| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |

# Generative Models and Stochastic Algorithms for Population Average Estimation and Image Analysis

Stéphanie Allassonnière

CIS, JHU

July, 15th 2008

(日) (四) (三) (三)

∍

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

| C. A.<br>●0 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Context :   | Computational Anato           | omy                                  |                        |                       |                     |                 |

Context and motivations :

- \* Describing shapes
- \* Shape matching : many elaborated registrations theories
- \* Defining and infering population average (atlas)
  - Statistical estimation in presence of unobserved variables

(ロ) (同) (三) (三) (三) (0) (0)

- Proper statistical model = generative
- Consistency issues addressed
- \* Discrimination/Classification

| C. A.<br>⊙●                     | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>o<br>o | Conclusion<br>O |
|---------------------------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|                                 |                               |                                      |                        |                       |                     |                 |
| Context : Computational Anatomy |                               |                                      |                        |                       |                     |                 |

## Outline

Three generative statistical models and stochastic algorithms

- 1 Bayesian Mixed Effect (BME) gray level Template
  - 1.1 Mathematical framework for deformable models
  - 1.2 Past approaches to compute a population average
  - 1.3 Generative statistical models
  - 1.4 Statistical estimation of the model parameters
  - 1.5 Experiments on USPS database and 2D medical images

Sac

- 2 Bayesian Mixed Effect DTI Template
- 3 Noisy ICA

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |

### Outline

Three generative statistical models and stochastic algorithms

- 1 Bayesian Mixed Effect (BME) gray level Template
  - 1.1 Mathematical framework for deformable models
  - 1.2 Past approaches to compute a population average
  - 1.3 Generative statistical models
  - 1.4 Statistical estimation of the model parameters
  - 1.5 Experiments on USPS database and 2D medical images

(ロ) (月) (三) (三) (三) (0)

- 2 Bayesian Mixed Effect DTI Template
- 3 Noisy ICA

| C. A.<br>00 | BME Template<br>●000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>o | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|----------------|-----------------|
|             |                               |                                      |                        |                       |                |                 |
| Warping a   | and past approaches           |                                      |                        |                       |                |                 |

# Linearized deformations :

- Non rigid deformations
- Let  $\psi$  be the deformation from  $I_0$  to  $I_1$  and v a vector field :

$$\psi = \mathbf{Id} + \mathbf{v}$$

• Resulting deformed image given by :

$$I_1(x) \simeq I_0(x - v(x))$$

Advantages :

- Easy to use in computations
- Relevant for certain classes of shapes

Drawbacks :

Invertibility not guaranteed : Overlap → Shape topology may change !

∍

Sac

| C. A.<br>00 | BME Template<br>0●00<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>O<br>O | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Warping a   | nd past approaches            |                                      |                        |                       |                     |                 |

ヘロト スピト スティート

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

€

Some solutions previously given :

# Only for the template!

• Using one of the data images  $y_1^n$ .

| C. A.<br>00 | BME Template<br>0●00<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Warping a   | nd past approaches            |                                      |                        |                       |                     |                 |

# Only for the template!

• Using one of the data images  $y_1^n$ .

ヘロト スピト スティート

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

€

| C. A.<br>00 | BME Template<br>0●00<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>o<br>o | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Warping a   | and past approaches           |                                      |                        |                       |                     |                 |

### Only for the template!

• Using one of the data images  $y_1^n$ .

22222222222

SQ C



| C. A.<br>00 | BME Template<br>00●0<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Warping a   | and past approaches           |                                      |                        |                       |                     |                 |

# Only for the template!

• Procrustes' mean :

$$(\hat{l}_0, \hat{v}_1, \dots, \hat{v}_n) = \arg\min_{l_0, v_1, \dots, v_n} \sum_{i=1}^n \left(\frac{1}{2} \|v_i\|_V^2 + \frac{1}{2\sigma^2} |y_i \circ \phi^{v_i} - l_0|^2\right)$$

 $\mathfrak{I}_{\mathcal{A}}$ 

€

| C. A.<br>00 | BME Template<br>00●0<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>o<br>o | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Warping a   | and past approaches           |                                      |                        |                       |                     |                 |

