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Motivating Example

Study of Proactive Interference Resolution
• Proactive interference is the phenomenon that recently

learned information is mixed up with previously learned,
similar, information
• Information in this talk may get mixed up with similar

information in the previous talk
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Motivating Example

Study of Proactive Interference Resolution
• Proactive interference is the phenomenon that recently

learned information is mixed up with previously learned,
similar, information
• Information in this talk may get mixed up with similar

information in the previous talk
• One’s ability to resolve proactive interference is key to in

determining how much information one can store in short
term memory

• 21 right-handed subjects participated in this study
• We analyze the data from 18 subjects
• 3 removed due to severe spiral artifacts

Nee, Jonides, Berman (2007), Neuroimage
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Motivating Example
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Motivating Example
• Recent probes task

• Subjects show slower reaction time and increased error
rates when rejecting recent negative probes compared to
non-recent negative probes
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Motivating Example
• Recent probes task

• Subjects show slower reaction time and increased error
rates when rejecting recent negative probes compared to
non-recent negative probes

• Performance decrease a marker of proactive interference
• The left lateral prefrontal cortex is a region linked to proactive

interference resolution
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Motivating Example

Subject 4
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Motivating Example

Classical t−image
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Motivating Example

Classical t−image
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NO VOXEL STATISTICALLY SIGNIFICANT
RF Threshold: 22.82

Bonferroni Threshold: 7.81
FDR (0.05) min p: 0.24
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Preliminaries: Bayesian Statistics

• Central difference between frequentist and Bayesian
paradigms
• Bayesian paradigm: parameters considered random
• Frequenist paradigm: parameters considered unknown

constants
• All parameters equipped with a distribution (the prior

distribution)
• Estimate the posterior distribution of the parameters given

the data
• The probability inversion is performed via Bayes Theorem:

π(θ | Y) =
π(Y | θ)π(θ)

π(Y)
=

π(Y,θ)
∫

π(Y,θ)dθ
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Preliminaries: Finite Mixture Distributions

• Suppose a population is made up of several sub-populations
• Y ∼ Fi(θi) for sub-population i, i = 1, . . . , n

• Suppose that sub-population i makes up pi of the total
population with

∑

i pi = 1

• Then the population has the mixture distribution:

Y ∼
n

∑

i=1

pi Fi(θi)

with components Fi(θi) and weights pi

• Define a latent allocation variable Zj with Pr(Zj = k) = pk

[Yj | Zj = k] ∼ Fk(θk)

• RJMCMC
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Preliminaries: Finite Mixture Distributions
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Preliminaries: Cox Cluster Process

• Given a set of points {yj}
m
j=1 in R

3, we assume that they are
a realization of a spatial Poisson process with intensity

λ(y | {xi}
n
i=1) = ǫ +

n
∑

i=1

h(y | xi)

• ǫ is the underlying background intensity
• h(y | xi) : R

3 → R
+ ∪ {0} is some non-negative function

• We place, a priori, a (marked) Poisson process on {xi}.
• {xi} can also be repulsive. e.g. a hard core process:

π({xi}) =

{

αβ|{xi}| if ||xi − xj || > R ∀ i 6= j

0

for some fixed radius R > 0 and intensity β > 0
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Preliminaries: Cox Cluster Process

λ(y | ∅) = ǫ

IPAM-MBI – p.12/25



Preliminaries: Cox Cluster Process

λ(y | {x1}) = ǫ + h(y | x1)
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Preliminaries: Cox Cluster Process

λ(y | {x1, x2}) = ǫ + h(y | x1) + h(y | x2)
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Preliminaries: Cox Cluster Process

A particular instance of this process may look like...
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Model Overview
A Bayesian Spatial Hierarchical Model
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Model Overview
A Bayesian Spatial Hierarchical Model
• Level 1: subject level data

• BOLD image modeled as a mixture distribution
• Spatial correlation accounted for in the mixing weights
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Model Overview
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Model Overview
A Bayesian Spatial Hierarchical Model
• Level 2: subject level data

• Component means clustered about “activation centers”
• Again, a mixture distribution is used
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Model Overview
A Bayesian Spatial Hierarchical Model
• Level 3: population level data

• Activation centers clustered around pop level centers
• Via a spatial Cox cluster process
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Model Overview
A Bayesian Spatial Hierarchical Model
• Level 4: population level data

