Coordinate-Based Meta-Analysis using Activation Likelihood Estimation (ALE)

Angela R. Laird, Ph.D.

Assistant Professor, Research Imaging Center University of Texas Health Science Center, San Antonio, Texas

The BrainMap Project

a database of functional neuroimaging results

a comprehensive tool for ALE meta-analyses

http://brainmap.org

BrainMap: The Concept

Database of functional neuroimaging studies

Archives coordinate data, not raw data, not SPIs

Searchable by <u>paradigm</u>, <u>cognitive domain</u>, <u>subject groups</u>, <u>ROIs</u>, <u>anatomical labels</u>, etc.

x	у	z
6	18	40
8	23	35
-4	14	35
0	15	41
-2	14	40
0	2	48
6	23	39

Reduced Data, Not Raw Data

00				BrainM	ap Submit: Pe	ng_HBM_0	3.ent			
Citation	Submitter	Prose Descr.	Data Sharing	Subjects	Conditions	Sessions	Brain Template	Experiments	Results Synopsis	Finalize
Title										
Neural basis	s of the non-	attentional pr	rocessing of bri	iefly presen	ted words					
ournal						Institut	tion			
Human Brain	n Mapping					Beiji	ing Normal Universi	ty		
Date						City				
Mar	;	2003				🗧 Beiji	ing			
/olume						Count	ry			
18						Chir	na			
Pages										
215		221								
Medline Num.		Publication Ty	/pe							
12599280		Original Res	search Article, Pe	er Reviewed		;				
Citation Keyw	vords					Autho	ors			
Timbic" stru 6-[18F]-flut [150]H20 P acoustic stat action obset activation activation pa acupoint acupoint acupuncture adaptation	ctures oro-L-dopa (F PET rtle rvation aradigms		Select at no exponential of the select no exponential of the select of t	utomatic acti on-attentiona xposure dura ninese words IRI	vation al processing ation	Abb Abe Abe Abp Abu Acke Ada Ada Ada Ada	ott D F I K M nd N S lanalp B talebi J ermann H m M J ms L mschewski J ock J E	C Select Remov Other.	Peng D L Xu D Jin Z Luo Q Ding G S Perry C Zhang L Liu Y	David

Coordinates: center-of-mass (x,y,z) Extent (volume of activation in mm³) Standardized statistical parameters (Z, t, r, F) Standard anatomical descriptor (Talairach Daemon)

BrainMap Coding Scheme

BrainMap Database Submission

BrainMap Sleuth

Login to Sleuth to view database entries:

000	BrainMap Sleuth
	Search Search Results Workspace Plot
Please create a search request using the buttons below	
Citation	
Subjects	
	🙆 🔿 🚫 Welcome
Conditions	Welcome to BrainMap Sleuth 1.2a2
Experiments	1385 Papers 6287 Experiments 50056 Locations
Locations	You are logged in as: angie
	Change Users Okay
Clear All Fields	(Start Search)

BrainMap Sleuth

- Each button opens up a different search panel
- Search categories:
 - Citation
 - Subjects
 - Conditions
 - Experiments
 - Imaging Modality
 - Regions of Interest

000		BrainMag	o Sleuth	
	Search S	earch Result	s Workspace Plot	
Please create a search request using the buttons	s below			
Citation				
Subjects	000		Citation Search	
	Logic		🔵 And 💿 Or 🗌 Not 🛛 Clear 🔪 🗛 All Fields	
	Author			
Contribution	Author	Add	Abbott D F	
Conditions			Abdallah S Abe N	
	lournal		Arademic Radiology	
		Add	Acta Neurologica Scandinavica	
Experiments			Acta Physiologica Scandinavica	
	Published Keywords	(bbA	"limbic" structures	
			1 hz 6-[18E]-fluoro-L-dopa (EDOPA) PET	
Locations			99mtc- hexamethylpyleneamine oxime	
	Laboratory	Add	Aachen University of Technology	
			Aalborg University Aarhus University Hospital	
			Asahikawa Medical College	
	Medline Number	Add		
	BrainMap ID	bb		
	Data Banga			
	Date Kange	Add	Jan - 1985 - 10 Dec - 2008 -	
			•	
Clear All Fields 🛟				rch
			(Cancel) (Okay)	
			Calicer Okay	

