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Study of Proactive Interference Resolution

* Proactive interference is the phenomenon that recently
learned information is mixed up with previously learned,
similar, information

e Information in this talk may get mixed up with similar
Information in the previous talk
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Motivating Example

Study of Proactive Interference Resolution

* Proactive interference is the phenomenon that recently
learned information is mixed up with previously learned,
similar, information

e Information in this talk may get mixed up with similar
Information in the previous talk

e One’s abllity to resolve proactive interference is key to in
determining how much information one can store in short
term memory

21 right-handed subjects participated in this study

 We analyze the data from 18 subjects
e 3 removed due to severe spiral artifacts
Nee, Jonides, Berman (2007), Neuroimage
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A Recent Probes Task
2000 ms
JKP
+
ser 3000 ms
+
2000 ms
P
ITI = 5000 ms
+
o 2000 ms
+
et 3000 ms
2000 ms
/ \\
k/\L N 3
s z J B

Recent Negative Non-Recent Negative Recent Positive Non-Recent Positive

IPAM-MBI — p.4/25



|\ USRI O el

e Recent probes task

e Subjects show slower reaction time and increased error
rates when rejecting recent negative probes compared to
non-recent negative probes
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e Recent probes task
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e Performance decrease a marker of proactive interference
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e Recent probes task

e Subjects show slower reaction time and increased error
rates when rejecting recent negative probes compared to
non-recent negative probes

e Performance decrease a marker of proactive interference

e The left lateral prefrontal cortex is a region linked to proactive
Interference resolution
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Subject 13 Subject 15
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Preliminaries. Bayesian Statistics

e Central difference between frequentist and Bayesian
paradigms

e Bayesian paradigm: parameters considered random
* Frequenist paradigm: parameters considered unknown
constants

 All parameters equipped with a distribution (the prior
distribution)

e Estimate the posterior distribution of the parameters given
the data

e The probability inversion is performed via Bayes Theorem:

_mY|0)r6)  7(Y,0)
mO1Y)=——~8y [7(Y,0)d6
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e Suppose a population is made up of several sub-populations
o Y ~ F;(0;) for sub-population i, : =1,...,n

e Suppose that sub-population : makes up p; of the total
population with > . p; =1

 Then the population has the mixture distribution:
Y ~ ) pi Fi(6))
1=1

with components F;(6;) and weights p;
» Define a latent allocation variable Z; with Pr(Z; = k) = px

Y | Z; = k] ~ Fr(0)

* RIMCMC
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Preliminaries: Cox Cluster Process

* Given a set of points {y; ity in R3, we assume that they are
a realization of a spatial Poisson process with intensity

n

Ay [ {zitim) =€+ > h(y | z)

1=1

* ¢ Is the underlying background intensity

* h(y | x;) : R®* — R*T U {0} is some non-negative function
» We place, a priori, a (marked) Poisson process on {z;}.
 {x;} can also be repulsive. e.g. a hard core process:

=N i [l —al| > RV i# )

r({ai}) = { )

for some fixed radius R > 0 and intensity 3 > 0
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Preliminaries: Cox Cluster Process

ANy | 0) =e
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Preliminaries: Cox Cluster Process

Ay [{z1}) = e+ h(y | 1)
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Preliminaries: Cox Cluster Process

Ay [ {r1,w2}) = e+ h(y | x1) + h(y | z2)
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A Bayesian Spatial Hierarchical Model
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Model Overview

A Bayesian Spatial Hierarchical Model

e Level 1: subject level data
« BOLD image modeled as a mixture distribution

e Spatial correlation accounted for in the mixing weights
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Model Overview

A Bayesian Spatial Hierarchical Model

e Level 1: subject level data
« BOLD image modeled as a mixture distribution
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Model Overview

A Bayesian Spatial Hierarchical Model

e Level 2: subject level data

« Component means clustered about “activation centers”
e Again, a mixture distribution is used
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A Bayesian Spatial Hierarchical Model

e Level 3: population level data
 Activation centers clustered around pop level centers
 Via a spatial Cox cluster process
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A Bayesian Spatial Hierarchical Model

e Level 4. population level data

e Population centers equipped with a homogeneous spatial
Poisson process

* Therefore, conditional on the number of centers
e The population centers are, a priori, iid uniformly
throughout the brain
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e Level 1:

e Data assumed to come from a mixture distribution

Yij | ] ~ pijoN(60,05) + > pijeN (e, 07)
/=1
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e Level 1:

e Data assumed to come from a mixture distribution

Yij | ] ~ pijoN(60,05) + > pijeN (e, 07)
/=1

e Spatial correlation accounted for in the mixing weights

Pije X
N { $3(Xij; Mo Yie) b=1,...,¢

where 35 piye = 1
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e Level 1:

