
• temporal noise: modelling temporal autocorrelation

• temporal signal: FLOBS HRF optimal basis functions
• temporal signal: HRF deconvolution

• spatiotemporally structured signal / noise: ICA
• “functional grand-plan”: integrating ICA+GLM

Modelling temporal structure
(in noise and signal)

Mark Woolrich, Christian Beckmann*, Salima Makni & Steve Smith
FMRIB, Oxford      *Imperial/FMRIB
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Even after high-pass 
filtering, FMRI noise has 

extra power at low 
frequencies (positive 

autocorrelation or temporal 
smoothness)

Uncorrected, this causes:


 - biased stats ( increased false positives)


 - decreased sensitivity

Non-independent/Autocorrelation/
Coloured FMRI noise



FMRIB’s Improved Linear Modelling 
(FILM)

• FILM is used to fit the GLM voxel-wise in FEAT
• Deals with the autocorrelation locally and uses prewhitening

FILM estimates autocorrelation by looking at the residuals of 
the GLM fit:

residuals = Y −Xβ̂

Y = Xβ + ε



FMRIB’s Improved Linear Modelling 
(FILM)

1) Fit the GLM and estimate the 
autocorrelation on the residuals

frequency

power

Power vs. freq in the residuals
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FMRIB’s Improved Linear Modelling 
(FILM)

1) Fit the GLM and estimate the 
autocorrelation on the residuals

frequency

2) Spatially and spectrally smooth the data

frequency

power

3) Construct prewhitening filter to “undo” 
autocorrelation

4) Apply filter to data and design matrix 
and refit
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power

power

power
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FMRIB’s Improved Linear Modelling 
(FILM)



Dealing with Variations in 
Haemodynamics

• The haemodynamic responses vary between subjects and areas 
of the brain 

• How do we allow haemodynamics to be flexible but remain 
plausible?

Reminder: the haemodynamic response function (HRF) describes the BOLD 
response to a short burst of neural activity



Temporal Derivatives

• A very simple approach to providing HRF variability is to include 
(alongside each EV) the EV temporal derivative

• Including the temporal derivative of an EV allows for a small shift 
in time of that EV

• This is based upon a first order Taylor series expansion

EV
Temporal 
derivative

data
model fit 
without 

derivative

model fit with 
derivative



• We need to allow flexibility in the shape of the fitted HRF 

Parameterise HRF shape and fit 
shape parameters to the data

Needs nonlinear fitting - HARD 

Using Parameterised HRFs



Using Basis Sets

• We need to allow flexibility in the shape of the fitted HRF 

Parameterise HRF shape and fit 
shape parameters to the data

We can use linear basis sets to span 
the space of expected HRF shapes

Needs nonlinear fitting - HARD Linear fitting (use GLM) - EASY



How do HRF Basis Sets Work?

Different linear combinations of the basis functions can be 
used to create different HRF shapes

+ -0.1*+ 0.3* 1.0* =

basis fn 1 basis fn 2 basis fn 3 HRF



How do HRF Basis Sets Work?

Different linear combinations of the basis functions can be 
used to create different HRF shapes

+ -0.1*+ 0.3* 1.0* =

+ 0.5*+ -0.2* 0.7* =

basis fn 1 basis fn 2 basis fn 3 HRF



FMRIB’s Linear Optimal Basis 
Set (FLOBS)

Using FLOBS we can:

• Specify a priori expectations of 
parameterised HRF shapes

• Generate an appropriate basis set



Generating FLOBs

(1) Take samples of the HRF 



Generating FLOBs

(2) Perform SVD (3) Select the top eigenvectors 
as the optimal basis set 

“Canonical HRF”



Generating FLOBs

(2) Perform SVD (3) Select the top eigenvectors 
as the optimal basis set 

“Canonical HRF”

temporal 
derivative



Generating FLOBs

(2) Perform SVD (3) Select the top eigenvectors 
as the optimal basis set 

The resulting basis set can then be used in FEAT

“Canonical HRF”
dispersion 
derivative temporal 

derivative



Woolrich et al. , TMI, 2004

Bayesian Inference
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parameters

p(A, c, m1,m2 . . . |Y )
Joint posterior distribution



Infer using MCMC
Woolrich et al. , TMI, 2004

Bayesian Inference

⊗
Neural Activity

*A  +
BOLD 
FMRI 
data

Gaussian 
noise

HRF

Priors on HRF 
parameters

p(A|Y ) =
∫

p(A, c, m1,m2 . . . |Y )dcdm1dm2 . . .