Sample Search: Finger Tapping

00	BrainMag	Sleuth
	Search Search Result	s Workspace Plot
Please create a search request using th	e buttons below	
Citation	000	Experiments Search
	Logic	🔵 And 💿 Or 🗌 Not 🛛 Clear 🕥 All fields
Subjects	Context	Add Age Effects
	Paradigm class	Add Finger Tapping
Conditions	Experiment Design	Add Eating
	Experiment Contrast	Face Discrimination
=Finger Tap	ping]	Finger Lapping Fixation
		Flexion/Extension Go/No-Go
Locations		Extrinsic Variable Experience Based
		Based on Group Based on Session
	Behavioral Domain	Add Action
[Class=Finger Tapping]		Cognition
		Enotion
Seenah by Dar	adiem Class	Interoception
Search by Fai	augin Class	Perception
Clear All Fields	[Class=Finger Tapping]
		Ctart coarch

Search Results: Finger Tapping

0	0					BrainMap Sleu	th					
					Sear	ch Search Results	Workspace Plot				-	
Year	11	D	Title	Au	thors	Modality	y Expe	eriments	Su	bjects		
Paper	Image: Constraint of the second secon	30045 30054 30054 30067 30123 30143 30152 30254 30281 30297 30298 30342 507006 82 ose Descr ojects und ecution: s wements Rest. Exp agination	2001 May 1997 Rao 2002 Step 2000 Ger 1991 Cole 2001 3 2001 3 2001 3 2001 3 2001 3 2001 3 2001 3 2001 3 2001 3 2000 3 2000 3 2000 3 2000 3 1999 3 1999 3 1999 3 1999 3 1999 3 1999 3 1999 3 1999 3 1999 3 19997 3 19997 3 19991 3 1991 3 1991 3	er A R S M and K M ardin E bar P A batch I G 80067 80045 80033 80022 80022 80082 80082 80082 80082 80254 80143 80107 80069 80026 80054 80187 80123	Neuroreport Journal of Neur NeuroImage Cerebral Corte NeuroImage Journal of Neur Consciou Somatoto Combine Localizat Cortical r Partially of The funct FMRI and A compat Function Neural neuron Distribut Motor tas Learning Regional	roscience x rophysiology Is and subcom opic organizat d visual attention ion of the correction networks for v overlapping not tional neuroar PET of self-p rative fMRI stu- al anatomy of ec Getting 31 of co	scious sens ion of the n tion and fin tical respon vorking mer eural netwo hatomy and aced finger idy of cortic intrinsic all Downloadi out of 57 Cance	orimotor syn nedial wall of ger movemen se to smiling mory and exe rks for real ar long-term re movement: c cal representa ertness: evid ing Papers	Ste Ma Inc Go Ge Jol Ge Stu	ephan K M ayer A R, Z dovina I, S sain A K, I azoyer B, Z rardin E, S rey L M, A iot M, Pap lnar P A, K urm W, De lato N, Pa b S M, Cox hstein C J, tz R J, Rol lebatch J (, T im ane Birn ag irig bb adh Sim Scu c R Gr an G,	PET.P fMRI. fMRI. fMRI. PET.C fMRI. PET.C fMRI. PET.C fMRI. PET.C fMRI. PET.C PET.C
C	Clear R	esults						Download C	hecked	Download A		
							Download	AII	_		<i></i>	

