

Modeling Inter-Subject Variability in Activation Locations of fMRI Data: A Bayesian Hierarchical Spatial Modeling Approach

Timothy D. Johnson¹ Lei Xu² Thomas E. Nichols³ Derek E. Nee⁴

University of Michigan¹ Vanderbilt University² GSK & University of Oxford³ Indiana University⁴

Outline

- Motivating example
- Statistical preliminaries
- Model Overview
- Model Details
- Results
- Conclusion

- Proactive interference is the phenomenon that recently learned information is mixed up with previously learned, similar, information
 - Information in this talk may get mixed up with similar information in the previous talk

- Proactive interference is the phenomenon that recently learned information is mixed up with previously learned, similar, information
 - Information in this talk may get mixed up with similar information in the previous talk
- One's ability to resolve proactive interference is key to in determining how much information one can store in short term memory

- Proactive interference is the phenomenon that recently learned information is mixed up with previously learned, similar, information
 - Information in this talk may get mixed up with similar information in the previous talk
- One's ability to resolve proactive interference is key to in determining how much information one can store in short term memory
- 21 right-handed subjects participated in this study

- Proactive interference is the phenomenon that recently learned information is mixed up with previously learned, similar, information
 - Information in this talk may get mixed up with similar information in the previous talk
- One's ability to resolve proactive interference is key to in determining how much information one can store in short term memory
- 21 right-handed subjects participated in this study
 - We analyze the data from 18 subjects
 - 3 removed due to severe spiral artifacts

Nee, Jonides, Berman (2007), Neuroimage

Recent Negative Non-Recent Negative Recent Positive Non-Recent Positive

- Recent probes task
 - Subjects show slower reaction time and increased error rates when rejecting *recent negative probes* compared to *non-recent negative probes*

- Recent probes task
 - Subjects show slower reaction time and increased error rates when rejecting *recent negative probes* compared to *non-recent negative probes*
 - Performance decrease a marker of proactive interference

- Recent probes task
 - Subjects show slower reaction time and increased error rates when rejecting *recent negative probes* compared to *non-recent negative probes*
 - Performance decrease a marker of proactive interference
- The left lateral prefrontal cortex is a region linked to proactive interference resolution

IVERSITY O

NIVERSITY OF MICHIG

JIVERSITY OF MICHIC

University of Michigan

Preliminaries: Bayesian Statistics

- Central difference between *frequentist* and *Bayesian* paradigms
 - Bayesian paradigm: parameters considered random
 - Frequenist paradigm: parameters considered unknown constants
- All parameters equipped with a distribution (the prior distribution)
- Estimate the posterior distribution of the parameters given the data
 - The probability inversion is performed via Bayes Theorem:

$$\pi(\boldsymbol{\theta} \mid \mathbf{Y}) = \frac{\pi(\mathbf{Y} \mid \boldsymbol{\theta})\pi(\boldsymbol{\theta})}{\pi(\mathbf{Y})} = \frac{\pi(\mathbf{Y}, \boldsymbol{\theta})}{\int \pi(\mathbf{Y}, \boldsymbol{\theta})d\boldsymbol{\theta}}$$

Preliminaries: Finite Mixture Distributions

- Suppose a population is made up of several sub-populations
- $Y \sim F_i(\theta_i)$ for sub-population i, i = 1, ..., n
- Suppose that sub-population i makes up p_i of the total population with $\sum_i p_i = 1$
- Then the population has the mixture distribution:

$$Y \sim \sum_{i=1}^{n} p_i F_i(\theta_i)$$

with components $F_i(\theta_i)$ and weights p_i

• Define a latent allocation variable Z_j with $\Pr(Z_j = k) = p_k$

 $[Y_j \mid Z_j = k] \sim F_k(\theta_k)$

• RJMCMC

• Given a set of points $\{y_j\}_{j=1}^m$ in \mathbb{R}^3 , we assume that they are a realization of a spatial Poisson process with intensity

$$\lambda(y \mid \{x_i\}_{i=1}^n) = \epsilon + \sum_{i=1}^n h(y \mid x_i)$$

- ϵ is the underlying background intensity
- $h(y \mid x_i) : \mathbb{R}^3 \to \mathbb{R}^+ \cup \{0\}$ is some non-negative function
- We place, a priori, a (marked) Poisson process on $\{x_i\}$.
- $\{x_i\}$ can also be repulsive. e.g. a hard core process:

$$\pi(\{x_i\}) = \begin{cases} \alpha \beta^{|\{x_i\}|} & \text{if } ||x_i - x_j|| > R \ \forall \ i \neq j \\ 0 \end{cases}$$

for some fixed radius R > 0 and intensity $\beta > 0$

 $\lambda(y \mid \emptyset) = \epsilon$

$$\lambda(y \mid \{x_1\}) = \epsilon + h(y \mid x_1)$$

$$\lambda(y \mid \{x_1, x_2\}) = \epsilon + h(y \mid x_1) + h(y \mid x_2)$$

A particular instance of this process may look like...