• Population centers equipped with a homogeneous spatial
Poisson process

• Therefore, conditional on the number of centers
• The population centers are, a priori, iid uniformly

throughout the brain
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Model Details

• Level 1:

• Data assumed to come from a mixture distribution

[Yij | ·] ∼ pij0N(θ0, σ
2
0) +

ci
∑

ℓ=1

pijℓN(θiℓ, σ
2
iℓ)
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2
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ci
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pijℓN(θiℓ, σ
2
iℓ)

• Spatial correlation accounted for in the mixing weights

pijℓ ∝

{

q ℓ = 0

φ3(xij ;ηiℓ,Ψiℓ) ℓ = 1, . . . , ci

where
∑ci
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pijℓ = 1
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Model Details

• Level 1:

• Data assumed to come from a mixture distribution

[Yij | ·] ∼ pij0N(θ0, σ
2
0) +

ci
∑

ℓ=1

pijℓN(θiℓ, σ
2
iℓ)

• Spatial correlation accounted for in the mixing weights

pijℓ ∝

{

q ℓ = 0

φ3(xij ;ηiℓ,Ψiℓ) ℓ = 1, . . . , ci

where
∑ci

ℓ=0
pijℓ = 1

• ηiℓ is the location mean of component ℓ, subject i
• Define latent allocation variables wij: Pr(wij = ℓ) = pijℓ
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Model Details

• Level 1 Priors:

• θ0 ∼ N(0, 1) σ−2
0

∼ G(0.001, 0.001)

IPAM-MBI – p.15/25



Model Details

• Level 1 Priors:

• θ0 ∼ N(0, 1) σ−2
0
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• (densities intersect at 1.96, the 0.975 quantile of the standard normal)
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• (densities intersect at 1.96, the 0.975 quantile of the standard normal)

• Experiments designed so only a small portion of the brain
“activates”
• Set q = 39 — controls number of activated sites
• Ψ−1

iℓ ∼ W (10, 0.2πI3×3)
· Results in a priori prob. of 0.975 that site xij belongs to background

when xij ≡ ηiℓ and all other ηik “far” away
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Model Details

• Level 1 Priors:

• θ0 ∼ N(0, 1) σ−2
0

∼ G(0.001, 0.001)

• θiℓ ∼ N(3.92, 1) σ−2

iℓ ∼ G(3, β) β ∼ G(0.001, 0.001)
• (densities intersect at 1.96, the 0.975 quantile of the standard normal)

• Experiments designed so only a small portion of the brain
“activates”
• Set q = 39 — controls number of activated sites
• Ψ−1

iℓ ∼ W (10, 0.2πI3×3)
· Results in a priori prob. of 0.975 that site xij belongs to background

when xij ≡ ηiℓ and all other ηik “far” away

• Pr(ci = K) = 1/200, K = 1, . . . , 200

• RJMCMC used to estimate the number of mixture components

(Green, P. (1995) Biometrika)
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Model Details

• Level 2:

• Component means distributed about activation “centers”
• (may take several components to adequately fit large

activation clusters)

π(ηiℓ | ·) =

bi
∑

k=1

qik
φ3(ηiℓ;νik,Φik)

Pr(ηiℓ ∈ Bi | νik,Φik)
1Bi

(ηiℓ)
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Model Details

• Level 2:

• Component means distributed about activation “centers”
• (may take several components to adequately fit large

activation clusters)

π(ηiℓ | ·) =

bi
∑

k=1

qik
φ3(ηiℓ;νik,Φik)

Pr(ηiℓ ∈ Bi | νik,Φik)
1Bi

(ηiℓ)

• Latent allocation variables viℓ: Pr(viℓ = k) = qik

• Note: component means ηiℓ and activation centers νik are latent as

well, i.e. not observable

IPAM-MBI – p.16/25



Model Details

• Level 2 Priors:

• [qT
i = (qi1, . . . , qibi

) | bi] ∼ D(1, . . . , 1)
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• Pr(bi = M) = 1/50, M = 1, . . . , 50

• RJMCMC used to estimate # of activation centers for each individual
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Model Details

• Level 2 Priors:

• [qT
i = (qi1, . . . , qibi

) | bi] ∼ D(1, . . . , 1)

• Φ−1

ik ∼ W (5, R−1/3), R ∼ W (5, S/5), S = 4 I3×3

• Results in E(Φik) = S (FWHM ≈ 0.94 cm)
• A priori, a 95% credible sphere of radius ≈ 1.0 cm