Workspace: Finger Tapping

BrainMapDBJ Search & View

000

			Search Search	Result	orkspac	e Plot					
ear	Title Ex	perime	nt Parad	igm/l	3D	Moda	lity	Locations	Сс	olor	Plot
		3. 20% Mo	dulation vs Isochronou	is Fing	Actio	. PET.PET-Other	20	1.5			
2001	(30045) Somatotopic orga	aniza 1. Right H	and > Foot	Som	Actio	. fMRI.BOLD	2	Blue			
2001	(20022) Contraction 1	2. Right Fo	oot > Hand	Som	Actio	. fMRI.BOLD	2				
2001	(30033) Combined visual	atte 1. Move vs	s. No-Move	Fing	Cogn	MRI.BOLD	15	Cyan			
		Z. Move-A	Attend vs. No-Move	Fing	Actio	MRI.BOLD	25		8	8	
	-	3. Move-A	Attend vs. Move	Fing	Cogn	MRI.BOLD	15		8	8	
2001	(20022) Legelization of th	4. Attend	vs. No-Move	Fing	Cogn	MRI.BOLD	10	Creati	3	8	
2001	(SUU22) Localization of th	ie co 1. Smile V	s Kest	Som	Actio	fMRI.BOLD	2	Gray		3	
2001	(20152) Continal natural	Z. Finger-	apping vs kest	Som	Actio	DET O 15 Water	- 4	Croop	8		
2001	(SUISZ) Cortical network:	3 101 1. 9 Lasks	> KEST	Fing	Cogn.	PET.O 15 Water	4	Green	8	8	
2000	(20082) Partially overlage	Z, REJT >	9 IdSKS	Fing	Actio	fMPL POLD	24	Orange	Z	3	
2000	(50062) Partially Overlapp	2 Motor b	magination vs Rest	Flexi.	Actio	fMPL POLD	20	Orange	8	8	
		2. Motor F	magination vs Kest	Flexi.	Actio	fMRLBOLD	10		8	3	
		J. Motor L	magination vs Motor Inta	Flexi.	Actio	fMPL POLD	10		8	801	
1000	(20142) EMPL and DET of	4. MOLOF I	magination vs wotor E	Eing	Actio	PET O_15 Water	11	Dink		3	
1999	(SU145) PMIKI and PET OF	D FMDL A	101200	Fing	Actio	fMPL POLD	11	FIRE	8	3	
		2. TWRT-A		Fing	Actio.	fMRI ROLD	20		8	2	
1000	(30107) A comparative fM	APL st 1 Motory		Fing	Actio.	fMRI ROLD	8	Red	V	÷	
1999	(SOTOT) A comparative in	2 Vibrota	s Nest	Vibr	Perce	fMRI BOLD	6	Neu	8	-	
		3 Therma	Painful vs Rost	Tacti	Perce.	fMRI BOLD	9	i i i i i i i i i i i i i i i i i i i	H	H	
1000	(30069) Eunctional anato	J. Alertree	Control	Fing	Cogn	PET PET_Other	10	Vallow	H	H	
1997	(30054) Distributed neur	al sv 1 Synchro	nization=300 vs Rest	Fing	Actio	fMRI BOLD	3	Black	V		
1357	(50054) Distributed field	2 Continu	ation=300 vs Rest	Fing	Actio	fMRI BOLD	7	Diack	8	V	
		3 Listenin	a-300 vs Rest	Passi	Perce	fMRI BOLD	2	1	A	8	
		4. Discrim	ination-300 vs Rest	Audi	Perce	fMRL BOLD	3	1	Ä	Ă	
2-1-											

Fing... Actio... fMRI.BOLD Experiments for Conscious and subconscious sensorimotor synchronization--prefrontal cortex and the influence

3

N	X mm	Y mm	Z mm	SPI-Zscore	SPI p-value	SPI Sign	Funct. Name	Plot
1	-30	54	-6	2.93	null	null	None	
2	-15	-15	18	2.35	null	null	None	\checkmark
3	18	57	-9	3.35	null	null	None	\checkmark
4	9	-18	12	2.57	null	null	None	\checkmark
5	54	-48	51	2.67	null	null	None	\checkmark

5. Synchronization-600 vs Rest

Plot: Finger Tapping

<u>Meta-Analysis:</u> the *post hoc* combination of independently performed studies to better estimate a parameter of interest

Location-effects: emerging as a tool for modeling neural systems Combines statistically <u>significant</u> effects to create predictive models

Why Meta-Analyses ?

fMRI and PET are powerful for localising brain functions

but ...

Why Meta-Analyses ?

Forms of Meta-Analyses

FMRI AND PET STUDIES OF ENCODING AND RETRIEVAL 11

bilateral posterior MTL activation for objects and faces. Direct presented, followed by an arrow and the name of another target comparisons between the two hemispheres revealed left>right activation for words and right>left activation for faces.

Whereas the previous studies all examined encoding of isolated words, objects, scenes, or faces. Aguirre et al. (1996) examined encoding of a complex spatial environment. In the encoding condition, participants actively explored the complex environment in order to remember it for a later test; in the control condition, they continually moved through a sparse circular corridor. Aguirre et al. (1996) reported activation of parahippocampal cortex bilaterally in the encoding condition compared to the control condition

Retrieval Studies

Only a handful of fMRI experiments have provided evidence of MTL activations during memory retrieval. In addition to the experiment involving encoding scans described earlier. Gabrieli et al. (1997) also scanned subjects after they had studied line drawings of objects. Subjects were shown words and were asked to recall whether they had seen a drawing with that name. In one condition, most of the words were the names of previously studied drawings and in another condition most of the words were names of drawings that had not been presented. Retrieval of previously studied drawings was associated with an anterior MTL activation in the vicinity of the subiculum. In an attempt to increase the similarity between this retrieval study and the previously described picture encoding study, Gabrieli et al. (1997) ran an additional two subjects on a retrieval task in which pictures were presented and subjects attempted to recall previously studied words. They found greater activation in the subiculum during a retrieval condition in which pictures primarily corresponded to previously 1998). Although some studies have also produced evidence of studied words compared to a retrieval condition in which pictures corresponded mainly to nonstudied words.