- Level 1: subject level data
 - BOLD image modeled as a mixture distribution
 - Spatial correlation accounted for in the mixing weights

- Level 1: subject level data
 - BOLD image modeled as a mixture distribution
 - Spatial correlation accounted for in the mixing weights

- Level 2: subject level data
 - Component means clustered about "activation centers"
 - Again, a mixture distribution is used

- Level 3: population level data
 - Activation centers clustered around pop level centers
 - Via a spatial Cox cluster process

- Level 4: population level data
 - Population centers equipped with a homogeneous spatial Poisson process
 - Therefore, conditional on the number of centers
 - The population centers are, a priori, iid uniformly throughout the brain

- Level 1:
 - Data assumed to come from a mixture distribution

$$[Y_{ij} \mid \cdot] \sim p_{ij0} N(\theta_0, \sigma_0^2) + \sum_{\ell=1}^{c_i} p_{ij\ell} N(\theta_{i\ell}, \sigma_{i\ell}^2)$$

NIVERSITY OF

- Level 1:
 - Data assumed to come from a mixture distribution

$$[Y_{ij} \mid \cdot] \sim p_{ij0} N(\theta_0, \sigma_0^2) + \sum_{\ell=1}^{c_i} p_{ij\ell} N(\theta_{i\ell}, \sigma_{i\ell}^2)$$

• Spatial correlation accounted for in the mixing weights

$$p_{ij\ell} \propto \begin{cases} q & \ell = 0\\ \phi_3(\mathbf{x}_{ij}; \boldsymbol{\eta}_{i\ell}, \Psi_{i\ell}) & \ell = 1, \dots, c_i \end{cases}$$

where $\sum_{\ell=0}^{c_i} p_{ij\ell} = 1$

VERSITY OF

- Level 1:
 - Data assumed to come from a mixture distribution

$$[Y_{ij} \mid \cdot] \sim p_{ij0} N(\theta_0, \sigma_0^2) + \sum_{\ell=1}^{c_i} p_{ij\ell} N(\theta_{i\ell}, \sigma_{i\ell}^2)$$

• Spatial correlation accounted for in the mixing weights

$$p_{ij\ell} \propto \begin{cases} q & \ell = 0\\ \phi_3(\mathbf{x}_{ij}; \boldsymbol{\eta}_{i\ell}, \Psi_{i\ell}) & \ell = 1, \dots, c_i \end{cases}$$

where $\sum_{\ell=0}^{c_i} p_{ij\ell} = 1$ • $\eta_{i\ell}$ is the location mean of component ℓ , subject *i*

- Level 1:
 - Data assumed to come from a mixture distribution

$$[Y_{ij} \mid \cdot] \sim p_{ij0} N(\theta_0, \sigma_0^2) + \sum_{\ell=1}^{c_i} p_{ij\ell} N(\theta_{i\ell}, \sigma_{i\ell}^2)$$

• Spatial correlation accounted for in the mixing weights

$$p_{ij\ell} \propto \begin{cases} q & \ell = 0\\ \phi_3(\mathbf{x}_{ij}; \boldsymbol{\eta}_{i\ell}, \Psi_{i\ell}) & \ell = 1, \dots, c_i \end{cases}$$

where
$$\sum_{\ell=0}^{c_i} p_{ij\ell} = 1$$

- $\eta_{i\ell}$ is the location mean of component ℓ , subject i
- Define latent allocation variables w_{ij} : $\Pr(w_{ij} = \ell) = p_{ij\ell}$

- Level 1 Priors:
 - $\theta_0 \sim N(0, 1)$ $\sigma_0^{-2} \sim G(0.001, 0.001)$

UNIVERSITY OF MICHIGAN

- Level 1 Priors:
 - $\theta_0 \sim N(0,1)$ $\sigma_0^{-2} \sim G(0.001, 0.001)$
 - $\theta_{i\ell} \sim N(3.92, 1)$ $\sigma_{i\ell}^{-2} \sim G(3, \beta)$ $\beta \sim G(0.001, 0.001)$
 - (densities intersect at 1.96, the 0.975 quantile of the standard normal)