Marginal posterior distribution



• Inputs are raw paradigm (stimulation and 
“modulation”) timecourses

• Model based on Bilinear Dynamical Systems (Penny 
2005), where modulatory input changes neural 
response to stimulation

• What’s new:

• estimate HRF from data

• full Bayesian inference on model, using VB

Makni, NeuroImage 2008

Temporal deconvolution of 
FMRI timecourses
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307 VB does not guarantee the optimal global solution, that is
308 why a good initialization of the different BDS model
309 parameters is important. We initialize the HRF using the
310 canonical HRF that is widely used in fMRI to model the
311 response. The neuronal response is initialized using a simple

312linear least squares optimization. The neurodynamic para-
313meters, the state and the space noise terms are all randomly
314initialized. This initialisation is sufficient for our VB
315algorithm to converge within 10–20 iterations, taking only
3161.5–3 min per single time series of length 250 on a standard

Fig. 1. Results on simulated data using EM and VB (low SNR=11.5, Scan number=250). (a) Driving input v used to generate the data. (b, c) Modulatory inputs un(1) and un(2) used to
generate the data. (d, f) HRF using EM and VB, respectively. (e, g) neuronal response using EM and VB, respectively. In all cases dashed line is for the true value of the parameter and
continuous line is for the estimated parameter.
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• Variational Bayes (maths takes ages)
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Model-free Functional 
Data Analysis

• decomposes data into a set of statistically 
independent spatial component maps and 
associated time courses

• can perform multi-subject/ multi-session 
analysis

• fully automated (incl. estimation of the 
number of components)

• inference on IC maps using alternative 
hypothesis testing

MELODIC
Multivariate Exploratory Linear Optimised Decomposition 

into Independent Components
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EDA techniques for FMRI

• are mostly multivariate

• often provide a multivariate linear decomposition:  

space
# m

aps=

tim
e Scan #k 

FMRI data
spatial maps

tim
e

# mapsspace

Data is represented as a 2D matrix and 
decomposed into factor matrices (or modes)



Model Order Selection

• can estimate the model 
order from the 
Eigenspectrum of the 
data covariance matrix 
(corrected using Wishart 
random matrix theory)

• approximate the Bayesian 
evidence for the model 
order for a probabilistic 
PCA model (PPCA)

Minka, TR 514 MIT Media Lab 2000

Laplace approximation BIC AIC

C.F. Beckmann , J.A. Noble , S.M. Smith
Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB)

Medical Vision Laboratory, Department of Engineering, University of Oxford
email: beckmann,steve @fmrib.ox.ac.uk

Introduction
Analysing FMRI data using linear techniques like the

GLM, PCA or ICA can be understood as a form of di-

mensionality reduction where a small set of spatial maps

(Z-scores; IC maps; eigenimages) is sought that, together

with pre-specified (GLM) or estimated (PCA/ICA) time-

courses, represent the signal. The signal subspace is gen-

erally expected to be of lower dimensionality than the data,

e.g. in the case of simple block designs, the signal is implic-

itly assumed to be contained in a subspace roughly of size

less than or equal to the length of one stimulation cycle.

In ICA, it is common to whiten the data using singular value

decomposition. The data is often projected onto a set of

dominant eigenvectors in order to reduce the data dimen-

sionality. It is common practice to arbitrarily choose the

number of principal directions to retain such that the vari-

ance in the discarded directions is negligible [4]. In con-

trast, we present a probabilistic ICA model that will allow

us to address issues of model order or equivalently the num-

ber of latent source signals contained in the data by esti-

mating independent components in lower-dimensional sub-

spaces spanned by the dominant eigenvectors of the covari-

ance matrix of the data.

The choice of the number of components to extract is a

problem of model order selection. Overestimating the di-

mensionality results in a large number of spurious compo-

nents due to underconstrained estimation and a factoriza-

tion that will overfit the data, harming later inference and

dramatically increasing computational costs. Underestima-

tion, however, will discard valuable information and result

in suboptimal signal extraction.

