Combining fMRI, ERP and SNP data with ICA: Introduction and examples

Vince D. Calhoun, Ph.D.

Director, Image Analysis & MR Research The Mind Research Network Associate Professor, Electrical and Computer Engineering The University of New Mexico

101

- Motivation
- Data Description
 - fMRI
 - ERP
 - Genetic
- Features & Joint Estimation
- Joint ICA
 - Example 1: ERP/fMRI
 - Example 2: Multielectrode ERP/fMRI
- Parallel ICA
 - SNP/FMRI
 - SNP/ERP
- Conclusions

Multimodal Data Collection

A Role For Data Fusion?:

- Motivation
- Data Description
 - fMRI
 - ERP
 - Genetic
- Features & Joint Estimation
- Joint ICA
 - Example 1: ERP/fMRI
 - Example 2: Multielectrode ERP/fMRI
- Parallel ICA
 - SNP/FMRI
 - SNP/ERP
- Conclusions

EEG/ERP

EEG Scalp Channels

VEOG F3 Manya manun M Amanun FC5 Manya manun M Manun FC5 Manya manun Cz Mana Manun Pz Manu Manun Manu

Event-related Potentials (ERPs)

Genetic Variation

ACTTG**C**ATCCG ACTTG**T**ATCCG ACTTG**CA**TCCG ACTTG**-**TCCG

Single Nucleotide Polymorphism (SNP)

Insertion/Deletion (Indel)

ACTTG**GCGCGC**TCCG ACTTG**GCGC--**TCCG ACTTG**GC---**TCCG

Short Tandem Repeat (STR)

The Link between brain function and genetic coding

The First Challenge

A conceptual slide to drive home the point...

- Motivation
- Data Description
 - fMRI
 - ERP
 - Genetic
- Features & Joint Estimation
- Joint ICA
 - Example 1: ERP/fMRI
 - Example 2: Multielectrode ERP/fMRI
- Parallel ICA
 - SNP/FMRI
 - SNP/ERP
- Conclusions

Separate vs. Joint Estimation

Linear mixtures with shared mixing parameter

In a non-joint analysis, we maximize the likelihood functions for each modality separately...

Resulting in two unmixing parameters, that then have to somehow be fused together

In contrast: for a joint analysis we maximize the joint likelihood function, resulting in a single fused unmixing parameter

$$\sum_{c=1}^{C} a_{ic} s_{c,v}^{(E)} \text{ and } x_{i,v}^{(F)} = \sum_{c=1}^{C} a_{ic} s_{c,v}^{(F)}$$

$$p(x^{(E)};w) \quad p(x^{(F)};w) \quad w = 1/a$$

$$w_{1}^{*} = \arg\max_{w_{1}} \log p(x^{(E)};w_{1})$$

$$w_{2}^{*} = \arg\max_{w_{2}} \log p(x^{(F)};w_{2})$$

$$w^{*} = \arg\max_{w_{2}} \log p(x^{(F)};w_{2})$$

Feature Data

- What is a feature?
 - Lower dimensional data containing information of interest
 - Examples: An image of activation amplitudes, A gray matter segmentation image, fractional anisotropy image
- Advantages
 - Less-computationally complex/easier to model
 - Takes advantages of existing analytic approaches
 - Can be used to examine inter-relationships between multiple data types at the subject level

fMRI

sMRI

Feature Data

- What are the features?
 - Examples: An image of activation amplitudes, A gray matter segmentation image, fractional anisotropy image
- Advantages
 - Less-computationally complex/easier to model
 - Takes advantages of existing analytic approaches
 - Examines inter-subject covariation of multiple data types

Modality	Core-Feature	
fMRI	Recognition related activity	
SB task	Encode-related activity	
fMRI	Target-related activity	
AOD task	Novel-related activity	
sMRI	GM concentration	
	WM concentration	
	CSF concentration	
EEG	Target-related ERP	
AOD task	Novel-related ERP	

Modality	Raw data	Feature	Compression
	size	size	ratio
fMRI	260 MB	1.3 MB	1:200
DTI	200 MB	10 MB	1:20
sMRI	46 MB	28 MB	1:1.6
EEG	25MB	.45MB	1:56

Feature	Effect Size (d)
fMRI	2.1 (SB Encode)
sMRI	0.6 (GM)
DTI	0.8 (FA)
ERP	2.2 (Target Cz)

