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Challenges for Automatic Segmentatior

Large volume size for high resolution 3d MRI.

Very weak intensity patterns. (large inter-class similarity and intra-

class variation)
n v nn n | I/

Hard to capture 3D shape info due to the high dimension space and
limited number of training data.

Hard to capture the high-level knowledge and adapt to different
protocols.
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Existing Work
* Generative model (shape) driven:

*Markov random fields (Fischl et al. 2002)
*Active shape model (Cootes et al. 2001)
*M-rep (Pizer et al.)

«Joint PCA shape constraints ( Yang et al. 2004)
*Atlas-based (Li et al. 1993)
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sFeature classification (Liu et al. 2004)

« SVM voxel classification (Lao et al. 2004)




Comparisons

Yang et al. 2004 Pizer et al. 2003

Algorithms Appearance Model Shape Model | Inference @ |

Fischl et al. [4] generative: 1.1.d. Gaussians generative: local constraints expectation maximization
Yang et al. [5] generative: 1.1.d. Gaussians generative: PCA on shape variational method

Pohl et al. [6] generative: 1.1.d. Gaussians generative: PCA on shape expectation maximization
Pizer et al. [7] generative: 1.1.d. Gaussians generative: M-rep on shape multi-scale gradient descent
Woolrich and Behrens [8] | generative: 1.1.d. Gaussians generative: local constraints Markov Chain Monte Carlo
Li et al. [9] discriminative: rule-based None rule-based classification
Rohlfing et al. [10] discriminative; atlas based somewhat voxel classification
Descombes et al. [11] discriminative: extracted features | generative: geometric properties | Markov Chain Monte Carlo
Lao et al. [12] discriminative: SVM None voxel classification

Lee et al. [13] discriminative: SVM generative: local constraints iterated conditional modes




A Bayesian Framework

Solution: W = (Rla Ry, ...,
p(W|V) p(VIW)p(W)

o« || p(V(Ry)|Rg)p(Ryg)
ke

3D shape model

Yang et al. 2004 Pizer et al. 2003

Intensity histograms of different structures
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~» Are We Getting the Right Model?
An ideal model: p(W|V) X p(V|W)p(W)
E(W,V) = —logp(V|W) — log p(W)

The full generative appearance model p(V|W) is very hard to obtain!

Eg(W,V) = —log ‘_.lp(v:g,,y-i_ = jIV{N(z)/i))—log p(W)

— —log HP(yi = j|V(N(z)) — log p(W)

V(N ()
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A discriminative model (classification)!




The Algorithm

Training (given a set of annotated volumes):
(1) Learn multi-class classification model using PBT.

(2) Learn PCA shape model for each structure.

E=a,). Y ~log p(, =i|V(N(9) +, Y ~10g p(S,) + & Y~ A(S,)

i=1 seR i=2

Testing (given a volume)
1. Compute classification using learned PBT.
Obtain the initial segmentation.

Perform region competition based on the proposed 3D
representation.




Features

Around 10,000 features in the candidate pool: Gradients, Curvatures, Haars

(1) Very fast to compute using integral volume.

2) Combine information at different scales.




Discriminative and Generative
Models Learned
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FreeSurfer
Fishl. et al.




Sulci-Detection

Results on Training set: Central sulcus




Results

Results on Testing set: Superior Frontal sulcus




Results on Training set: central sulci on surface




Disadvantages:

*The models only capture the appearance variation
In terms of local image “patch” and the joint
statistics of different structures are not captured.

*The global shape model is not play the significant

role.
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Context

For object recognition, contexts come In from both
(parts) and (configurations).
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Challenges

p(Y|X) o< p(X|Y)p(Y)

Modeling:

It Is often very hard to learn p(X]Y) and p(Y) for
complex patterns.

Computing:

Computing for the optimal solution that
maximizes the posterior is not an easy task. A desired
algorithm should bb both efficient and effective.

We are looking for the joint statistics of p(Y|X), “context™.
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2 Problems with MRFs, BP, and CRFs
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eUse fixed topology on limited number of
neighborhood connections (context).

eUsually slow and it takes many steps for the
message to propagate.

eNot guaranteed to find the global optimal
solution.

eModeling and computing processes are
separate (maybe an advantage in some
situations).