We show that the accuracy of probabilistic ICA estimates

is consistent over a wide range of subspace dimensions be-

yond a value that appears to represent the ‘intrinsic’ dimen-

sionality of the data and discuss different approaches to de-

termining this dimensionality from the data prior to ICA

decomposition.

Probilistic ICA
In the probabilistic ICA model, the -dimensional data vec-

tors are modelled as a mixture of statistically in-

dependent latent sources which are linearly mixed by

and corrupted by additive noise such that

(1)

where denotes -dimensional random noise with zero

mean and unit variance.

In the presence of noise, the covariance matrix of the obser-

vations will be the sum of and the noise covariance [2]

i.e. will be of full rank and its rank will no longer equal

the rank of .

Determining a cutoff value for the eigenvalues of an initial

PCA using simplistic criteria like the reconstruction error

or predictive likelihood [4] that do not incorporate a noise

model will naturally predict that the accuracy steadily in-

creases with increased dimensionality. Many other infor-

mal methods have been proposed, the most popular choice

being the ”scree plot” where one looks for a ”knee” in the

plot of ordered eigenvalues that signifies a split between

significant and unimportant directions of the data.

This naturally raises the issues of sensitivity of ICA to the

subspace dimensionality and possible techniques to deter-

mine the optimal subspace dimensionality from the data.

Estimation Accuracy vs Dimensionality
We generated artificial FMRI data based on autoregres-

sive noise (where the AR coefficients were extracted from

real ‘null’ data ) and in vivo ‘null’ data plus additive sig-

nal as outlined in [1]. The 180-dimensional data was de-

composed using ICA after initially projecting the data into

lower dimensional subspaces (3-180 dimensions) by pro-

jection onto the dominant eigenvectors.
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Figure 1: Spatio-temporal accuracy of ICA esti-

mates as a function of subspace dimensionality

After convergence, we calculated (i) the correlation be-

tween the best extracted and the ‘true’ activation time

courses (temporal accuracy) and (ii) the false positive / false

negative rates between thresholded IC maps and clusters of

voxels that have been used to generate the artificial data

(spatial accuracy) [1].

Figure 1 shows an example for data with two types of artifi-

cial activation introduced in a 10on/10off and 15on/15off

block design. These results suggest that the quality of

the estimates does not significantly improve (and actually

reduces in the case of temporal correlation) if more than

dimensions are retained.

Eigenspectrum Analysis
Under the assumption of Gaussian noise, the sample co-

variance matrix has a Wishart distribution and we can

utilise results from random matrix theory [3] on the em-

pirical distribution function for the eigenvalues of

the covariance matrix of a random -dimensional ma-

trix . Suppose that as , then

almost surely, where the limiting distribu-

tion has a density

and where .

This can be used to obatin a modification to the scree-plot

where one compares the eigenspectrum of the observations

against the quantiles of the predicted cumulative distribu-

tion , i.e. against the expected eigenspectrum of a

randomGaussian matrix. Given the probabilistic model, we

project the data into a ‘signal’ subspace spanned by those

eigenvectors that violate the ‘null’ hypothesis of random

Gaussian signal in the data. Figure 2 shows an example

of the eigenspectrum for different artificial data sets and

the predicted eigenspectrum of a random Gaussian matrix.

Note, that the increase in AR dependency will render the

data to have more Eigenvectors that cannot be explained as

resulting from a random Gaussian distribution. Note also,

that artificial data based on true ‘null’ data differs signifi-

cantly from AR 16 noise.
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Figure 2: Eigenvalues (blue) and predicted distri-

bution (red) for different artificial FMRI data sets
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Figure 3: Bayesian estimates of the intrin-

sic dimensionality: Laplace approximation

due to Minka [5](blue) and Raftery [6](green)

and Bayesian score function of Rajan &

Rayner [7](red).

Bayesian Analysis
As an alternative to methods based on the expected eigen-

spectrum, the problem of model order can also be ap-

proched within the framework of Bayesian model selection.

Minka [5] develops a simple criterion based on the Laplace

approximation of the Bayesian evidence for the model or-

der and gives a review of other existing techniques, includ-

ing the related technique of Raftery [6] to calculate approx-

imate Bayes factors and the selection criterion of Rajan and

Rayner [7] derived for the probabilistic model (1) with as-

sumed Gaussian noise and unit variance of the sources. Fig-

ure 3 shows the normalized score function for all three tech-

niques. For simple AR noise, all estimators essentially pre-

dict similar dimensionality close to the results in figure 2.