In contrast to these anterior MTL retrieval activations, three other studies have reported evidence of more posterior MTL activations during retrieval. In two related experiments (one using a blocked design, the other an event-related design), Schacter et al. (1997a) exposed participants to lists of semantically associated words. Subjects were then scanned as they made old/new recognition judgments about previously studied words or related tures (i.e., "false targets") that were semantic associates of the previously studied words but had not actually been presented during the study trials. Compared to a fixation control condition. recognition of previously studied words and false targets was associated with activation in the left parahippocampal cortex.

Aguitre et al. (1996) examined retrieval of a recently learned complex environment (as described earlier). Similar to their and consistent. It thus may be surprising that Lepage et al. (1998) findings concerning encoding of the environment, Aguirre et al. (1996) reported bilateral parahippocampal activation during they attempted to recall different aspects of a "virtual town" that they had become familiar with 2 to 3 days prior to scanning. In the town and asked to indicate whether it matched a name that tended to fall in the rostral portions of the rostrocaudal axis,

cant left posterior MTL activation for words, and a significant was provided. In the position condition, the same stimuli were location; participants were required to indicate the direction of the other target relative to the presented target. Compared to a control condition where subjects viewed scrambled visual scenes, there was significant bilateral parahippocampal activation in both experimental conditions.

SUMMARY OF FMRI FINDINGS

In summary, the findings from fMRI studies converge on the observation that posterior regions of the MTL, involving mainly the parahippocampal gyrus and caudal aspects of the hippocampus, play an important role in memory encoding processes. This finding has been obtained in studies using verbal materials (Fernandez et al., 1998; Wagner et al., 1998), norverbal materials (Aguirre et al., 1996; Stern et al., 1996; Aguirre and D'Esposito, 1997; Gabrieli et al., 1997; Brewer et al., 1998), or both (Rombouts et al., 1997; Kelley et al., 1998); with a variety of analysis strategies, including subtraction (Aguirre et al., 1996; Stern et al., 1996; Aguirre and D'Esposito, 1997; Gabrieli et al., 1997; Rombouts et al., 1997; Kelley et al., 1998; Wagner et al., 1998), correlational techniques (Fernandez et al., 1998), and event-related procedures (Brewer et al., 1998; Wagner et al., 1998); and both when novelty detection processes are possible contributors to the observed activations (Stern et al., 1996; Gabrieli et al., 1997; Rombouts et al., 1997) and when they are not (Aguirre et al., 1996; Aguirre and D'Esposito, 1997; Brewer et al., 1998; Fernandez et al., 1998; Kelley et al., 1998; Wagner et al., more anterior MTL activation during encoding (Stern et al., 1996; Rombouts et al., 1997; Wagner et al., 1998), all of the reviewed studies reported posterior MTL activation during encoding. By contrast, too few fMRI data are available concerning MTL activations during retrieval in order to permit any firm conclusions about their rostrocaudal location (for a schematic depiction of all encoding and retrieval foci, see Figure 1).

PET STUDIES OF ENCODING AND RETRIEVAL

The data from fMRI studies of encoding appear competiing recently reported a meta-analysis of PET studies that appears to yield a different and perhaps opposite conclusion from the fMRI retrieval. Assume and D'Esposito (1997) scanned subjects while studies. Lepage et al. (1998) summarized results from a database of 52 PET studies that obtained evidence of 54 individual MTL activations during encoding or retrieval. They noted a highly the appearance condition, participants were shown a scene from consistent pattern of findings; MTL activations during encoding

MTL activations. Compared to episodic retrieval of uncommon colors, color name generation yielded anterior MTL activation.

Beauregard et al. (1998)

In this study, incidental word encoding was compared to a lower level visual baseline. During word encoding, subjects decided whether words belonged to the category "tools." Compared to viewing a string of number signs (#####), word encoding resulted in left MTL activation.

N. Kapur et al. (1995)

In this study, both the encoding and the retrieval of facial stimuli were compared to a rest control. From these comparisons. Lepage et al. (1998) included a retrieval MTL activation. However, a posterior MTL activation resulting from encoding (elaborating on facial stimuli by making gender classifications) was not included.