# Only for the template!

• Procrustes' mean :

$$(\hat{l}_0, \hat{v}_1, \dots, \hat{v}_n) = \arg\min_{l_0, v_1, \dots, v_n} \sum_{i=1}^n \left(\frac{1}{2} ||v_i||_V^2 + \frac{1}{2\sigma^2} |y_i \circ \phi^{v_i} - l_0|^2\right)$$

• A statistical interpretation : (Glasbey & Mardia)

$$y_i(x + v_i(x)) = I_0(x) + \epsilon_x, \ \epsilon_x \sim \mathcal{N}(0, \sigma^2), \ x \in \Lambda$$

(日) (四) (三) (三)

∍

Sac

Problems :

- Needs interpolation
- Unobserved warping variables
- Not a generative statistical model

| C. A.<br>00 | BME Template<br>000●<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>O<br>O | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Warping a   | nd past approaches            |                                      |                        |                       |                     |                 |

Issues :

Describing databases as some i.i.d. sample of some parametric generative statistical model.

Model parameters = template + deformation law (define the space V) + noise

(ロ) (同) (三) (三) (三) (0) (0)

Learning the parameters to avoid the previous problems :

- An intrinsic template I<sub>0</sub>,
- A weighting term  $\sigma^2$ ,
- A global geometric behavior in the class.

| C. A.<br>00 | BME Template<br>0000<br>●0000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Statistical | Generative Model              |                                      |                        |                       |                     |                 |

#### Generative Statistical Model :

 $\rightarrow$  Deformable template framework :

$$y_{j,k}^{i} = I_{0}(r_{j,k} - v_{i}(r_{j,k})) + \sigma \varepsilon_{j,k}$$

Conditions chosen for the template and the deformation fields : <u>Parametric Model of Splines</u> : let  $(p)_1^{k_p}$  and  $(g)_1^{k_g}$  be two sets of control points (fixed, uniformly distributed) :

$$I_0(x) = K_p \alpha(x) = \sum_{k=1}^{k_p} K_p(x, p_k) \alpha(k) ,$$
$$v_\beta(x) = (K_g \beta)(x) = \sum_{k=1}^{k_g} K_g(x, g_k) \beta(k).$$

Jac.

| C. A.<br>00 | BME Template<br>0000<br>0●000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Statistical | Generative Model              |                                      |                        |                       |                     |                 |

#### What to learn?

Photometry :  $\begin{cases} \alpha : \text{ to code the template} \\ \sigma^2 : \text{ the noise variance} \end{cases}$ Geometry :  $\beta_1^n$ : to code each deformation

BUT : does not give the geometrical behavior in the training set.  $\implies$  Introduce a prior on  $\beta$  :

# $\beta_i \sim \nu(d\beta)$

(ロ) (同) (三) (三) (三) (0) (0)

Parameters of  $\nu = \text{parameters to learn.}$ Deformations  $(\beta_i)_{1 \le i \le n} = \text{random hidden variables}$ 

| C. A.<br>00 | BME Template<br>0000<br>00●00 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>O<br>O | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Statistical | Generative Model              |                                      |                        |                       |                     |                 |

Generative Model :

One component per class :

$$\begin{cases} (\Gamma_{g}, \theta_{p}) \sim \nu_{g} \otimes \nu_{p} \text{ with } \theta_{p} = (\alpha, \sigma^{2}) \\ \beta_{1}^{n} \sim \otimes_{i=1}^{n} \mathcal{N}(0, \Gamma_{g}) \mid \Gamma_{g} \\ \gamma_{1}^{n} \sim \otimes_{i=1}^{n} \mathcal{N}(\mathsf{v}_{\beta_{i}} I_{\alpha}, \sigma^{2} \mathsf{Id}_{\Lambda}) \mid \beta_{1}^{n}, \theta_{p} \end{cases}$$

〈ロ〉 〈問〉 〈注〉 〈注〉 三百一

5900

where  $\nu_g(d\Gamma_g), \nu_p(d\sigma^2, d\alpha)$  are prior laws on the parameters. Remark : big structures to learn even in the case of small size training set

| C. A.<br>00 | BME Template<br>0000<br>000●0 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>O<br>O | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Statistical | Generative Model              |                                      |                        |                       |                     |                 |