For ‘real’ data, techniques based on Laplace approximation

of Bayesian evidence are similar to the modified scree plot

and predict a dimensionality of 92. The selection crite-

rion due to Rajan& Rayner, however, predicts a much lower

dimensionality (33) that matches the results from the analy-

sis of spatio-temporal accuracy of IC estimates. This differ-

ence appears to be due to the different model assumptions

for the source variances.

Discussion
Projecting the data into lower-dimensional signal subspaces

appears to not interfere with the accuracy to estimate pat-

terns of activation, provided a sufficient number of com-

ponents are extracted. The optimal dimensionality is hard

to estimate exactly and probabilistic models vary depend-

ing on the specific noise model. In all cases, however, the

amount of dimensionality reduction proposed well exceeds

the standard level commonly used for ICA. A high level

of reduction does not only significantly reduce computa-

tional demand, but also allows for an estimate of the noise-

subspace which can be used to infer the validity of IC esti-

mates in the signal subspace.
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Probabilistic ICA

 GLM analysis      standard ICA (unconstrained)



Probabilistic ICA

 GLM analysis     probabilistic ICA



Probabilistic ICA

• designed to address the 
‘overfitting problem’:

• tries to avoid generation 
of ‘spurious’ results

• high spatial sensitivity and 
specificity

 GLM analysis     probabilistic ICA



Applications

EDA techniques can be useful to

‣ investigate the BOLD response

• estimate artefacts in the data 

• find areas of ‘activation’ which respond in a non-
standard way

•  analyse data for which no model of the BOLD 
response is available



Investigate BOLD response

estimated 
signal time 

course

standard 
hrf model



Applications

EDA techniques can be useful to

• investigate the BOLD response

‣ estimate artefacts in the data 

• find areas of ‘activation’ which respond in a non-
standard way

•  analyse data for which no model of the BOLD 
response is available



slice drop-outs



gradient instability



EPI ghost



high-frequency noise



head motion
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eye-related artefacts



eye-related artefacts



eye-related artefacts

Wrap 
around



Structured Noise and the GLM

• ‘structured noise’ appears:

• in the GLM residuals and inflate variance estimates 
(more false negatives)

• in the parameter estimates (more false positives and/or 
false negatives)

• In either case lead to suboptimal estimates and wrong 
inference!



Structured noise and 
GLM Z-stats bias

• Correlations of 
the noise time 
courses with 
‘typical’ FMRI 
regressors can 
cause a shift in the 
histogram of the 
Z-statistics 

• Thresholded maps 
will have wrong 
false-positive rate 
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LEFT - RIGHT contrast

Denoising FMRI

• Example:     left 
vs right hand 
finger tapping

before denoising

after denoisingJohansen-Berg et al.
PNAS 2002



Apparent variability

McGonigle et al.: 33 Sessions under motor paradigm

‘de-noising’ data by regressing out noise:
reduced ‘apparent’ session variability 



Applications

EDA techniques can be useful to

• investigate the BOLD response

• estimate artefacts in the data 

• find areas of ‘activation’ which respond in a non-
standard way

‣  analyse data for which no model of the BOLD 
response is available



PICA on resting data

• perform ICA on null 
data and compare spatial 
maps between subjects/
scans

• ICA maps depict 
spatially localised and 
temporally coherent 
signal changes 

Example: ICA maps - 
1 subject at 3 

different sessions



Spatial characteristics
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Temporal deconvolution of 
ICA timecourses

• ‘What are the “task-related” components?

• Use explicit time series model on the IC-
generated temporal modes (using BDS)

(a)

(b) (c)
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Fig. 6. Results on the estimated time course for IC1 (using PICA approach), (a):
thresholded (at p > 0.5) spatial IC map. (b): Estimated mean of the posterior
distribution of the neuronal response, the shaded regions represent the error bars.
(c): Sample of the neuronal response using the estimated mean and covariance
matrix of its posterior distribution. (d): Estimated mean of the Gaussian posterior
distribution of the HRF, the shaded regions represent the error bars. (e): VB-BDS fit
to fMRI data (using the mean of the variable distributions), the time-series relative
to IC1 (dashed line) and VB-BDS model fit (continuous line).
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• posterior probability of  
neuronal response > 0 
for the IC
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