Considerations in Multi-site fMRI

Gary H. Glover

Radiological Sciences Laboratory Center for Advanced MR Technology

Stanford University School of Medicine

Department of Radiology

Outline

- Motivation for multicenter imaging studies
- Issues in fMRI studies
- Standardization of protocols
- QA
- Site Equalization
- Calibration

Context: fBIRN

Why do Multicenter Neuroimaging Studies?

- Potential use of MRI/fMRI as a biomarker
 - structural/functional differences may predict disease; large study numbers are necessary for biodiversity
 - ADNI study using VBM methods to study cortical thickness
 - BJ Casey study using fMRI to examine ADHD
- Generate large data sets rapidly
- Access wide or targeted demographic characteristics
- Provide image databases for other analyses

Functional Imaging Research in Schizophrenia Testbed Biomedical Imaging Research Network

Outline

- Motivation for multicenter imaging studies
- Issues in fMRI studies
- Standardization of protocols
- QA
- Site Equalization
- Calibration

Multicenter MRI/fMRI

- Desire to pool results across sites equally requires standardization
- Different venders may have incompatible characteristics/ definitions- e.g.
 - pulse sequence contrast in FSPGR vs MPRAGE
 - meaning of BW/echo spacing in EPI imaging -> artifacts/SNR
 - k-space apodization filters -> smoothness/CNR
 - grad distortion correction
 - geometric calibration precision
 - temporal stability

Multicenter MRI/fMRI

- Need to qualify sites for entry into study
 - develop characteristics for acceptance
 - e.g.
 - geometric accuracy
 - contrast/resolution
 - SNR, CNR, tSNR (SFNR)
 - temporal stability
 - reliability/reproducibility
 - understand sensitivity of scanner characteristics relative to desired measurements
- Set criteria for acceptance
- Need to maintain minimum performance standards
 - develop a QA program

Multicenter MRI/fMRI

- Decide policy for upgrades (chances virtually 100% for at least one site to upgrade)
 - minor: software only
 - major: hardware & software
- Develop procedures to control for/reduce site effects
- Develop procedures to reduce data acquisition confounds, e.g. hemodynamics in BOLD fMRI

Outline

- Motivation for multicenter imaging studies
- Issues in fMRI studies
- Standardization of protocols
- QA
- Site Equalization
- Calibration

Standardization

- Acquisition parameters
- Scanner characteristics
- Study procedures
- Analysis pipeline
- Database structures

fMRI Imaging Characteristics

Modest importance:

- Structural accuracy (since fMRI is low resolution- e.g. 3.4x3.4x4 mm³)
- Structural image contrast uniformity

However,

• Both must be adequate for tissue segmentation and normalization to template

Important fMRI Characteristics

- fMRI acquisition contrast/smoothness
 - control parameters:
 - resolution (FOV & matrix size), but...
 - measured smoothness (resel) may not = FOV/matrix_size)

Intersite smoothness differences

Friedman et al. NI (2006)

Why smoothness differences?

• k-space reconstruction kernel

- Tacq
- T2* (Bo)

Important fMRI Characteristics

fMRI acquisition contrast/smoothness

control parameters:
 resolution/smoothness (resel may not = FOV/matrix_size)
 BW: keep ESP constant across venders
 slice spacing/skip/orientation
 fat saturation vs. water excitation
 readout trajectory (EPI vs. spiral), affects
 smoothness, artifacts

Why smoothness differences?

• k-space trajectory

Important fMRI Characteristics

- fMRI acquisition contrast/smoothness
 - control parameters:

resolution/smoothness (resel may not = FOV/matrix_size)

BW: keep ESP constant across venders

slice spacing/skip/orientation

fat saturation vs. water excitation

readout trajectory (EPI vs. spiral), affects

smoothness, artifacts

field strength (affects SNR, CNR, vessels vs. tissue, artifacts)

Field Strength/Vender Differences

Important fMRI Characteristics

• Dynamic image stability

fMRI & ASL depend on subtraction to compare conditions scanner stability must be < || << brain noise

Brain noise relative to thermal noise

$$\sigma^2 = \sigma_0^2 + \sigma_s^2 + \sigma_p^2$$
$$= \sigma_0^2 + (\lambda_s + \lambda_p)S^2(\alpha)$$

G. Krueger (2000)

- Acquire data at 10°, 77°
 Calc fraction of scanner/ brain noise vs. thermal
 - noise, using human & phantom scans

Outline

- Motivation for multicenter imaging studies
- Issues in MRI or fMRI studies
- Standardization of protocols
- QA
- Site Equalization
- Calibration

QA: What to measure?