# Generative Model (2) :

General case : mixtures of deformable templates ( $\tau_m$  components per class) Hidden random variables :  $(\beta_i)_{1 \le i \le n}$  and the image labels  $(\tau_i)_{1 \le i \le n}$ .

$$\begin{cases} \rho \sim \nu_{\rho} \\\\ \theta = (\theta_{g}^{\tau}, \theta_{\rho}^{\tau})_{1 \leq \tau \leq \tau_{m}} \sim \otimes_{\tau=1}^{\tau_{m}} (\nu_{g} \otimes \nu_{\rho}) \\\\ \tau_{1}^{n} \sim \otimes_{i=1}^{n} \sum_{\tau=1}^{\tau_{m}} \rho_{\tau} \delta_{\tau} \mid \rho \\\\ \beta_{1}^{n} \sim \otimes_{i=1}^{n} \mathcal{N}(0, \Gamma_{g}^{\tau_{i}}) \mid \theta, \ \tau_{1}^{n} \\\\ y_{1}^{n} \sim \otimes_{i=1}^{n} \mathcal{N}(v_{\beta_{i}} I_{\alpha_{\tau_{i}}}, \sigma_{\tau_{i}}^{2} Id_{\Lambda}) \mid \beta_{1}^{n}, \ \theta, \ \tau_{1}^{n} \end{cases}$$

| C. A.<br>00 | BME Template<br>0000<br>0000● | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Statistical | Generative Model              |                                      |                        |                       |                     |                 |

#### Generative Statistical Model :



FIG.: Mixed effect structure for our BME-template

r 🖓 🕨

< D >

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>•00000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Estimation  | n                             |                                      |                        |                       |                     |                 |

How to learn the parameters? the MAP Estimator :

Parameters  $\theta$  are estimated by maximum posterior likelihood :

 $\hat{\theta} = \arg \max P(\theta|y)$ 

where

$$\begin{split} \theta \in \Theta &= \{ \ (\alpha, \sigma^2, \Gamma_g) | \alpha \in \mathbb{R}^{k_p}, \ \sigma^2 > 0, \ \Gamma_g \in \mathcal{Sym}^+_{2k_g, *}(\mathbb{R}) \ \}. \\ \mathcal{Sym}^+_{2k_g, *}(\mathbb{R}) \text{ is the set of positive definite symmetric matrices.} \end{split}$$

Let  $\Theta_* = \{ \theta_* \in \Theta \mid E_P(\log q(y|\theta_*)) = \sup_{\theta \in \Theta} E_P(\log q(y|\theta)) \}$ where *P* denotes the distribution governing the observations.

< 口 > < 同 > < 三 > < 三 > < 三 > < 三 > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○ = ○ < ○ > < ○ > < ○ > < ○ > < ○ > < ○ > < ○

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Estimation  | n                             |                                      |                        |                       |                     |                 |

How to do in practice?

Since  $\beta_1^n$  are unobserved variables, a natural approach to reach the MAP estimator is the **EM algorithm**.

Iteration / of the algorithm :

**E Step :** Compute the posterior law on  $\beta_i$ , i = 1, ..., n.

M Step : Parameter update :

$$heta_{l+1} = \arg \max_{\theta} E\left[\log q(\theta, \beta_1^n, y_1^n) | y_1^n, \theta_l
ight].$$

BUT : the E step is not tractable !

Sac

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>O | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|----------------|-----------------|
| Estimatio   | n                             |                                      |                        |                       |                |                 |

Details of the maximization step :

Geometry :

$$\theta_{g,l+1} = \Gamma_{g,l+1} = \frac{1}{n+a_g} (n[\beta\beta^t]_l + a_g\Sigma_g).$$

where

$$[\beta\beta^t]_l = \frac{1}{n} \sum_{i=1}^n \int \beta\beta^t \nu_{l,i}(\beta) d\beta,$$

 $\mathfrak{I}_{\mathcal{A}}$ 

∍

is the empirical covariance matrix with respect to the posterior density function.

