Modelling temporal structure

(in noise and signal)

Mark Woolrich, Christian Beckmann®, Salima Makni & Steve Smith

FMRIB, Oxford  *Imperial/FMRIB

* temporal noise: modelling temporal autocorrelation

e temporal signal: FLOBS HRF optimal basis functions
* temporal signal: HRF deconvolution

 spatiotemporally structured signal / noise: ICA
e “functional grand-plan”: integrating ICA+GLM




Non-independent/Autocorrelation/
Coloured FMRI noise

autocorrelated Even a'fter high-Pa—SS
White / independent filtering, FMRI noise has
/ extra power at low

~ frequencies (positive
autocorrelation or temporal

frequency smoothness)
Uncorrected, this causes:
- biased stats ( increased false positives)

- decreased sensitivity




FMRIB’s Improved Linear Modelling
(FILM)

* FILM is used to fit the GLM voxel-wise in FEAT
* Deals with the autocorrelation locally and uses prewhitening

FILM estimates autocorrelation by looking at the residuals of
the GLM fit:

Y =X0O8+c¢

residuals =Y — X 3




FMRIB’s Improved Linear Modelling
(FILM)

Power vs. freq in the residuals

|) Fit the GLM and estimate the
autocorrelation on the residuals




FMRIB’s Improved Linear Modelling
(FILM)

Power vs. freq in the residuals

|) Fit the GLM and estimate the
autocorrelation on the residuals

2) Spatially and spectrally smooth the data
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FMRIB’s Improved Linear Modelling
(FILM)

|) Fit the GLM and estimate the \/\/\’\/\/\
autocorrelation on the residuals ‘

frequency

2) Spatially and spectrally smooth the data \¥

frequency

3) Construct prewhitening filter to “undo” r'
autocorrelation

4) Apply filter to data and design matrix
and refit




FMRIB’s Improved Linear Modelling
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Dealing with Variations in
Haemodynamics

* The haemodynamic responses vary between subjects and areas

of the brain
* How do we allow haemodynamics to be flexible but remain
PIaUSible? Samples of the HRF
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Reminder: the haemodynamic response function (HRF) describes the BOLD
response to a short burst of neural activity




Temporal Derivatives

e A very simple approach to providing HRF variability is to include
(alongside each EV) the EV temporal derivative

* Including the temporal derivative of an EV allows for a small shift
in time of that EV

e This is based upon a first order Taylor series expansion

Temporal
EV derivative

model fit
without model fit with

derivative derivative




Using Parameterised HRFs

* We need to allow flexibility in the shape of the fitted HRF

Parameterise HRF shape and fit
shape parameters to the data

o s 1
)~ T - -
1 I

Needs nonlinear fitting - HARD




Using Basis Sets

* We need to allow flexibility in the shape of the fitted HRF

Parameterise HRF shape and fit We can use linear basis sets to span
shape parameters to the data the space of expected HRF shapes
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How do HRF Basis Sets Work!?

Different linear combinations of the basis functions can be
used to create different HRF shapes

basis fn | basis fn 2 basis fn 3

P Mol




How do HRF Basis Sets Work!?

Different linear combinations of the basis functions can be
used to create different HRF shapes

basis fn | basis fn 2 basis fn 3
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FMRIB’s Linear Optimal Basis
Set (FLOBS)

Using FLOBS we can:

* Specify a priori expectations of
parameterised HRF shapes

* Generate an appropriate basis set

Make FLOBS
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Make FLOBS
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Generating FLOBs
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(1) Take samples of the HRF

HRF Samples
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Generating FLOBs

(3) Select the top eigenvectors

(2) Perform SVD as the optimal basis set

MNormalised Eigenvalues (99.5% of variance)

“Canonical HRF”
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Generating FLOBs

(3) Select the top eigenvectors

(2) Perform SVD as the optimal basis set

MNormalised Eigenvalues (99.5% of variance)
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Generating FLOBs

(3) Select the top eigenvectors

(2) Perform SVD as the optimal basis set

MNormalised Eigenvalues (99.5% of variance)

“Canonical HRF”
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The resulting basis set can then be used in FEAT




Bayesian Inference

Woolrich et al. , TMI, 2004

Priors on HRF
parameters

Joint posterior distribution

p(A,c,mi,ma...|Y)