- Level 1 Priors:
 - $\theta_0 \sim N(0,1)$ $\sigma_0^{-2} \sim G(0.001, 0.001)$
 - $\theta_{i\ell} \sim N(3.92, 1)$ $\sigma_{i\ell}^{-2} \sim G(3, \beta)$ $\beta \sim G(0.001, 0.001)$
 - (densities intersect at 1.96, the 0.975 quantile of the standard normal)
 - Experiments designed so only a small portion of the brain "activates"
 - Set q = 39 controls number of activated sites

- Level 1 Priors:
 - $\theta_0 \sim N(0,1)$ $\sigma_0^{-2} \sim G(0.001, 0.001)$
 - $\theta_{i\ell} \sim N(3.92, 1)$ $\sigma_{i\ell}^{-2} \sim G(3, \beta)$ $\beta \sim G(0.001, 0.001)$
 - (densities intersect at 1.96, the 0.975 quantile of the standard normal)
 - Experiments designed so only a small portion of the brain "activates"
 - Set q = 39 controls number of activated sites
 - $\Psi_{i\ell}^{-1} \sim W(10, 0.2\pi I_{3\times 3})$
 - Results in a priori prob. of 0.975 that site \mathbf{x}_{ij} belongs to background when $\mathbf{x}_{ij} \equiv \boldsymbol{\eta}_{i\ell}$ and all other η_{ik} "far" away

- Level 1 Priors:
 - $\theta_0 \sim N(0,1)$ $\sigma_0^{-2} \sim G(0.001, 0.001)$
 - $\theta_{i\ell} \sim N(3.92, 1)$ $\sigma_{i\ell}^{-2} \sim G(3, \beta)$ $\beta \sim G(0.001, 0.001)$
 - (densities intersect at 1.96, the 0.975 quantile of the standard normal)
 - Experiments designed so only a small portion of the brain "activates"
 - Set q = 39 controls number of activated sites
 - $\Psi_{i\ell}^{-1} \sim W(10, 0.2\pi I_{3\times 3})$
 - Results in a priori prob. of 0.975 that site \mathbf{x}_{ij} belongs to background when $\mathbf{x}_{ij} \equiv \boldsymbol{\eta}_{i\ell}$ and all other η_{ik} "far" away
 - $\Pr(c_i = K) = 1/200, \quad K = 1, \dots, 200$
 - RJMCMC used to estimate the number of mixture components

(Green, P. (1995) Biometrika)

UNIVERSITY OF MICHIGAN

- Level 2:
 - Component means distributed about activation "centers"
 - (may take several components to adequately fit large activation clusters)

$$\pi(\boldsymbol{\eta}_{i\ell} \mid \cdot) = \sum_{k=1}^{b_i} q_{ik} \frac{\phi_3(\boldsymbol{\eta}_{i\ell}; \boldsymbol{\nu}_{ik}, \Phi_{ik})}{\Pr(\boldsymbol{\eta}_{i\ell} \in B_i \mid \boldsymbol{\nu}_{ik}, \Phi_{ik})} \mathbf{1}_{B_i}(\boldsymbol{\eta}_{i\ell})$$

UNIVERSITY OF MICHIGAN

Model Details

- Level 2:
 - Component means distributed about activation "centers"
 - (may take several components to adequately fit large activation clusters)

$$\pi(\boldsymbol{\eta}_{i\ell} \mid \cdot) = \sum_{k=1}^{b_i} q_{ik} \frac{\phi_3(\boldsymbol{\eta}_{i\ell}; \boldsymbol{\nu}_{ik}, \Phi_{ik})}{\Pr(\boldsymbol{\eta}_{i\ell} \in B_i \mid \boldsymbol{\nu}_{ik}, \Phi_{ik})} \mathbf{1}_{B_i}(\boldsymbol{\eta}_{i\ell})$$

• Latent allocation variables $v_{i\ell}$: $\Pr(v_{i\ell} = k) = q_{ik}$

University of Michigan

- Level 2:
 - Component means distributed about activation "centers"
 - (may take several components to adequately fit large activation clusters)

$$\pi(\boldsymbol{\eta}_{i\ell} \mid \cdot) = \sum_{k=1}^{b_i} q_{ik} \frac{\phi_3(\boldsymbol{\eta}_{i\ell}; \boldsymbol{\nu}_{ik}, \Phi_{ik})}{\Pr(\boldsymbol{\eta}_{i\ell} \in B_i \mid \boldsymbol{\nu}_{ik}, \Phi_{ik})} \mathbf{1}_{B_i}(\boldsymbol{\eta}_{i\ell})$$