 $\rightarrow$  Importance of the prior !

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>O<br>O | Conclusion<br>O |
|-------------|-------------------------------|---------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                     |                        |                       |                     |                 |
| Estimation  | ı                             |                     |                        |                       |                     |                 |
|             |                               |                     |                        |                       |                     |                 |

Solution proposed : Stochastic version of the EM algorithm :

Idea : Couple SAEM with MCMC procedure (Delyon, Lavielle, Moulines and Kuhn, Lavielle) :

One component case : Iteration  $I \rightarrow I + 1$  of the algorithm :

- Simulation step :  $\beta^{l+1} \sim \Pi_{\theta_l}(\beta^l, \cdot)$ where  $\Pi_{\theta_l}(\beta^l, \cdot)$  is a transition probability of a convergent Markov Chain having the posterior distribution as stationary distribution,
- Stochastic approximation :

 $Q_{l+1}(\theta) = Q_l(\theta) + \Delta_l[\log q(y, \beta^{l+1}, \theta) - Q_l(\theta)]$  where  $(\Delta_l)$  is a decreasing sequence of positive step-sizes.

- ロ > - 4 目 > - 4 目 > - 4 目 > - 9 9 9 9

• Maximization step :  $\theta_{l+1} = \arg \max Q_{l+1}(\theta)$ 

[\*]  $\Pi_{\theta_l}(\beta^l, \cdot)$  given by an hybrid Gibbs sampler

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>0000●0<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>O<br>O | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Estimation  | 1                             |                                      |                        |                       |                     |                 |

Stochastic version of the EM algorithm (2) :

Since our model is an Exponential Model,

$$q(y, \beta^{l+1}, \theta) = \exp \left\{-\psi(\theta) + \langle S(y, \beta), \phi(\theta) \rangle \right\}$$

the stochastic approximation can be done on the sufficient statistics S so that the algorithm is done via :

$$s_{l+1} = s_l + \Delta_l \left( S(y, \beta^{l+1}) - s_l \right)$$

Let  $L(s,\theta) = -\psi(\theta) + \langle s, \phi(\theta) \rangle$ ,  $I(\theta) = \log q(y,\theta)$  and  $\hat{\theta}(s) = \arg \max_{s} L(s,\theta(s))$  then

$$\theta_{k+1} = \hat{\theta}(s_{l+1})$$
.

(ロ) (同) (三) (三) (三) (0) (0)

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>00000●<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Estimation  | ı                             |                                      |                        |                       |                     |                 |

Stochastic approximation with truncation on random boundaries :

Set 
$$\kappa_0 = 0$$
,  $s_0 \in \mathcal{K}_0$  and  $\beta_0 \in K$ .  
 $\forall k \ge 1 \text{ compute } \bar{s} = s_{k-1} + \Delta_{k-1}(S(\bar{\beta}) - s_{k-1})$   
where  $\bar{\beta}$  is sampled from a transition kernel  
 $\Pi_{\theta_{k-1}}(\beta_{k-1}, \cdot)$ .  
If  $\bar{s} \in \mathcal{K}_{\kappa_{k-1}}$  and  $|\bar{s} - s_{k-1}| \le \varepsilon_{k-1}$   
set  $(s_k, \beta_k) = (\bar{s}, \bar{\beta})$  and  $\kappa_k = \kappa_{k-1}$ ,  
else set  $(s_k, \beta_k) = (\bar{s}, \bar{\beta}) \in \mathcal{K}_0 \times K$  and  $\kappa_k = \kappa_{k-1} + 1$ , where  
 $(\tilde{s}, \tilde{\beta})$  can be chosen through different ways.  
 $\theta_k = \arg \max_{\theta} L(s_k, \theta)$ 

<ロ> < 四> < 四> < 四> < 三> < 三> < 三>

₹

 $\mathfrak{I}_{\mathcal{A}}$ 

| 00000 0000 0         | - |
|----------------------|---|
|                      |   |
| Multicomponent Model |   |

Stochastic version of the EM algorithm for the multicomponent model :

Intuitive generalization :

- problem of "trapping states".
- Image analysis interpretation : each iteration tries to deform the data so it is closer to its current component and will not tend to move toward another one

 $\rightarrow$  high dimensional hidden variable  $\beta$ 

Solution proposed : Consider another simulation method based on the Gibbs sampler for the deformation and on another law for the class of a given image.