Schacter et al. (1995)

Lepage et al. (1998) included data from a retrieval comparison in which subjects made recognition judgments about a block of previously studied "impossible" objects compared to a passive viewing condition. However, they did not include analogous data showing posterior MTL activation from a retrieval comparison in which subjects made recognition judgments about a block of previously studied "possible" objects compared to a passive viewing condition. In addition, Lepage et al. (1998) did not include a comparison that meets their elaborative encoding criterion, in which subjects made possible/impossible object decisions about new (i.e., previously nonstudied) objects. For impossible objects, the object decision versus passive viewing comparison yielded a significant posterior MTL activation; there was no corresponding activation for possible objects. As with the preceding six studies, this type of elaborative decision is similar to deep versus shallow encoding comparisons that were included by Lepage et al. (1998).

Bottini et al. (1994)

Participants were presented with sentences and decided whether (1) each sentence represents a plausible metaphor, or (2) whether each sentence is plausible at the literal level. Both of these tasks require considerable elaborative processing of the sentences. In the control condition, subjects viewed a sentence-like string of eight to nine words and were asked to judge whether one of the words is an orthographically legal non-word. Compared to the control task, the combined sentence processing conditions resulted in anterior MTL activation.

Price et al. (1994)

In this study of word processing, participants performed three tasks' leateal decision on words and pseudowords, reading words aloud, and feature decision on false fonts. Across two versions of

FMRI AND PET STUDIES OF ENCODING AND RETRIEVAL

object naming and color name generation both yielded posterior each task, the rate of stimulus presentation was varied; stimuli were presented for either 150 or 1,000 ms. At both presentation rates, compared to the baseline feature-detection task, lexical decision yielded posterior MTL activation. Lexical decision, which necessitates elaborative processing of each stimulus, is formally similar to the object decision task used in the Schacter et al. (1995) study. In addition to these foci, MTL activations related to word encoding were noted when word reading was compared to baseline. At both presentation rates, there was a more anterior MTL activation during the word reading condition. We have included these findings in our Table 2.2

Bookheimer et al. (1995)

Participants were presented words, drawings of common objects, and meaningless line drawings (similar in appearance to the false fonts of Price et al., 1994). Compared to visual scanning of the meaningless drawings, reading words aloud resulted in posterior MTL activation. Compared to the same baseline, silent object naming also vielded posterior MTL activation. Both of these comparisons are similar to the word reading versus baseline comparison of Price et al. (1994).

Martin et al. (1996)

In this study, participants passively viewed nonsense objects, named real objects from one of two categories (tools and animals), and viewed a visual noise field. As in a study by Martin et al. (1997; see below for discussion) that was included by Lepage et al. (1998), compared to the noise-field baseline, passive viewing of nonsense objects yielded anterior MTL activations. This comparison also revealed a posterior MTL activation in parahippocampal gyrus. In contrast to Martin et al. (1997) and Bookheimer et al. (1995), comparison of silent object naming to the low-level baseline did not result in differential MTL activation (although, as noted by Martin et al. [1997, p. 592], this comparison did yield activity medial and superior to the hippocampus (-14 -28 4).

Zelkowicz et al. (1998)

This study included four main conditions, each of which was compared to a fixation control: (1) viewing line drawings of common objects; (2) naming drawings of common objects; (3) viewing nonsense objects; and (4) speaking (saying "Hiya") while viewing nonsense objects. As in the studies by Martin et al. (1996,

²We thank M. Lepage for calling our attention to the Price et al. (1994) study. Note that, although the lexical decision condition in Price et al. (1994) clearly satisfies Lepage et al. 's (1998) encoding criteria, because Lepage et al. (1998) emphasized that encoding conditions involve either elaborative processing or intentional learning (or both), simple word reading may seem to violate these criteria. However, it is possible that word reading involves greater levels of encoding than does the control condition, and therefore inclusion of this comparison may be warranted (M. Lepage, personal communication). Similar considerations apply to the studies by Bookheimer et al. (1995), Martin et al. (1996), and Zelkowicz et al. (1998), as well as a study by Martin et al. (1997) that was originally included by Lepage et al. (1998).