- Latent allocation variables $v_{i\ell}$: $\Pr(v_{i\ell} = k) = q_{ik}$
 - Note: component means $\eta_{i\ell}$ and activation centers ν_{ik} are latent as well, i.e. not observable

- Level 2 Priors:
 - $[\mathbf{q}_i^{\mathrm{T}} = (q_{i1}, \dots, q_{ib_i}) \mid b_i] \sim D(1, \dots, 1)$

- Level 2 Priors:
 - $[\mathbf{q}_i^{\mathrm{T}} = (q_{i1}, \dots, q_{ib_i}) \mid b_i] \sim D(1, \dots, 1)$
 - $\Phi_{ik}^{-1} \sim W(5, R^{-1}/3), \quad R \sim W(5, S/5), \quad S = 4 I_{3 \times 3}$
 - Results in $E(\Phi_{ik}) = S$ (FWHM ≈ 0.94 cm)
 - A priori, a 95% credible sphere of radius ≈ 1.0 cm

VERSITY OF

- Level 2 Priors:
 - $[\mathbf{q}_i^{\mathrm{T}} = (q_{i1}, \dots, q_{ib_i}) \mid b_i] \sim D(1, \dots, 1)$
 - $\Phi_{ik}^{-1} \sim W(5, R^{-1}/3), \quad R \sim W(5, S/5), \quad S = 4 I_{3 \times 3}$
 - Results in $E(\Phi_{ik}) = S$ (FWHM ≈ 0.94 cm)
 - A priori, a 95% credible sphere of radius $\approx 1.0~{\rm cm}$
 - $\Pr(b_i = M) = 1/50, \quad M = 1, \dots, 50$
 - RJMCMC used to estimate # of activation centers for each individual

- Level 2 Priors:
 - $[\mathbf{q}_i^{\mathrm{T}} = (q_{i1}, \dots, q_{ib_i}) \mid b_i] \sim D(1, \dots, 1)$
 - $\Phi_{ik}^{-1} \sim W(5, R^{-1}/3), \quad R \sim W(5, S/5), \quad S = 4 I_{3 \times 3}$
 - Results in $E(\Phi_{ik}) = S$ (FWHM ≈ 0.94 cm)
 - A priori, a 95% credible sphere of radius $\approx 1.0~{\rm cm}$
 - $\Pr(b_i = M) = 1/50, \quad M = 1, \dots, 50$
 - RJMCMC used to estimate # of activation centers for each individual
- So far, all modeling done at the subject level

- Level 3:
 - Individual activation centers are clustered about population activation centers via a spatial Cox cluster process

University of Michigan

- Level 3:
 - Individual activation centers are clustered about population activation centers via a spatial Cox cluster process
 - Intensity function given by

$$\lambda\left(\boldsymbol{\nu}_{ik} \mid \{(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})\}_{i=1}^{N}\right) = \epsilon + \theta \sum_{i=1}^{N} \frac{\phi_{3}(\boldsymbol{\nu}_{ik}; \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})}{\Pr(\boldsymbol{\nu}_{ik} \in B_{i}; \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})} \mathbf{1}_{B_{i}}(\boldsymbol{\nu}_{ik})$$

- Level 3:
 - Individual activation centers are clustered about population activation centers via a spatial Cox cluster process
 - Intensity function given by

$$\lambda\left(\boldsymbol{\nu}_{ik} \mid \{(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})\}_{i=1}^{N}\right) = \epsilon + \theta \sum_{i=1}^{N} \frac{\phi_{3}(\boldsymbol{\nu}_{ik}; \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})}{\Pr(\boldsymbol{\nu}_{ik} \in B_{i}; \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i})} \mathbf{1}_{B_{i}}(\boldsymbol{\nu}_{ik})$$

• Conditional on the number, N_A , of individual activation centers, their locations, ν_{ik} , are iid with uniform distribution over the volume of the brain