SQC+

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>0●0 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>O<br>O | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Multicomp   | oonent Model                  |                                      |                        |                       |                     |                 |

### The new algorithm :

٠

Transition step I 
ightarrow I+1 using a hybrid Gibbs sampler on (eta, au) :

• for each  $\tau$  : Run  $N_l$  times the hybrid Gibbs Sampler on  $\beta$  given  $\tau$ .

$$\hat{\beta}_{\tau}^{(l+1)} = \Pi^{N_l}(\beta|\tau)$$

• draw  $\tau^{(l+1)}$  through the discrete law with weights :

$$p_{N_l}(\tau) \propto \left(\frac{1}{N} \sum_{i_{mc}=1}^{N_l} \left[\frac{f(\hat{\beta}_{\tau,(i_{mc})})}{q(y,\hat{\beta}_{\tau,(i_{mc})},\tau|\theta,\rho)}\right]\right)^{-1}$$
$$\beta^{(l+1)} = \hat{\beta}_{\tau^{(l+1)},(N_l)}$$

< (1)</li>
 < (1)</li>

= √Q(~

| C. A.<br>00          | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>00● | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>O<br>O | Conclusion<br>O |  |
|----------------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|--|
|                      |                               |                                      |                        |                       |                     |                 |  |
| Multicomponent Model |                               |                                      |                        |                       |                     |                 |  |
|                      |                               |                                      |                        |                       |                     |                 |  |

Theoretical Results :

With these models and algorithms we have proved some important asymptotic results :

(日) (四) (三) (三)

- Consistency of the MAP estimator
- Convergence of both stochastic algorithms

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>•000000 | DTI template<br>00000 | Noisy ICA<br>O<br>O | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Experimen   | ts                            |                                      |                        |                       |                     |                 |

MCMC-SAEM :

# Template estimation :



FIG.: Left : one component prototype. Right : 2 component prototypes

Jac.

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>000000 | DTI template<br>00000 | Noisy ICA<br>O<br>O | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|-----------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                       |                       |                     |                 |
| Experimer   | nts                           |                                      |                       |                       |                     |                 |

MCMC-SAEM :

The Geometric Distribution :

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

< □ > < 行 >

FIG.: Left : 20 examples of the training set. Right : 20 examples drawn from the prior geometric distribution.

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>000000 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|-----------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                       |                       |                     |                 |
| Experimer   | nts                           |                                      |                       |                       |                     |                 |

# MCMC-SAEM : Geometry :

š õ õ Ŕ б 8 8 9

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>000000 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|-----------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                       |                       |                     |                 |
| Experime    | nts                           |                                      |                       |                       |                     |                 |

67

In presence of noise :

| 0          | 0 |    |    | 2  | 44.<br>5 | 3 | ŝ  | 4 |  |
|------------|---|----|----|----|----------|---|----|---|--|
| The second |   | 15 | 6  | 作法 | 1        | Ŷ | ちち | Ŷ |  |
| /          | ١ | 1  | 1  | 2  | 7        |   |    |   |  |
| Ĺ          | / | ł  | đ. | 3  | 1        |   |    |   |  |
| ŝ          | 5 | 6  | 7  | 8  | 9        |   |    |   |  |

| 00000000  | 000000000000000000000000000000000000000 |
|-----------|-----------------------------------------|
|           |                                         |
| 33333333  | 3333333333333333333                     |
| 3333333   |                                         |
| 5555555   | 555555555555555555555555555555555555555 |
| 66666666  | 6666666666666                           |
| 1717777   | 177117777777                            |
| 999999999 | 1901091010900<br>9901091010909          |

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000€00 | DTI template<br>00000 | Noisy ICA<br>o<br>o | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Experime    | nts                           |                                      |                        |                       |                     |                 |

Medical Images : Splenium of the Corpus Callossum 47 images of the corpus callosum (and part of the cerebellum)





 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

FIG.: Left : Gray level mean of the 47 images. Right : template estimated with the stochastic algorithm.