Forms of Meta-Analyses

Forms of Meta-Analyses

Graphic Representation

Picard and Strick, 2001

Activation Likelihood Estimation

Quantitative Coordinate-Based Voxel-Wise <u>Meta-An</u>alysis Method

originally developed by Turkeltaub et al. (2002), extended by Laird et al. (2005a)

Representation of Activation Foci

Reported coordinates are not treated as points but centers of probability distributions

Each reported activation is modeled by a 3D Gaussian distribution

ALE Meta-Analysis

Think of coordinate as <u>center of probability distribution</u>, not as a single point of activation

For multiple sets of coordinates, evaluate the union of these distributions for all brain locations to create a whole brain statistical map

Estimates the likelihood of activation for each voxel in the brain

the event that the focus is in a given voxel

 $\Pr(X_i) = \frac{\exp(-d_i^2/2\sigma^2)}{(2\pi)^{3/2}\sigma^3} \cdot \Delta V$

Turkeltaub et al. Neuroimage 16: 765-780 (2002)

ALE Meta-Analysis Single Word Reading (Turkeltaub et al., 2002)

Published Coordinates: 11 Papers 172 foci Diffuse pattern of activation

Find studies of interest: MEDLINE, PubMed, review articles

Limit to those that report standardized coordinates

Contrasts: <u>Activation</u> Condition - <u>Control</u> Condition

Input coordinates to ALE software

Nonparametric permutation test to determine statistically significant ALE values

Interpret resultant map

ALE Results: Single Word Reading

Meta-Analysis

Validation (fMRI)

Bi primary motor Sup frontal gyrus Bi sup temporal sulci L fusiform gyrus Bi cerebellum

Turkeltaub et al., 2002

Activation Likelihood Estimation (ALE)

Illustration: meta-analysis on cortical activation in finger tapping studies

BrainMap Database Search

38 papers

73 experiments

347 subjects

663 activation foci

Meta-Analysis on Finger Tapping

Location of activation foci

Where do the reported foci converge ?

Gaussian Representation of Activations

Activation Likelihood Estimates

Defined as the union over all experiments

Which of these values are significant?

Meta-Analysis on Finger Tapping

Witt et al., In Press; Eickhoff et al., In Review

Modifications to ALE: GingerALE

	GingerALE
Foci	
Foci #1 176 Foci	VerbGenRevised
ALE	
FWHM (mm)	12.0
Standard Deviation	5.0959306
ALE Prefix	VerbGenRevised
Loaded VerbGe	enRevised.nii Compute
Permutation Testing	
Permutations	5000
Elapsed Time	0d 2h 40m
P Value Prefix	VerbGenRevised_pvals5k
Loaded VerbGenRev	vised_pvals5k.nii Compute
Loaded VerbGenRev	vised_pvals5k.nii Compute
Loaded VerbGenRev False Discovery Rate	vised_pvals5k.nii Compute
Loaded VerbGenRev False Discovery Rate q (FDR level) pID	vised_pvals5k.nii Compute e 0.05 0.0436
Loaded VerbGenRev False Discovery Rate q (FDR level) pID pN	vised_pvals5k.nii Compute e 0.05 0.0436 0.0034
Loaded VerbGenRev False Discovery Rate q (FDR level) pID pN Dor	vised_pvals5k.nii Compute e 0.05 0.0436 0.0034 ne Compute
Loaded VerbGenRev False Discovery Rate q (FDR level) pID pN Dor	vised_pvals5k.nii Compute e 0.05 0.0436 0.0034 ne Compute
Loaded VerbGenRev False Discovery Rate q (FDR level) pID pN Dor Thresholding	vised_pvals5k.nii Compute e 0.05 0.0436 0.0034 ne Compute
Loaded VerbGenRev False Discovery Rate q (FDR level) pID pN Dor Thresholding Chosen P Value	vised_pvals5k.nii Compute e 0.05 0.0436 0.0034 ne Compute 0.0034
Loaded VerbGenRev False Discovery Rate q (FDR level) pID pN Dor Thresholding Chosen P Value Output Prefix	vised_pvals5k.nii Compute e 0.05 0.0436 0.0034 ne Compute 0.0034 VerbCenRevised_p05
Loaded VerbGenRev False Discovery Rate q (FDR level) pID pN Dor Thresholding Chosen P Value Output Prefix Dor	vised_pvals5k.nii Compute e 0.05 0.0436 0.0034 ne Compute 0.0034 VerbCenRevised_p05 ne Compute
Loaded VerbGenRev False Discovery Rate q (FDR level) pID pN Dor Thresholding Chosen P Value Output Prefix Clusters	vised_pvals5k.nii Compute e 0.05 0.0436 0.0034 ne Compute 0.0034 VerbGenRevised_p05 ne Compute
Loaded VerbGenRev False Discovery Rate q (FDR level) pID pN Dor Thresholding Chosen P Value Output Prefix Clusters Min. Volume (mm^3)	vised_pvals5k.nii Compute e 0.05 0.0436 0.0034 ne Compute 0.0034 VerbGenRevised_p05 ne Compute) 250
Loaded VerbGenRev False Discovery Rate q (FDR level) pID pN Dor Thresholding Chosen P Value Output Prefix Clusters Min. Volume (mm^3) Cluster Prefix	vised_pvals5k.nii Compute e 0.05 0.0436 0.0034 ne Compute 0.0034 VerbGenRevised_p05 ne Compute) 250 VerbGenRevised_clust