 $[\boldsymbol{\nu}_{ik} \mid N_a] \sim U[V(B_i)]$

UNIVERSITY OF MICHIGAN

- Level 3 Priors:
 - $\epsilon \sim G(54, V(B)) \Rightarrow E(N_s) = 54$ where $B = \cup B_i$
 - *N_s* denotes the # of spurious ind. act. centers, works out to an expected number of 3 spurious activation centers per subject
 - Placing a hyperprior dist. on ϵ reflects our uncertainty in the expected number

- Level 3 Priors:
 - $\epsilon \sim G(54, V(B)) \Rightarrow E(N_s) = 54$ where $B = \cup B_i$
 - N_s denotes the # of spurious ind. act. centers, works out to an expected number of 3 spurious activation centers per subject
 - Placing a hyperprior dist. on ϵ reflects our uncertainty in the expected number
 - $\theta \sim G(9,1)$
 - We except, a priori, on average about half the subjects will have an activation center cluster about any given population center

- Level 4:
 - $\{(\mu_i, \Sigma_i)\}$ a marked homogeneous Poisson process with intensity λ
 - i.e. $\{\mu_i\}$ is a homo. Poisson process with marks $\{\Sigma_i\}$

- Level 4:
 - $\{(\mu_i, \Sigma_i)\}$ a marked homogeneous Poisson process with intensity λ
 - i.e. $\{\mu_i\}$ is a homo. Poisson process with marks $\{\Sigma_i\}$
- Level 4 Priors:
 - $\lambda = 10$

UNIVERSITY OF MICHIGAN

- Level 4:
 - $\{(\mu_i, \Sigma_i)\}$ a marked homogeneous Poisson process with intensity λ
 - i.e. $\{\mu_i\}$ is a homo. Poisson process with marks $\{\Sigma_i\}$
- Level 4 Priors:
 - $\lambda = 10$
 - $\Sigma_i^{-1} \sim W(5, T^{-1}/3)$
 - $T \sim W(5, D/3)$
 - $D = 6.25I_{3\times3}$
 - Results in $E(\Sigma_i) = D$, a priori (FWHM ≈ 1.18 cm)
 - $\cdot\,$ A 95% credible sphere of radius ≈ 1.4 cm

UNIVERSITY OF MICHIC

- Level 4:
 - $\{(\mu_i, \Sigma_i)\}$ a marked homogeneous Poisson process with intensity λ
 - i.e. $\{\mu_i\}$ is a homo. Poisson process with marks $\{\Sigma_i\}$
- Level 4 Priors:
 - $\lambda = 10$
 - $\Sigma_i^{-1} \sim W(5, T^{-1}/3)$
 - $T \sim W(5, D/3)$
 - $D = 6.25I_{3\times3}$
 - Results in $E(\Sigma_i) = D$, a priori (FWHM ≈ 1.18 cm)
 - $\cdot\,$ A 95% credible sphere of radius ≈ 1.4 cm
- Posterior of $\{\mu_i\}$ simulated via a spatial birth-death process van Lieshout & Baddeley (2002), in *Spatial Cluster Modelling*, Ch 4.

Results: Marginal intensity of Ind Centers

 $E(N_C) = 97.7$ $E(N_S) = 61.9$

Results: Marginal intensity of Pop Ctrs

E(N) = 5.2

Results: Marginal intensity of Pop Ctrs

E(N) = 5.2

Results: Intensity Functions at Slice 40

Ind. Ctr. Intensity

Pop. Intensity

Results: Intensity Functions at Slice 40 (sqrt)

Ind. Ctr. Intensity

Pop. Intensity

expected number of pop centers in 1 cm^3 cube centered at (-4.6,3.6,1.0) and (4.6,3.6,1.0) is .799 and .136 ,respectively

Results: Population Center Prevalence

Pop. Center Prevalence

Pop. Intensity

UNIVERSITY OF MICHIGAN

Conclusion

- We've shown how a spatial Cox cluster model
 - can be used to quantify the location and spread of population centers
 - can be used to quantify the spread of individual activation centers about population centers
 - ignores activation centers that do not cluster (spurious activation sites)
 - does not rely on overlap of individual activation regions
 - It is not a voxel-level analysis
- Can easily incorporate other relevant prior information
 - e.g. regional brain information (can exclude activations centers in one region of the brain from clustering with activation centers in a neighboring, yet distinct, region)

Acknowledgements

Collaborators

- Lei Xu Vanderbilt University, Biostatistics
- Tom Nichols University of Oxford, FMRIB Centre & GlaxoSmithKline
- Derek Nee Indiana University, Psychology

Funding

- NIH grant PO1 CA087684
- NIH grant RO1 MH069326