- Time series image stability
- Signal to noise ratio
- Signal intensity
- Xmtr/Rcvr Gains
- MRS characteristics
- Eddy currents
- Geometric accuracy

Scan protocols

- Stability
 - acquisition

17 cm agar gel phantom

- fMRI acquisition, 2s TR, 240 time frames
 - (~8 min scan, ~55% grad slewing duty cycle)
- analysis

plot time series in large ROI (31x31)

Weisskoff plot

SNR

SFNR

Analysis

$$I_{even} = \frac{2}{N} \sum_{even} I_i - I_{trend}(i) \qquad I_{odd} = \frac{2}{N} \sum_{odd} I_i - I_{trend}(i)$$
$$I_{ave} = \frac{1}{2} (I_{even} + I_{odd}) \qquad I_{nave} = \frac{1}{2} (I_{even} - I_{odd})$$
$$\sigma^2 = \frac{1}{N-1} \sum [I_i - I_{trend}(i)]^2 \qquad SFNR = I_{ave} / \sigma$$

Weisskoff Analysis

$$\bar{I}_{i}(w) = mean_{(wxw)}[I_{i} - I_{trend}(i)]$$

$$\sigma(w) = stdev[\bar{I}_{i}(w)]$$

$$\sigma_{theory}(w) = \sigma(1)/w$$

R. M. Weisskoff, *MRM* **36**, 643-645 (1996).

Stability

Time Series Stability

Time Series Stability

Bad Gradient Amps

Bad Head Coil

Time Series Drift

Frequency Drift

Eddy Current Maps

- 3-directions phase contrast scan on agar phantom
- Analyze velocity maps for error
- Useful as on-going QA

9/26/03

9/29/03

BWH, **3T**

8/19/03

MGH, 3T

Iowa, 1.5T

NM, 1.5T

Minnesota, 3T

/data/raid1/foland/stability_hantom/NM_pm_Adata/f percent fluct (trend removed), drift= 0.26 0 STABILITY/AUG19/V1/tmp percent fluct (trend removed), drift= 0.25 -0.93 815 620 611 810 810 808 signal 808 809 800 signal 61 AAAA 614 Наw 612 800 610 795 └─ 0 608 20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180 200 0 frame num frame num 100 80 mean, SNR, SFNR = 804.5 179.7 154.2 mean, SNR, SFNR = 612.7 65.8 68.0 80 60 spectrum pectrum 60 40 40 2.0 20 0 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 frequency, Hz frequency, Hz 10⁰ 10 solid: meas dashed: calc % solids m e a s dashed Relative std, % std, rdc = 2.5 pixels Fdo 5.8 pixels 10 10 Relative 10⁻² 10-2 , 10⁰ 100 101 10 ROI full width, pixels ROI full width, pixels

8/19/03

8/27/03

UCI, 1.5T

UCSD, 1.5T

QA helped to bring scanners into spec

QA helped to debug site problems

• Initial tests resulted in vendor efforts to improve stability

rogr

- Daily/weekly QA highlighting problems
- QA protocols being used for magnet acceptance testing
 One vendor using stability scans for own testing

Outline

- Motivation for multicenter imaging studies
- Issues in MRI or fMRI studies
- Standardization of protocols
- QA
- Site Equalization
- Calibration

fMRI equalization across sites

- Compensation for smoothness
- Compensation by SFNR

Sensitivity vs. Smoothness

5 traveling subjects at 10 sites performing sensorimotor task

Friedman, et al. 2006

Smoothness equalization

In first-level analysis: Use "smooth to" instead of "smooth by"

Smooth each site to largest FWHM using Gaussian filter

$$FWHM_{out}^{-2} = FWHM_{meas}^{-2} + FWHM_{filter}^{-2}$$

Friedman, et al. 2006

Intersite Effect of Field

Friedman, et al. 2006

BOED Sensitivity: Oddball Task

Novel Tones - Effect Size

Friedman, et al.

BOED Sensitivity: Oddball Task

	HARV	MINN	IOWA	NMEX
Original	AT CAL	ALL COL	AT CAL	AT CUL
Equalized	ATCU.			A COL
		Target Tones- Effect Size		

BOED Sensitivity: Oddball Task

Target Tones - Cluster Maps Voxel P = 0.001, Cluster Size = 8, Volumewise p = 0.05

Friedman, et al.

fMRI equalization across sites

- Compensation for smoothness
- Compensation by SFNR

fMRI equalization by SFNR

• Measure SFNR using

Original SFNR

- GM Rest
- WM Rest
- GM SMresid
- WM SMresid
- Covary for SFNR

Site equalization by SFNR

1.5T

Outline

- Motivation for multicenter imaging studies
- Issues in MRI or fMRI studies
- Standardization of protocols
- QA
- Site Equalization
- Calibration
- Site performance standardization

Goals of Calibration process

- Use fMRI tasks and traveling subjects ('human phantoms') to develop data with which to characterize inter-site differences
- Develop calibration methods with which to reduce inter-site variance in fMRI results

Tasks should

- require minimal cognitive input
- be robust (good repeatability, control for attention/behavioral level)
- be performable by schizophrenic subjects

Block trials, 15s "on", 15s "off", 8 blocks.