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>00000€0 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Experime    | ents                          |                                      |                        |                       |                     |                 |

Medical Images : Splenium of the Corpus Callossum 47 images of the corpus callosum (and part of the cerebellum) clustered into 2 components by the multicomponent model.





< D > < A > < B >

Jac.

FIG.: Results from the estimation with the stochastic algorithm. Left : component 1. Right : component 2.

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>000000● | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| Experimer   | nts                           |                                      |                        |                       |                     |                 |

# Robustness of the algorithm :

Same hyper-parameters as the previous gray level images





| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |

## Outline

Three generative statistical models and stochastic algorithms

- 1 Bayesian Mixed Effect (BME) gray level Template
  - 1.1 Mathematical framework for deformable models
  - 1.2 Past approaches to compute a population average
  - 1.3 Generative statistical models
  - 1.4 Statistical estimation of the model parameters
  - 1.5 Experiments on USPS database and 2D medical images

(ロ) (月) (三) (三) (三) (0)

- 2 Bayesian Mixed Effect DTI Template
- 3 Noisy ICA

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>•0000 | Noisy ICA<br>O<br>O | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| BME-DTI     | Template                      |                                      |                        |                       |                     |                 |

Bayesian Mixed Effect DTI Template :

Goals of our approach :

\* Estimate a Template of Diffusion Tensor Image on a given region of the anatomy

\* Just use the Diffusion Weight Images [DWIs] (real vector corresponding to the response to some different gradients)

(ㅁ) (귀) (흔) (흔)

Sac

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>0●000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| BME-D       | TI Template                   |                                      |                        |                       |                     |                 |

# Previous approach

| Subjects         | Least square approx. |               |       | mean          |              |
|------------------|----------------------|---------------|-------|---------------|--------------|
|                  |                      | Min of energy | /     |               |              |
|                  | DWI G1               |               |       |               |              |
| Subject 1        |                      | $\rightarrow$ | DTI 1 | $\rightarrow$ |              |
|                  | DWI Gm               |               |       |               |              |
|                  | DWI G1               |               |       |               | DTI template |
| Subject 2        |                      | $\rightarrow$ | DTI 2 | $\rightarrow$ | Diritemplate |
|                  | DWI Gm               |               |       |               |              |
|                  |                      |               |       |               |              |
|                  | DWI G1               |               |       |               |              |
| Subject <i>n</i> |                      | $\rightarrow$ | DTI n | $\rightarrow$ |              |
|                  | DWI Gm               |               |       |               |              |

<ロ> < 四> < 回> < 三> < 三> < 三> 三 のへで

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00€00 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| BME-D       | TI Template                   |                                      |                        |                       |                     |                 |

# Our approach

| Subjects         | observed | (hidden)        | Max likelihood |
|------------------|----------|-----------------|----------------|
|                  | DWI G1   |                 | $\rightarrow$  |
| Subject 1        |          | (DTI 1)         | $\rightarrow$  |
|                  | DWI Gm   |                 | $\rightarrow$  |
|                  | DWI G1   |                 | $\rightarrow$  |
| Subject 2        |          | (DTI 2)         | $\rightarrow$  |
|                  | DWI Gm   |                 | $\rightarrow$  |
|                  |          |                 |                |
|                  | DWI G1   |                 | $\rightarrow$  |
| Subject <i>n</i> |          | (DTI <i>n</i> ) | $\rightarrow$  |
|                  | DWI Gm   |                 | $\rightarrow$  |

DTI template

<□> <⊡> <⊡> <≣>

€

 $\mathfrak{OQ}$ 

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>000€0 | Noisy ICA<br>O<br>O | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
| BME-DTI     | Template                      |                                      |                        |                       |                     |                 |