Neural Activity

* Gaussian




Bayesian Inference

Priors on HRF
parameters

Aﬁ Marginal posterior distribution

p(AlY) = /p(A, c,mi,mo...|Y)dcd

Neural Activity

* Gaussian

Infer using MCMC

Woolrich et al. , TMI, 2004




Temporal deconvolution of
FMRI timecourses

Inputs are raw paradigm (stimulation and
“modulation”) timecourses

Model based on Bilinear Dynamical Systems (Penny
2005), where modulatory input changes neural
response to stimulation

What’s new:
® estimate HRF from data

e full Bayesian inference on model, using VB

Makni, Neurolmage 2008
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(1) Initialisation: choose s” and ©°.

(2) Iteration k:
* Update g(a) using C.2, a is the intrinsic connection coefficient
* Update ¢(b) using C.3, b is the modulatory coefficient
* Update g(d) using C.4, d is the driving coefficient
* Update g(h) using C.5, k is the HRF
* Update g(s) using C.6, s is the neuronal response
* Update ¢(s,) using C.7, s, is the neuronal response at = 1
* Update ¢g(¢,;") using C.8, ¢, is the inverse state noise precision
* Update ¢(¢, ") using C.9, ¢, 'is the inverse space noise precision
* Compute F*using D.1.

(3) Stop when F* - F! < tolerance value
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To do the Bayes, either:

* MCMC (computer takes ages)
* Variational Bayes (maths takes ages)
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(1) Initialisation: choose s and ©°.
(2) Iteration k:
* Update g(a) using C.2, a is the intrinsic connection coefficient
* Update ¢(b) using C.3, b is the modulatory coefficient
* Update g(d) using C.4, d is the driving coefficient
* Update ¢g(h) using C.5, h is the HRF
* Update g(s) using C.6, s is the neuronal response

#

Update ¢(s,) using C.7, s, is the neuronal response at 7 = |
* Update ¢g(¢,;") using C.8, ¢, is the inverse state noise precision
* Update ¢(¢, ") using C.9, ¢, 'is the inverse space noise precision
* Compute F*using D.1.

(3) Stop when F* - F! < tolerance value
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(a): v (Driving inputs)

To do the Bayes, either:
* MCMC (computer takes ages)
* Variational Bayes (maths takes ages)
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Model-free Functional
Data Analysis

MELODIC

Multivariate Exploratory Linear Optimised Decomposition
into Independent Components

decomposes data into a set of statistically
independent spatial component maps and
associated time courses

can perform multi-subject/ multi-session
analysis

fully automated (incl. estimation of the
number of components)

inference on IC maps using alternative
hypothesis testing
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EDA techniques for FMRI

® are mostly multivariate

® often provide a multivariate linear decomposition:
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Data is represented as a 2D matrix and
decomposed into factor matrices (or modes)




Model Order Selection

® can estimate the model
order from the AR 16 noise + signal
Eigenspectrum of the | | | | |
data covariance matrix
(corrected using Wishart 0.9
random matrix theory)

0.8 0.95

15 20 25 30

® approximate the Bayesian 0.7}
evidence for the model el
order for a probabilistic | N
PCA model (PPCA) 0 30 60 90 120 150
Laplace approximation BIC AIC

[5] Minka, TR 514 MIT Media Lab 2000




Probabilistic ICA

GLM analysis standard ICA (unconstrained)




Probabilistic ICA

GLM analysis probabilistic ICA




Probabilistic ICA

GLM analysis

® designed to address the
‘overfitting problem’:

® tries to avoid generation
of ‘spurious’ results

® high spatial sensitivity and
specificity

probabilistic ICA




Applications

EDA techniques can be useful to
p investigate the BOLD response
® estimate artefacts in the data

® find areas of ‘activation’ which respond in a non-
standard way

® analyse data for which no model of the BOLD
response is available




Investigate BOLD response
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Applications

EDA techniques can be useful to
® investigate the BOLD response
p estimate artefacts in the data

® find areas of ‘activation’ which respond in a non-
standard way

® analyse data for which no model of the BOLD
response is available




slice drop-outs




gradient instability




EPI ghost
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high-frequency noise




head motion




field inhomogeneity




eye-related artefacts
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eye-related artefacts
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Structured Noise and the

® ‘structured noise’ appears:

® in the GLM residuals and inflate variance estimates
(more false negatives)

® in the parameter estimates (more false positives and/or
false negatives)

® In either case lead to suboptimal estimates and wrong
inference!