Possible approaches for joint analyses

• Voxel-based

- Correlation [Worsely 1998]
- Straightforward, but difficult to visualize

• Region-based

- Interregional correlation [Horwitz, et al, 1984]
- Structural equation modeling [McIntosh and Gonzalez-Lima 1994; Friston et al., 2003, McIntosh & Gonzalez-Lima, 1991, Buchel & Friston, 1997]
- Multiple regression and extensions [e.g., Kalman filters, Buchel & Friston, 1998]
- Bayes networks, Dynamic Causal Modeling [Dynamic Causal Modeling, Friston, Penny, et al, 2003]
- Useful for model testing, does not take into account all brain regions

• Transformation-based

- A natural set of tools for this problem include those that transform data matrices into a smaller set of modes or components
- Singular value decomposition [Friston et al., 1993; Friston et al., 1996]
- Partial Least Squares [McIntosh, Bookstein, et al, 1996]
- Canonical Variates Analysis [Strother et al, 1995]
- Independent Component Analysis [McKeown et al, 1998, Calhoun et al, 2001, Beckmann, et al., 2002]

- Motivation
- Data Description
 - fMRI
 - ERP
 - Genetic
- Features & Joint Estimation
- Joint ICA
 - Example 1: ERP/fMRI
 - Example 2: Multielectrode ERP/fMRI
- Parallel ICA
 - SNP/FMRI
 - SNP/ERP
- Conclusions

Blind Source Separation (ICA)

ICA finds directions which maximize independence (using higher order statistics)

Stationarity

Joint ICA

Update Equation:

$$\Delta \mathbf{W} = \eta \left\{ \mathbf{I} - 2\mathbf{y}^{F} \left(\mathbf{u}^{F} \right)^{T} - 2\mathbf{y}^{E} \left(\mathbf{u}^{E} \right)^{T} \right\} \mathbf{W}$$

sMRI/fMRI: fMRI/fMRI: EEG/fMRI: Calhoun VD, Adali T, Giuliani N, Pekar JJ, Pearlson GD, Kiehl KA. (2006): A Method for Multimodal Analysis of Independent Source Differences in Schizophrenia: Combining Gray Matter Structural and Auditory Oddball Functional Data. Hum.Brain Map. 27(1):47-62.

Calhoun VD, Adali T, Kiehl KA, Astur RS, Pekar JJ, Pearlson GD. (2006): A Method for Multi-task fMRI Data Fusion Applied to Schizophrenia. Hum.Brain Map. 27(7):598-610.

RI: Calhoun VD, Pearlson GD, Kiehl KA. (2006): Neuronal Chronometry of Target Detection: Fusion of Hemodynamic and Eventrelated Potential Data. NeuroImage 30(2):544-553.

- Motivation
- Data Description
 - fMRI
 - ERP
 - Genetic
- Features & Joint Estimation
- Joint ICA
 - Example 1: ERP/fMRI
 - Example 2: Multielectrode ERP/fMRI
- Parallel ICA
 - SNP/FMRI
 - SNP/ERP
- Conclusions

Joint ERP/fMRI Components

Calhoun, V.D., Pearlson, G.D., and Kiehl, K.A. (2006). Neuronal Chronometry of Target Detection: Fusion of Hemodynamic and Event-related Potential Data. NeuroImage 30, 544-553.

FMRI Snapshots (movie)

ERP (temporal) Components: $\mathbf{T} = \begin{bmatrix} \mathbf{t}_1 & \dots & \mathbf{t}_N \end{bmatrix}$ FMRI (spatial) Components: $\mathbf{S} = \begin{bmatrix} \mathbf{s}_1 & \dots & \mathbf{s}_N \end{bmatrix}$ FMRI Image Snapshot: $\mathbf{M}_F(t) = |\mathbf{T}| \times \mathbf{S}^T(t)$

Calhoun, V.D., Pearlson, G.D., and Kiehl, K.A. (2006). Neuronal Chronometry of Target Detection: Fusion of Hemodynamic and Event-related Potential Data. NeuroImage 30, 544-553.

ERP Snapshots

ERP (temporal) Components: $\mathbf{T} = \begin{bmatrix} \mathbf{t}_1 & \dots & \mathbf{t}_N \end{bmatrix}$ FMRI (spatial) Components: $\mathbf{S} = \begin{bmatrix} \mathbf{s}_1 & \dots & \mathbf{s}_N \end{bmatrix}$ ERP Timecourse Snapshot: $\mathbf{M}_E(v) = \mathbf{T} \times |\mathbf{S}|^T(v)$

Calhoun, V.D., Pearlson, G.D., and Kiehl, K.A. (2006). Neuronal Chronometry of Target Detection: Fusion of Hemodynamic and Event-related Potential Data. NeuroImage 30, 544-553.

