

Towards Learning-Based Holistic Brain Image Segmentation

Zhuowen Tu Lab of Neuro Imaging University of California, Los Angeles

in collaboration with (A. Toga, P. Thompson et al.) Supported by (NIH CCB Grant U54 RR021813)

Building A Brain Atlas

(Thompson and Toga 2004)

Brain Anatomical Structure Parsing

cortical structures: major sulci curves

sub-cortical structures

Challenges for Automatic Segmentation

- 1. Large volume size for high resolution 3d MRI.
- 2. Very weak intensity patterns. (large inter-class similarity and intraclass variation)
- 3. Hard to capture 3D shape info due to the high dimension space and limited number of training data.
- 4. Hard to capture the high-level knowledge and adapt to different protocols.

Existing Work

Generative model (shape) driven:

- •Markov random fields (Fischl et al. 2002)
- •Active shape model (Cootes et al. 2001)
- •M-rep (Pizer et al.)
- •Joint PCA shape constraints (Yang et al. 2004)
- •Atlas-based (Li et al. 1993)

Classification-based (discriminative): •Knowledge-based (Li et al. 1993)

•Feature classification (Liu et al. 2004)

• SVM voxel classification (Lao et al. 2004)

Algorithms	Appearance Model	Shape Model	Inference
Fischl et al. [4]	generative: i.i.d. Gaussians	generative: local constraints	expectation maximization
Yang et al. [5]	generative: i.i.d. Gaussians	generative: PCA on shape	variational method
Pohl et al. [6]	generative: i.i.d. Gaussians	generative: PCA on shape	expectation maximization
Pizer et al. [7]	generative: i.i.d. Gaussians	generative: M-rep on shape	multi-scale gradient descent
Woolrich and Behrens [8]	generative: i.i.d. Gaussians	generative: local constraints	Markov Chain Monte Carlo
Li et al. [9]	discriminative: rule-based	None	rule-based classification
Rohlfing et al. [10]	discriminative: atlas based	somewhat	voxel classification
Descombes et al. [11]	discriminative: extracted features	generative: geometric properties	Markov Chain Monte Carlo
Lao et al. [12]	discriminative: SVM	None	voxel classification
Lee et al. [13]	discriminative: SVM	generative: local constraints	iterated conditional modes

Input: \mathbf{V} Solution: $W = (R_1, R_2, ..., R_n)$ $p(W|\mathbf{V}) \propto p(\mathbf{V}|W)p(W)$ $\propto \prod_{k=1}^{n} p(\mathbf{V}(R_k)|R_k)p(R_k)$

Appearance model

Yang et al. 2004

3D shape model

Pizer et al. 2003

Intensity histograms of different structures

Are We Getting the Right Model? An ideal model: $p(W|V) \propto p(V|W)p(W)$ $E(W,V) = -\log p(V|W) - \log p(W)$

The full generative appearance model p(V|W) is very hard to obtain!

$$E_{H}(W, \mathbf{V}) = -\log \prod_{i} p(v_{i}, y_{i} = j | \mathbf{V}(N(i)/i)) - \log p(W)$$

$$\rightarrow -\log \prod_{i} p(y_{i} = j | \mathbf{V}(N(i)) - \log p(W)$$

$$\mathbf{V}(N(i))$$

The Algorithm

Training (given a set of annotated volumes):

(1) Learn multi-class classification model using PBT.

(2) Learn PCA shape model for each structure.

$$E = \alpha_1 \sum_{i=1}^{n} \sum_{s \in R_i} -\log p(l_s = i | V(N(s)) + \alpha_2 \sum_{i=2} -\log p(S_i) + \alpha_3 \sum_{i=1}^{n} -\Lambda(S_i)$$

Testing (given a volume)

- 1. Compute classification using learned PBT.
- 2. Obtain the initial segmentation.
- 3. Perform region competition based on the proposed 3D representation.

Around 10,000 features in the candidate pool: Gradients, Curvatures, Haars

(1) Very fast to compute using integral volume.(2) Combine information at different scales.

Discriminative and Generative Models Learned

Results

Step=1

Step=2

Step=3

Results on Training set: Central sulcus

Results on Testing set: Superior Frontal sulcus

Results on Training set: central sulci on surface

Disadvantages:

•The models only capture the appearance variation in terms of local image "patch" and the joint statistics of different structures are not captured.

•The global shape model is not play the significant role.

Seamless combine context and shape with complex appearance

Context

For object recognition, contexts come in from both withinobject (parts) and between-objects (configurations).

$p(Y|X) \propto p(X|Y)p(Y)$

Challenges

Modeling:

It is often very hard to learn p(X|Y) and p(Y) for complex patterns.

Computing:

Computing for the optimal solution that maximizes the posterior is not an easy task. A desired algorithm should bb both efficient and effective.

We are looking for the joint statistics of p(Y|X), "context".

Problems with MRFs, BP, and CRFs

•Use fixed topology on limited number of neighborhood connections (context).

•Usually slow and it takes many steps for the message to propagate.