e Data assumed to come from a mixture distribution

Yij | ] ~ pijoN(60,05) + > pijeN (e, 07)
/=1

e Spatial correlation accounted for in the mixing weights

Pije X
N { @3 (X535 Mie> Vi) t=1,...,¢

where 375 pije = 1
* 17,, IS the location mean of component ¢, subject ;
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e Level 1:

e Data assumed to come from a mixture distribution

Yij | ] ~ pijoN(60,05) + > pijeN (e, 07)
/=1

e Spatial correlation accounted for in the mixing weights

Pije X
N { @3 (X535 Mie> Vi) t=1,...,¢
where ¢ e — 1

* 17,, IS the location mean of component ¢, subject ;
» Define latent allocation variables w;;: Pr(w;; = ¢) = p;;e
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|\ UNIVERSIRYGRMCHIGAN

e Level 1 Priors:
* 0o~ N(0,1)  o5°~ G(0.001,0.001)
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e Level 1 Priors:
* 0o~ N(0,1)  o5°~ G(0.001,0.001)
« 0~ N(3.92,1)  0,°~G3,6) B~ G(0.001,0.001)

* (densities intersect at 1.96, the 0.975 quantile of the standard normal)
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e Level 1 Priors:
* 0o~ N(0,1)  o5°~ G(0.001,0.001)
« 0~ N(3.92,1)  0,°~G3,6) B~ G(0.001,0.001)
* (densities intersect at 1.96, the 0.975 quantile of the standard normal)

e Experiments designed so only a small portion of the brain
“activates”
e Set ¢ = 39 — controls number of activated sites
« Ul ~ W (10,0.27 I33)
- Results in a priori prob. of 0.975 that site x;; belongs to background
when x;; = n,, and all other n;;, “far” away
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Model Detalls

e Level 1 Priors:
* 0o~ N(0,1)  o5°~ G(0.001,0.001)
« 0~ N(3.92,1)  0,°~G3,6) B~ G(0.001,0.001)
* (densities intersect at 1.96, the 0.975 quantile of the standard normal)

e Experiments designed so only a small portion of the brain
“activates”
e Set ¢ = 39 — controls number of activated sites
« Ul ~ W (10,0.27 I33)
- Results in a priori prob. of 0.975 that site x;; belongs to background
when x;; = n,, and all other n;; “far” away

* Pr(¢c; = K)=1/200, K=1,...,200

* RIMCMC used to estimate the number of mixture components
(Green, P. (1995) Biometrika)
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e Level 2:

« Component means distributed about activation “centers”

e (may take several components to adequately fit large
activation clusters)

b;

O3 (N,0; Vik, Pikc)
. ° — ?: 1 i .
m("hie | ) kz_1QkPr(nw€Bi o, B B i)
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e Level 2:

« Component means distributed about activation “centers”

e (may take several components to adequately fit large
activation clusters)

b;

O3 (N,0; Vik, Pikc)
. ° — ?: 1 i .
m("hie | ) kz_1QkPr(nw€Bi o, B B i)

e Latent allocation variables v;y: Pr(v;y = k) = q;x
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e Level 2:

« Component means distributed about activation “centers”

e (may take several components to adequately fit large
activation clusters)

b;

®3(Mip; Vik, Pik)
) = E ; 1r. (N,

e Latent allocation variables v;y: Pr(v;y = k) = q;x

* Note: component means 7,, and activation centers v, are latent as
well, i.e. not observable
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e Level 2 Priors:
e [a) = (qi1, .- qw,) | bi] ~D(1,...,1)
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e Level 2 Priors:

* [a} = (g1, q,) | bi) ~ D(1,...,1)

c & ' ~W(5,R7Y/3), R~W(5,8/5), S =4I3x3
* Results in E(®;,) = S (FWHM = 0.94 cm)
* A priori, a 95% credible sphere of radius ~ 1.0 cm
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e Level 2 Priors:

* [a} = (g1, q,) | bi) ~ D(1,...,1)

c & ' ~W(5,R7Y/3), R~W(5,8/5), S =4I3x3
* Results in E(®;,) = .S (FWHM = 0.94 cm)
* A priori, a 95% credible sphere of radius ~ 1.0 cm

« Pr(b; = M)=1/50, M =1,...,50

* RIMCMC used to estimate # of activation centers for each individual
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e Level 2 Priors:

* [a} = (g1, q,) | bi) ~ D(1,...,1)

c & ' ~W(5,R7Y/3), R~W(5,8/5), S =4I3x3
* Results in E(®;,) = .S (FWHM = 0.94 cm)
* A priori, a 95% credible sphere of radius ~ 1.0 cm

