}_{\hat{\mathrm{s}}} \ & ilde{c}_t(1) = \pm \widehat{\Psi_v} \sqrt{1 + \left(rac{r_{\hat{\mathrm{s}}}}{|c_{\hat{\mathrm{s}}}|}
ight)^2} \pm \Psi ilde{c}_{\hat{\mathrm{s}}} \end{aligned}$$

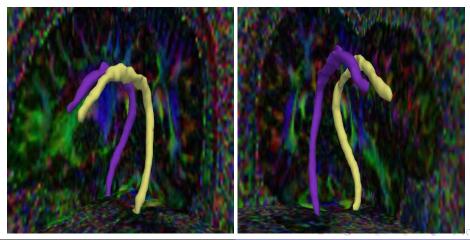


イロト イポト イヨト イヨ

Summary

Result of the Segmentation Method

3D Views of Result

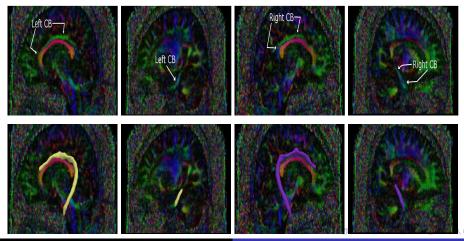


Sundaramoorthi et al.

Tubular Segmentation of Cingulum Bundle

Some Results of the Segmentation Method

A Slice-Wise View of Result



Sundaramoorthi et al.

Tubular Segmentation of Cingulum Bundle

Summary

- Method for fiber bundle extraction:
 - E.g. Geodesic tractography for single fiber
 - Initialization for volumetric segmentation
- Modeled certain fiber bundles as tubular region
- Future Work: Statistical analysis of cingulum bundles and functions defined on the cingulum bundle
 - Tubular model makes it easy

Thank you.

Sundaramoorthi et al. Tubular Segmentation of Cingulum Bundle

ヘロト 人間 トイヨト イヨト

æ