On block:

BIOMEDICAL INFORMATIC

RIR

- Alternating contrast checkerboard.
- Binaural tones generated with Mac internal squarewave synthesizer. Each tone is 166 ms long with 167 ms of silence.
- Tones and visual contrast change at 3Hz. Tone sequence is Midi notes: {60, 64, 68, 72, 76, 80, 84, 88, 86, 82, 78, 74, 70, 66, 62, 58}. This is an auditorily annoying, mistonal scale.
- Subject performs bilateral finger apposition at 3Hz, in time with visual and auditory cues.

Off Block: Fixation cross, silence, no motion.

TR/TE/FA = 3000/(40/30)/90, 100 kHz BW, 64x64 matrix; 22 cm FOV, 35 slices, AC-PC orientation, 4 mm skip 0.

sual/Auditory/Motor

Activation

1.5T

Passive (pneumatic plungers) SM Calibration Task

attend

not attend

attend

Calibration of BOLD Signal

 $\Delta R^{2*} \propto rCBV_a [Hb]_a^{\beta} - rCBV_0 [Hb]_0^{\beta}$ $BOLD \propto -TE \cdot \Lambda R2 *$ $rCBV \propto rCBF^{\alpha}$ $BOLD_a = S_0[f^{\alpha}(\frac{m}{f})^{\beta} - 1]$ $m \equiv CMRO2_a / CMRO2_0$ $f = rCBF_a / rCBF_0$ $BOLD_{BH} = S_0[f_{BH}^{\alpha-\beta} - 1]$ $BOLD_{a} = BOLD_{BH} \frac{[f_{a}^{\alpha}(\frac{m}{f_{a}})^{\beta} - 1]}{[f_{BH}^{\alpha-\beta} - 1]}$

Calibration Breath-holding Task

Block trials, 15s "on", 15s "off", 8 blocks.

On block: Hold breath while circle of diminishing size is projected.

Off Block: Fixation cross, breathe normally

Gray matter shows stronger response than white matter.

Calibration: Voxel-wise Normalization by BH Response

$$y_{meas}(j) = y_{metab}(j) \cdot B(j) + n, \quad j = 1 \cdots N_{sub}$$

$$y_{metab}(j) \approx y_{calib}(j) = y_{meas}(j) \frac{B}{B(j)}$$

$$\sigma_{calib}^2 = (1 - R^2)\sigma_{meas}^2, \quad R^2 = \operatorname{cov}(y_{meas}, B)$$

M. Thomason, 2007

BH Calibration: WM Task

No calib

Calib

BH Calibration: Group Activation

SWM task, fBIRN BH task, N = 7

M. Thomason, 2007

Calibration: SWM

BH Calibration: Inspiration control

no control

w/control

resid = 0.484 Z = 8.824

M. Thomason, 2008

Cerebral Blood Flow

- Cerebral blood flow (CBF) is a measure of the delivery of blood to brain tissue.
- A number of recent studies have shown that the BOLD signal measured in fMRI studies can depend on baseline CBF.

Liau et al, Abstract 854, ISMRM 2008
ASL- quantitative rCBF maps

Impact of Calibration

• Controlling for subject-specific vasoreactivity differences leads to reduced group variances, ironically may decrease inter-site reliability

Outline

- Motivation for multicenter imaging studies
- Issues in fMRI studies
- Standardization of protocols
- QA
- Site Equalization
- Calibration
- Site performance standardization

Site Procedures

- Standardize scanners, imaging params, coil type
- Standardize ancillary equipment- bbox, A/V stimulus delivery equipment/SW, bite bar
- Standardize scan procedure- order of scans, scan script, subject preparation, slice prescription QA scans
- Use cross site visiting coordinator
- Use automated upload scripts, processing pipeline

Site visual presentation

Conclusions

- Standardize scanner performance/ imaging params/ site procedures as much as possible
- Compensate inter-site differences in SFNR, etc.
 - smooth-to
 - SFNR covariation
- Use inter-subject compensation for HRF confounds
 hypercapnic calibration (BH)
 - ASL baseline rCBF compensation (may increase site effects)

Acknowledgements: fBIRN Calibration Working Group Greg Brown @ucsd.edu Lee Friedman @UCI.edu Doug Greve @nmr.mgh.harvard.edu Tom Liu @ucsd.edu Bryon Mueller @cmrr.umn.edu Jessie Turner @uci.edu Jim Vovoyodic @duke.edu

My kids

Lara Foland Moriah Thomason

NIH: National Center for Research Resources P41-RR009784 U24-RR021992