« Pr(b;j =M)=1/50, M =1,...,50
* RIMCMC used to estimate # of activation centers for each individual

« So far, all modeling done at the subject level
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e Level 3:

e Individual activation centers are clustered about population
activation centers via a spatial Cox cluster process
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e Level 3:

e Individual activation centers are clustered about population
activation centers via a spatial Cox cluster process

* Intensity function given by

¢3 Vik, W 72 )
)\(Vik:’{(p’za }7, 1 6+HZPTVkGBZLL E)le(Vlk)
1 (2] 79
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e Level 3:

e Individual activation centers are clustered about population
activation centers via a spatial Cox cluster process

* Intensity function given by

¢3 Vik;, | 72 )
)\(Vik’{(p’za }z 1 €+HZPI'I/]€€BZ[JJ E)le(V@k)
1 19 29

* Conditional on the number, N 4, of individual activation
centers, their locations, v;;, are iid with uniform distribution
over the volume of the brain

ik | No| ~ U[V(B;)]
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e Level 3 Priors:
¢~ (G(54,V(B)) = E(Ns) = 54 where B = UB;
e N, denotes the # of spurious ind. act. centers, works out
to an expected number of 3 spurious activation centers
per subject

e Placing a hyperprior dist. on ¢ reflects our uncertainty in
the expected number
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Model Detalls

e Level 3 Priors:
¢~ (G(54,V(B)) = E(Ns) = 54 where B = UB;
e N, denotes the # of spurious ind. act. centers, works out
to an expected number of 3 spurious activation centers
per subject

 Placing a hyperprior dist. on ¢ reflects our uncertainty in
the expected number
e~ G(9,1)
* We except, a priori, on average about half the subjects
will have an activation center cluster about any given
population center
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e Level 4:

* {(p;,%;)} a marked homogeneous Poisson process with
Intensity A
e i.e. {u;} is a homo. Poisson process with marks {>;}
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e Level 4:

* {(p;,%;)} a marked homogeneous Poisson process with
Intensity A
e i.e. {u;} is a homo. Poisson process with marks {>;}

e Level 4 Priors:
e A\ =10
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 Level 4:
* {(p;,%;)} a marked homogeneous Poisson process with
Intensity A
e i.e. {u,;} i1s a homo. Poisson process with marks {*;}
 Level 4 Priors:
e A=10
e Xt~ W(5,T1/3)
e T'~W(5,D/3)
e D = 6.25[3><3
- Results in £(X;) = D, a priori (FWHM = 1.18 cm)
- A 95% credible sphere of radius ~ 1.4 cm

IPAM-MBI — p.20/25



 UNERS O oAy

 Level 4:
* {(p;,%;)} a marked homogeneous Poisson process with
Intensity A
e i.e. {u,;} i1s a homo. Poisson process with marks {*;}
 Level 4 Priors:
e A=10
e Xt~ W(5,T1/3)
e T'~W(5,D/3)
e D = 6.25[3><3
- Results in £(X;) = D, a priori (FWHM = 1.18 cm)
- A 95% credible sphere of radius ~ 1.4 cm

 Posterior of {u;} simulated via a spatial birth-death process
van Lieshout & Baddeley (2002), in Spatial Cluster Modelling, Ch 4.
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Results: Marginal intensity of Ind Centers

E(N¢) = 97.7
E(Ng) = 61.9

IPAM-MBI — p.21/25



[ UNIVERSTEG
Results: Marginal intensity of Pop'Clfs

0.12
0.10

E(N) =5.2
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Results: Intensity Functions at Slicé40

Ind. Ctr. Intensity

[ 0.035
0.030

— 0.025
— 0.020

— 0.015

0.010
0.005
0.000

Pop. Intensity

I 0.04

— 0.03

— 0.02

I )
0.00
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Results: Intensity Functions at SliceZONSE

Ind. Ctr. Intensity Pop. Intensity

0.035

0.030 5

0.025

— 0.020 0 -
— 0.015
— 0.010 5

— 0.005

I— 0.000

-5 0 5 -5 0 5

expected number of pop centers in 1 cm? cube centered at
(-4.6,3.6,1.0) and (4.6,3.6,1.0) is .799 and .136 ,respectively
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Results: Population Center Prevalence

Pop. Center Prevalence

Pop. Intensity
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Conclusion

* We've shown how a spatial Cox cluster model

e can be used to quantify the location and spread of
population centers

e can be used to quantify the spread of individual activation
centers about population centers

* ignores activation centers that do not cluster (spurious
activation sites)

« does not rely on overlap of individual activation regions
* It is not a voxel-level analysis
e Can easlily incorporate other relevant prior information

 e.g. regional brain information (can exclude activations
centers in one region of the brain from clustering with
activation centers in a neighboring, yet distinct, region)
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