- Motivation
- Data Description
 - fMRI
 - ERP
 - Genetic
- Features & Joint Estimation
- Joint ICA
 - Example 1: ERP/fMRI
 - Example 2: Multielectrode ERP/fMRI
- Parallel ICA
 - SNP/FMRI
 - SNP/ERP
- Conclusions

fMRI/SNP connection

- fMRI component: *specific brain regions with common independent brain functionality.*
- SNP component: a linearly weighted group of SNPs functioning together.
- Relationship assumption
 - If an association of SNPs partially define a certain brain function in specific brain regions, Then, the linked fMRI and SNP components should share a similar pattern of existence across subjects.

- MAX : ${H(Y1) + H(Y2)}, < \underline{Infomax} >$
- Subject to: arg max g{W1,W2 \$1,\$2}, g(·)=Correlation(A₁,A₂)²= $\frac{Cov(a_{1i},a_{2j})^2}{Var(a_{1i}) \times Var(a_{2i})}$

Dynamic parallel ICA optimization

• Dynamically constrained components:

X1**→**\$1

X2**→**\$2

- Adaptive constraint strength:
 - Effects on Entropy H(.)

True component: 8/8; True correlation:0.8

Data1	Data2	Parallel ICA	Regular ICA
		connection	connection
8	4	0.4149	0.4148
	8	0.8275	0.6635
	16	0.8240	0.6639
4	8	0.1739	0.1738
8		0.8492	0.6636
16		0.8953	0.6636

True	Parallel ICA	Regular ICA
Correlation	correlation	correlation
1.00	0.9278	0.8606
0.80	0.7911	0.7348
0.60	0.5850	0.5205
0.45	0.4603	0.4138

Parallel ICA

1.independent components/factors of each modality

2. Inter-relationship between modalities

The algorithm is based on classic ICA, aiming to extract independent sources and enhance the connections between modalities.

- Motivation
- Data Description
 - fMRI
 - ERP
 - Genetic
- Features & Joint Estimation
- Joint ICA
 - Example 1: ERP/fMRI
 - Example 2: Multielectrode ERP/fM
- Parallel ICA
 - SNP/FMRI
 - SNP/ERP
- Conclusions

Example 1: SNP/fMRI Fusion

Data Description: 20 Sz & 43 Healthy controls (Caucasian) fMRI: one image per subject (Target activation in Auditory Oddball task SNP: one array per subject (384 SNP genotypes --> 367 SNPs)

Control vs Patient p<0.001

SNP Rs1466163 Rs2429511 Rs3087454 Rs821616 Rs885834 Bs1255920	Z score -4.08 3.97 -3.09 2.96 -2.78 2.77	Gene AADC: aromatic L-amino acid decarboxylase ADRA2A: alpha-2A adrenergic receptor gene CHRNA7: alpha 7 nicotinic cholinergic receptor DISC1: disrupted in schizophrenia 1 CHAT: choline acetyltransferase
R4765623 Rs4784642	2.73 -2.71	SCARB1: scavenger receptor class B, member 1 GNAO1: guanine nucleotide binding protein (G protein) alpha activating activity polypeptide O
Rs2071521 Rs7520974	2.58 2.55	APOC3: apolipoprotein C-III CHRM3: muscarinic-3 cholinergic receptor

J. Liu, G. D. Pearlson, A. Windemuth, G. Ruano, N. I. Perrone-Bizzozero, and V. D. Calhoun, "Combining Fmri and Snp Data to Investigate Connections between Brain Function and Genetics Using Parallel Ica," Hum.Brain Map., In Press.

Subject loading associated with linked SNP and fMRI components

Sample size vs Number of SNPs

Data collected at UCI

- Motivation
- Data Description
 - fMRI
 - ERP
 - Genetic
- Features & Joint Estimation
- Joint ICA
 - Example 1: ERP/fMRI
 - Example 2: Multielectrode ERP/fMRI
- Parallel ICA
 - SNP/FMRI
 - SNP/ERP
- Conclusions

Example 2: Genetics and P3 ERP generation

- Subjects: 41 healthy subjects(24 female, 17 male)
- EEG collected during AOD task, target/novel ERPs extracted

• Blood sample collected, genotyped 384 SNPs from 222 genes 6 physiological systems.

Pathway Analysis

Fusion ICA Toolbox (FIT)

 F usio	n ICA Toolbox (FITv2.0a)			
	Fusion ICA Toolbox (FIT) FITv2.0a			
		- Methods -		
	Parallel ICA		Joint ICA	
	About	Help	Exit	

250+ unique downloads http://icatb.sourceforge.net Funded by NIH 1 R01 EB 005846

Thank You!