#### Results on synthetic data :

• 2 different template tensors

 $FA_1 = 0.6791, FA_2 = 0.6918$ 

- $ADC_1 = 0.5038$ ,  $ADC_2 = 0.4329$
- 50 random samples with 15 subjects each

|                                       | LS     | FAM-EM. | SAEM   | LS     | FAM-EM | SAEM   |
|---------------------------------------|--------|---------|--------|--------|--------|--------|
| bias                                  | 0.1960 | 0.7386  | 0.1409 | 0.2095 | 0.5655 | 0.1269 |
| var                                   | 0.7033 | 0.3489  | 0.7351 | 0.4853 | 0.2648 | 0.4969 |
| mse                                   | 0.8993 | 1.0875  | 0.8760 | 0.6949 | 0.8303 | 0.6238 |
| FA                                    | 0.6534 | 0.6193  | 0.6683 | 0.6683 | 0.6332 | 0.6814 |
| ADC                                   | 0.5752 | 0.5627  | 0.5460 | 0.5044 | 0.4932 | 0.4747 |
| · · · · · · · · · · · · · · · · · · · |        |         |        |        |        |        |

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>0000● | Noisy ICA<br>o<br>o | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |
|             |                               |                                      |                        |                       |                     |                 |

BME-DTI Template





| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>0<br>0 | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |

## Outline

Three generative statistical models and stochastic algorithms

- 1 Bayesian Mixed Effect (BME) gray level Template
  - 1.1 Mathematical framework for deformable models
  - 1.2 Past approaches to compute a population average
  - 1.3 Generative statistical models
  - 1.4 Statistical estimation of the model parameters
  - 1.5 Experiments on USPS database and 2D medical images

(ロ) (月) (三) (三) (三) (0)

- 2 Bayesian Mixed Effect DTI Template
- 3 Noisy ICA

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>o | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|----------------|-----------------|
|             |                               |                                      |                        |                       |                |                 |

# Noisy ICA Model

- Observations :  $X_1^n$  such as  $X_i = AY_i + \sigma \varepsilon$ ,
- A : source matrix
- $\sigma^2$  : variance of the Gaussian noise
- $Y_1^n$  hidden variables.
- Model :

$$\begin{cases} Y_{1,1}^{n,p} \sim \otimes_{i=1}^{n} \otimes_{j=1}^{p} \nu_{\eta} \mid \eta, \\ X_{1}^{n} \sim \otimes_{i=1}^{N} \mathcal{N}(AY_{i}, \sigma^{2}Id) \mid A, \sigma^{2}, Y_{1}^{N}. \end{cases}$$

• Various choice of the distribution  $u_\eta$ 

Same MCMC-SAEM algorithm to treat this estimation problem.

| C. A.<br>00 | BME Template<br>0000<br>00000       | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>○<br>● | Conclusion<br>O |  |  |  |
|-------------|-------------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|--|--|--|
|             |                                     |                                      |                        |                       |                     |                 |  |  |  |
| Experime    | Experiments : 101 subjects, 20 J.C. |                                      |                        |                       |                     |                 |  |  |  |



€ *•* **१ ० ०** 

| C. A. | BME Template | MCMC-SAEM algorithm | Experiments | DTI template | Noisy ICA | Conclusion |
|-------|--------------|---------------------|-------------|--------------|-----------|------------|
| 00    | 0000         | 000000<br>000       | 0000000     | 00000        | 0         | •          |
|       |              |                     |             |              |           |            |

Conclusion

• Generative statistical model = proper statistical framework for designing and inferring population average

• Stochastic algorithm of multiple uses even in difficult conditions

Thank you!

| C. A. | BME Template | MCMC-SAEM algorithm | Experiments | DTI template | Noisy ICA | Conclusion |
|-------|--------------|---------------------|-------------|--------------|-----------|------------|
| 00    | 0000         | 000000              | 0000000     | 00000        | 0         | 0          |
|       |              |                     |             |              |           |            |

| C. A.<br>00 | BME Template<br>0000<br>00000 | MCMC-SAEM algorithm<br>000000<br>000 | Experiments<br>0000000 | DTI template<br>00000 | Noisy ICA<br>o<br>o | Conclusion<br>O |
|-------------|-------------------------------|--------------------------------------|------------------------|-----------------------|---------------------|-----------------|
|             |                               |                                      |                        |                       |                     |                 |

MCMC-SAEM :

The Geometric Distribution : Between 2 classes :

Between 2 components in the same class :

(ロ) (日) (三) (三) (三) (三) (○)