•Not guaranteed to find the global optimal solution.

•Modeling and computing processes are separate (maybe an advantage in some situations).

Auto-Context Target p(Y|X) directly

To learn $p(y_i|X)$ $p(y_i|X) = \int p(y_i, y_{-i}|X) dy_{-i}$

A Classification Approach

Training Set: $S = \{(y_i, X(N_i)), i = 1..n\}$

 $p(y = k | X(N)) = \frac{e^{F_k(X(N))}}{\sum_{k=1}^{K} e^{F_k(X(N))}}$ $\sum_{k=1}^{K} F_k(X(N)) = 0$

$p^{(n)}(y_i|X(N_i), \mathbf{P}^{(n-1)}(i)) \to p(y_i|X) = \int p(y_i, y_{-i}|X) dy_{-i}$

Features:

(1) appearances on X(N), 20,000 Gradients, Gabor, Haar at different scales

(2) context (shape) on P, 10,000 on a fairly large neighborhood

Comparisons with Segmentation Methods

Workshop on 3D Segmentation in the Clinic:

- A Grand Challenge -

МІССЛІ

For more Information: www.MICCAI.org	Welcome!	Date: Location:	29. October' 07 Brisbane, Australia
Home	10th International Conference on Medical Image Computing an		
News	Compare your algorithm to others:		
Dates	Tune it with supplied training data		
Program	Evaluate it on specific test images		
Data	Get objective results	in 1	
Evaluation	Win prizes, fame and glory	State 1	
Organizers			
Download	<u>Read workshop proceedings</u>		
Proceedings	The workshop is over but the Challenge continues:		Carl Contraction
	Online Caudate Segmentation Online Liver Segmentation		
	¥		

Grand Challenge Competition

Grand Challenge Competition

Case	OE	Score	VD	Score	AD	Score	RMSD	Score	MD	Score	Total
UNC Ped	40.35	74.62	-23.21	59.46	0.86	68.25	1.21	78.38	5.64	83.41	72.82
UNC Eld	38.75	75.63	-17.23	69.77	0.75	72.15	1.14	79.64	6.79	80.02	75.44
BWH PNL	41.76	73.73	-26.62	53.78	1.51	49.10	3.50	42.05	25.27	28.41	49.42
Average All	40.84	74.31	-23.93	58.30	1.22	57.89	2.53	57.45	17.33	50.62	59.71

Hybrid Model

UNC Ped	33.42	78.98	-12.05	76.50	0.68	74.76	1.09	80.47	12.09	64.44	75.03
UNC Eld	36.79	76.86	-0.69	80.04	0.72	73.37	1.31	76.53	17.61	48.21	71.00
BWH PNL	32.07	78.50	-13.62	74.42	1.17	76.55	1.75	76.45	12.83	62.26	73.64
Average All	33.34	78.26	-10.60	76.03	0.97	75.51	1.52	77.31	13.67	59.78	73.38

Auto-Context

Test/Re-Test	UNC 03	UNC 04	UNC 09	UNC 11	UNC 17	UNC 18	UNC 21	UNC 22	UNC 24	UNC 25	Mean	Stdev	COV
ŗ	$[mm^3]$	[%]											
Left	3008	2896	2965	2862	2849	2917	2844	2836	3078	3041	2930	88	3.0
Right	2908	2980	2948	2806	2825	2971	2845	2889	3125	3059	2936	103	3.5
Total		-										-	3.3

Table 2. The volumetric measurements of the 10 data sets of the same young adult acquired on 5 different scanners within 60 days. The coefficient of variation (COV = standard deviation / average, last column) indicates the stability of the algorithm in a test/re-test situation including scanner variability.

Comparison

More Results

Manual Delineation

 $\begin{aligned} \epsilon_t &= -\sum_i \log p^{(t)}(y_i | X(i), \mathbf{P}^{(t-1)}(i)) \\ p^{(t)}(y_i | X(i), \mathbf{P}^{(t-1)}(i)) &= \frac{e^{F_k^{(t)}(X(i), \mathbf{P}^{(t-1)}(i))}}{\sum_{k=1}^K e^{F_k(t)(X(i), \mathbf{P}^{(t-1)}(i))}} \\ \epsilon_{t-1} &= -\sum_i \log \mathbf{P}^{(t-1)}(i)(y_i) \end{aligned}$

And:

 $p^{(t)}(y_i|X(i), \mathbf{P}^{(t-1)}(i)) = \mathbf{P}^{(t-1)}(i)(y_i)$

Conclusions for Auto-Context

Advantages:

•Learns low-level and context model in an integrated framework.

• Very easy to implement.

•Significantly faster than MCMC and BP (30~50 seconds) on MRFs or CRFs.

- •General and avoid heavy algorithm design.
- •Learning and computing use the same procedures.
- Can be applied in other domains.

Conclusions for Auto-Context

Disadvantages:

- •Require training for different problems.
- Explicit high-level information is not included.
- Training time might be long. (half day to a week)
- •Require all labeled data (fully supervised).

Thank you!

Questions?