Auto-Context
Target p(Y|X) directly

To learn p(yz\X)

p(yi| X) = [ p(yi, y—il X )dy_;




A Classification Approach

Training Set: S = {(v;, X(IV;)),i = 1l.n}

B R X6(6%)
p(y = k:lX(N)) — Zf:l eFL(X(N))

SE L FXIN) =0




Auto-Context

) - e - -
training classifier 1 classifier 2 classifier n

P (| X (), P D()) — ply; X) = [ plyi-y; X)dy_;

Features:

(1) appearances on X(N), 20,000 Gradients,
Gabor, Haar at different scales

(2) context (shape) on P, 10,000 on a fairly large
neighborhood
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BWH and UNC data for caudate segmentation
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"’ Comparisons with Segmentation Methods '
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- — — — training (Auto—Context—cascade)
test (Auto—Contexi—cascade)
— — — training (Auto—Context-PBT)
test (Auto-Context-PBT)
O training (with appearance context)
*  fest (with appearance context)

4 D &
number of iterations




Workshop on 3D Segmentation in the Clinic:

- A Grand Challenge -

Welcome!

Mewrs Compare your algorithm to others:

Dates Tune it with supplied training data

Pragram waluate it on specific test images

et abjective results
Data

Win prizes, fame and glory
Evaluation

Crianizers
Read workshop proceedings

Crowwnload

Froceedings
The WDI’I{EI'IOFI is over but the CI‘IHIIEHQE continuas:

Online Caudate Segmentation

Onlineg Liver Segmentation
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Auto-Context

Test/Re-Test

UNC
[mm

03
¥

UNC 04
[mm?]

UNC 09
[mm

UNC 11

3 | [mm?

UNC 17

[mm?] | [mm

UNC 18
°]

UNC 21
[mm?]

UNC 22
[mm?

UNC 24
[mm?]

UNC 25

Mean
[mm?] ||[mm?]

Stdev
[mm?]

COv

%)

Left
Right

3008
2008

2806
2080

2065
2048

2862
2806

2849

2825 2071

2017

2844
2845

25836
25880

3078
3125

3041
3059

2930
2036

88
103

3.0
3.5

Total

3.3

Table 2. The volumetric measurements of the 10 data sets of the same young adult
acquired on 5 different scanners within 60 days. The coefficient of variation (COV =

standard deviation / average.

a test /re-test situation including scanner variability.

last column) indicates the stability of the algorithm in







7o

ppocampus Image Segmentation (vord™
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MMSE CDF of p-values
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More Results
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Manual Delineation Automatic Segmentation

{precisiontrecall)f2 for Dataset 2
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Convergence of Auto-Context
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Theorem: The turbo context algorithm monotonically decreases the
training error.

et = — ¥ ; 10g p{ (3] X (), PE—1) (5))

t - — ]
FR(x().PE-1)(2))

() (n,. ; (t—1)¢. —
PRl X PET0) = L mmamre Do)

&1 = — ;10 P (3) (y;)

And:
P (3| X (&), P (3)) = PC-DI(5) ()
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2. Belief Propagation on (MRFs, CRFs) j |

y1 y2 V& ya Y5 V6

Y (X © O O

X1 X2 X3 X4 X5 X6

p(Y|X) = 5 TL di(walyi) T s ) ¥ Wi y5)

pi(¥i) = 29y [jen i) myi(vs)

m;(y;) — 2y, PiYi)¥i,5(Yir ¥5) Hren o)\ mri(Yi)




Brain Parser Pipeline
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\ 4 Reslice Outputs

Auto Parsing

®

\ 4 Segmentation Outputs
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Conclusions for Auto-Context
Advantages:

e[ earns low-level and context model in an integrated
framework.

e\/ery easy to implement.

«Significantly faster than MCMC and BP (30~50
seconds) on MRFs or CRFs.

eGeneral and avoid heavy algorithm design.
e[ earning and computing use the same procedures.

Can be applied in other domains.
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Conclusions for Auto-Context
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Disadvantages:

eRequire training for different problems.
<Explicit high-level information is not included.
eTraining time might be long. (half day to a week)

eRequire all labeled data (fully supervised).




Thank youl!

Questions?