GUI, image-based, Talairach space

Permutation test corrected for multiple comparisons

Allow for comparisons between two groups of foci

Laird et al., Hum Brain Mapp 25, 155-164, 2005

Somatotopic mapping within the cingulate motor area: Evidence from an ALE meta-analysis of the Stroop task

Angela Laird¹, Kathryn McMillan², Jack Lancaster¹, Peter Kochunov¹, Peter Turkeltaub³, Jose Pardo⁴, Peter Fox¹

¹University of Texas Health Science Center San Antonio ²Vanderbilt University ³Georgetown University Medical Center ⁴Minneapolis Veterans Affairs Medical Center

The Stroop Effect Blue

The Stroop task is universally recognized as a standard in examining attentional control

Correct performance in <u>color naming</u> competes with tendency for <u>word reading</u>

Objective: identify regions of concordance to understand the detection of conflict and response selection

Literature Search

Find studies of interest (Medline, PubMed, BrainMap)

Limit studies to those that report standardized coordinates

Simple contrasts: Incongruent - Control

Filter task variations Normal subjects only Group data No deactivations

19 contrasts 205 foci

Coordinate Data from Stroop Studies

<u>1. Pooled Stroop</u> 205 foci

<u>2. Verbal Stroop</u> 152 foci

<u>3. Manual Stroop</u> 53 foci

<u>ALE analysis</u> 10 FWHM 5000 permutations

<u>Pooled Stroop</u> ACG, bi frontal, L IPL, L precuneus, Bilateral insula

<u>Verbal Stroop</u> Bilateral insula, L IFG, BA 44, ACG

Manual Stroop ACG, L IPL, L MiFG, L precuneus

Overlap of Verbal vs. Manual

 $\frac{ACG}{(2, 16, 41)}$

<u>L IFJ</u> (between precentral and inf frontal gyri) (-44, 6, 34)

<u>L IPL</u> (-36, -52, 44)

Overlap of Verbal vs. Manual

Viewed composite map (P<0.05)

High ALE values found along cingulate sulcus, rostral to vertical plane passing through AC

Observed multiple distinct regions for <u>verbal</u> and <u>manual</u> responses

Somatotopy in the ACG

Paus et al., J Neurophys 70: 453-69 (1993)

Somatotopy in the ACG

Conclusions

Verbal and manual Stroop meta-analysis ALE identified 3 regions crucial to task performance

Examined cingulate motor areas and provided evidence for <u>somatotopy</u> based on response modality

Determined verbal and manual region in both the rCZa and the rCZp (rostral cingulate motor zone)

Completed Meta-Analyses Grouped By Paradigm

<u>Primary Systems</u>

Action, Perception (Audition, Vision, Gustation, Olfaction, Somatosensation (including Pain), Interoception

Higher Cognition

Calculation, Emotion, Language Comprehension and Production, Mental Rotation, Stroop, n-back, Steinberg, Simon, Paired Associate Recall, Picture Naming, Music Production, Word Generation

Comparison of Subject Groups

Viewing of Sad Images in Depressed vs. Normals, Executive Function in Schizophrenics vs. Normals, Reading in Chinese vs. English,Stuttered vs. Normal Speech, Executive Function in OCD vs. Normals

Meta-Analysis of Structural Neuroimaging Studies

Brain morphology studies - ROI approaches

- Manually or automatically delineated ROIs
- Procedures differ between labs (difficult to compare)
- Compounded by different labels
- Choice of regions introduces bias, other regions ignored

\rightarrow Traditional review methods are less than optimal

Voxel-Based Morphometry

"voxel-wise comparison of the local concentration of gray matter (or WM or CSF) between two groups of subjects"

Contours of extracted GM and WM on high-res T1 images

Ashburner and Friston, 2000

Voxel-Based Morphometry

- 1. High resolution neuroimages from two populations (e.g., diseased and controls)
- 2. Spatial normalization; segmentation into GM, WM and CSF; smoothing
- 3. Analyze the group-level differences between aligned voxels
- 4. Output images of maps that identify significant differences between groups

 \rightarrow *x*,*y*,*z* coordinates in stereotactic space

An Expansion of BrainMap?