Structured noise and
GLM Z-stats bias

histogram of the Z-scores
the centre is at 1.30

Correlations of 0.02
the noise time Tk
courses with Sorsl

‘typical’ FMRI
regressors can
cause a shift in the
histogram of the
Z-statistics

0.014 -
0.012

0.01
0.008 -

0.006 |-

Thresholded maps  oou|
will have wrong onz
false-positive rate




Denoising FMRI

® Example: left
vs right hand
finger tapping

Johansen-Berg et al.
PNAS 2002

before denoising
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50

0 500 1000 -5 0

-10
PE clean RIGI I I Z clean

300

2501

200}

1501

1001

50
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0 500 1000 -10

after denoising




Denoising FMRI

before denoising

PE raw Z raw

350
300
250
200

® Example: left | 150
vs right hand | -

50

finger tapping A
PE clean b E FT Z clean

350

300
250
200
150
100

50

0
0 500 1000 -10

h -Berg et al. ISI
Jo a:,fli\ns 265%26 a after denoising




Denoising FMRI

before denoising

0006000006
I ) & @ & & «

finger tapping
LEFT - RIGHT contrast

KX EXKEXK
Johansen-Berg et al.

PNAS 2002 after denoising




Apparent variability

o i 'l el e i

under motor paradigm

‘de-noising’ data by regressing out noise:
reduced ‘apparent’ session variability




Applications

EDA techniques can be useful to
® investigate the BOLD response
® estimate artefacts in the data

® find areas of ‘activation’ which respond in a non-
standard way

p  analyse data for which no model of the BOLD
response is available




PICA on resting data

perform ICA on null
data and compare spatial
maps between subjects/
scans

ICA maps depict
spatially localised and
temporally coherent
signal changes

Example: ICA maps -
| subject at 3
different sessions




Spatial characteristics

Auditory system Sensori-motor system




Spatial characteristics

Visual Stream




Temporal deconvolution of
|CA timecourses

® ‘What are the “task-related” components?

® Use explicit time series model on the IC-
generated temporal modes (using BDS)




Example: BDS/ICA integration

. (c)

I
500 Time (s)

Estimate the mean of the posterior Estimate the mean of the
distribution over the neuronal Gaussian posterior
response distribution of the HRF

(I

L L L L L L L L L L
0 100 150 200 250 300 350 400 450 500

posterior probability of
neuronal response > 0
for the IC

I | ! I | I
250 300 350 400 450 500 Time (s

Assess the
total model fit




Integrating GLM and ICA
for FMRI analysis
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Integrating GLM and ICA
for FMRI analysis
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Predicted Estimated
response effect

+ clear conclusions on a particular question

- results depend on the model



Integrating GLM and ICA
for FMRI analysis

FMRI data |-

t

Estimated
artefact time
courses

spatial
maps

Estimated spatially
independent maps




Integrating GLM and ICA
for FMRI analysis

: spatial
FMRI data|- * maps

t

Estimated spatially

Estimated ,
artefact time independent maps

courses

+ data driven and multivariate approach
- no knowledge about the fMRI paradigm is used

- can be hard to interpret activation results




Integrating GLM and ICA
for FMRI analysis

GLM + ICA

space

spatial

FMRI data |- maps

)

Estimated spatially

Predicted Estimated independent maps
artefact time P P

response courses




Integrating GLM and ICA
for FMRI analysis

GLM + ICA

space
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spatial

FMRI data Maps
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Estimated spatially

Predicted Estimated independent maps

artefact time
response courses

e Stimulus model-based hypothesis testing
* Adaptive model-free artefact modelling

- e.g. stimulus correlated motion, physiological noise, networks of spontaneous neuronal activity




Modelled ICs

Estimated HRFs

L s
140 160 1
Time (TR)

,
120

L
100

.
80

1
Time (TR)

Time course

Spatial map

#m

é K«}?% </>?

WY

éeigzi&%/ﬁ%g\% \f\ e«\ - A

AL AATAE

1

time

Example “model free” IC

w

Time course

L
40

L
20

4

180
Time (TR)

Spatial map