• Pr(bi = M) = 1/50, M = 1, . . . , 50

• RJMCMC used to estimate # of activation centers for each individual

• So far, all modeling done at the subject level
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Model Details

• Level 3:

• Individual activation centers are clustered about population
activation centers via a spatial Cox cluster process
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Model Details

• Level 3:

• Individual activation centers are clustered about population
activation centers via a spatial Cox cluster process

• Intensity function given by

λ
(

νik | {(µi,Σi)}
N
i=1

)

= ǫ+θ
N

∑

i=1

φ3(νik;µi,Σi)

Pr(νik ∈ Bi;µi,Σi)
1Bi

(νik)
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Model Details

• Level 3:

• Individual activation centers are clustered about population
activation centers via a spatial Cox cluster process

• Intensity function given by

λ
(

νik | {(µi,Σi)}
N
i=1

)

= ǫ+θ
N

∑

i=1

φ3(νik;µi,Σi)

Pr(νik ∈ Bi;µi,Σi)
1Bi

(νik)

• Conditional on the number, NA, of individual activation
centers, their locations, νik, are iid with uniform distribution
over the volume of the brain

[νik | Na] ∼ U [V (Bi)]
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Model Details

• Level 3 Priors:
• ǫ ∼ G(54, V (B)) ⇒ E(Ns) = 54 where B = ∪Bi

• Ns denotes the # of spurious ind. act. centers, works out
to an expected number of 3 spurious activation centers
per subject

• Placing a hyperprior dist. on ǫ reflects our uncertainty in
the expected number
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Model Details

• Level 3 Priors:
• ǫ ∼ G(54, V (B)) ⇒ E(Ns) = 54 where B = ∪Bi

• Ns denotes the # of spurious ind. act. centers, works out
to an expected number of 3 spurious activation centers
per subject

• Placing a hyperprior dist. on ǫ reflects our uncertainty in
the expected number

• θ ∼ G(9, 1)
• We except, a priori, on average about half the subjects

will have an activation center cluster about any given
population center
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Model Details

• Level 4:
• {(µi,Σi)} a marked homogeneous Poisson process with

intensity λ
• i.e. {µi} is a homo. Poisson process with marks {Σi}
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intensity λ
• i.e. {µi} is a homo. Poisson process with marks {Σi}

• Level 4 Priors:
• λ = 10
• Σ−1

i ∼ W (5, T−1/3)
• T ∼ W (5,D/3)
• D = 6.25I3×3

· Results in E(Σi) = D, a priori (FWHM ≈ 1.18 cm)
· A 95% credible sphere of radius ≈ 1.4 cm
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Model Details

• Level 4:
• {(µi,Σi)} a marked homogeneous Poisson process with

intensity λ
• i.e. {µi} is a homo. Poisson process with marks {Σi}

• Level 4 Priors:
• λ = 10
• Σ−1

i ∼ W (5, T−1/3)
• T ∼ W (5,D/3)
• D = 6.25I3×3

· Results in E(Σi) = D, a priori (FWHM ≈ 1.18 cm)
· A 95% credible sphere of radius ≈ 1.4 cm

• Posterior of {µi} simulated via a spatial birth-death process
van Lieshout & Baddeley (2002), in Spatial Cluster Modelling, Ch 4.
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Results: Marginal intensity of Ind Centers

E(NC) = 97.7
E(NS) = 61.9
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Results: Marginal intensity of Pop Ctrs

E(N) = 5.2
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Results: Marginal intensity of Pop Ctrs

E(N) = 5.2
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Results: Intensity Functions at Slice 40

Ind. Ctr. Intensity
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Results: Intensity Functions at Slice 40 (sqrt)

Ind. Ctr. Intensity
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expected number of pop centers in 1 cm3 cube centered at

(-4.6,3.6,1.0) and (4.6,3.6,1.0) is .799 and .136 ,respectively
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Results: Population Center Prevalence

Pop. Center Prevalence
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Conclusion

• We’ve shown how a spatial Cox cluster model
• can be used to quantify the location and spread of

population centers
• can be used to quantify the spread of individual activation

centers about population centers
• ignores activation centers that do not cluster (spurious

activation sites)
• does not rely on overlap of individual activation regions

• It is not a voxel-level analysis
• Can easily incorporate other relevant prior information

• e.g. regional brain information (can exclude activations
centers in one region of the brain from clustering with
activation centers in a neighboring, yet distinct, region)
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