Meta-Analysis of VBM in Schizophrenia

• <u>Inclusion Criteria</u>

- Reported whole brain results in x,y,z format
- Included SCZ and healthy comparisons
- Followed VBM protocols (Ashburner and Friston, 2000)

• <u>Exclusion Criteria</u>

- Reported changes over time
- Included individuals at risk for SCZ
- Treatment effects, substance use effects

31 papers with 1,195 patients and 1,262 healthy controls

Anatomic Likelihood Estimation (ALE)

- CT > SCZ (315 foci)
- SCZ > CT (64 foci)
- icbm2tal; or Brett's tal2min, then icbm2tal
- GingerALE environment
- FWHM = 12mm
- 5000 permutations; *P*<0.01, corrected

VBM ALE Meta-Analysis: Gray Matter Anomalies in Schizophrenia

Increases in Controls (CT > SCZ)Bilat insula, L parahipp, dACC, vACC, subgenual ACC, thalamic, L mid front gyrus

Increases in Patients (SCZ > CT) Bilat putamen, R head of caudate

Glahn et al., Biol Psych, In Press; Ellison-Wright et al., Am J Psych, In Press

Why Meta-Analysis?

1. <u>Resolve conflict between existing studies</u>

Example: Somatotopy of ACC in Stroop meta-analysis

2. Generate new hypotheses

Example: Importance of IFJ in conflict resolution (Derrfuss et al., 2005)

Why Meta-Analysis?

- 3. <u>Spatial pattern matching to identify ICA/PCA components</u>
- 4. Isolate ROIs for studies of effective connectivity

LM1 TMS ALE Meta-Analysis

9 papers 11 experiments 102 foci

LMI = left motor cortex LPPC = posterior parietal cortex SMA = supp. motor area Cing = ant. cingulate LPMv = left ventral premotor THvl = ventral lateral thalamus THvpl = ventral posterolateral RCer = right cerebellum

Results

Red = 1^{st} level paths Green = 2^{nd} level paths Blue = 3^{rd} level paths Final model fit was outstanding

- $-X^{2}(38) = 22.150, P = 0.981$
- CFI = 1.0
- TLI = 1.0
- RMSEA = 0.000
- $-90\% \text{ CI}_{\text{RMSEA}} = 0.00-0.00$

Plausibility of Results

Excellent agreement

- TMS ALE & TMS/PET data
- TMS ALE & Finger Tapping ALE
- Path connections in human and primate literature (FI_{arm}) e.g., direct paths from LMI_{hand} to SMA, Cingulate, SII, Thalamus, Cerebellum

May provide closer approximation to animal models

Future Meta-Analytic Work

Working towards an atlas of brain functionAction, language, memory, attention, perception

Future Meta-Analytic Work

Using meta-analysis to study functional connectivity (via co-occurrence patterns)

Acknowledgements

UTHSCSA - RIC

Peter Fox, M.D. Jack Lancaster, Ph.D. Matthew Cykowski, M.D. Shalini Narayana, Ph.D. Donald Robin, Ph.D. Crystal Franklin, B.S. Jacob Robbins, B.S. Sarah Thelen, B.S. Karl Li <u>UTHSCSA – Psychiatry</u> David Glahn, Ph.D. Jennifer Robinson, Ph.D. <u>Texas Lutheran University</u>

Cody Riedel, B.S. Robert Laird, Ph.D.

Texas State University

Larry Price, Ph.D.

Special thanks to:

Simon Eickhoff, M.D. (Research Center Jülich, Germany) Jane Neumann, Ph.D. (Max Planck Institute, Leipzig, Germany) Baxter Rogers, Ph.D. and Katie McMillan, Ph.D. (Vanderbilt University) Suzanne Witt, M.S. and Beth Meyerand, Ph.D. (University of Wisconsin) Cameron Carter, M.D. and Mike Minzenburg, M.D. (UC-Davis) Ed Bullmore, Ph.D. and Ian Ellison-Wright, M.R.C.P. (University of Cambridge) <u>Funding:</u>

Human Brain Project (NIMH) (R01-MH074457-01A1; PI = Peter T. Fox)