Mathematical Concepts for DTI and High-Angular Resolution Diffusion Imaging

Christophe Lenglet Siemens Corporate Research - Princeton, NJ

> Mathematics in Brain Imaging IPAM - UCLA July 16, 2008

Outline of the Presentation

- Basics of diffusion MRI & local diffusion models
- Mathematical concepts for Tensors/ODFs processing
- Reconstruction of local diffusion models
- DTI tractography
- Combining DTI and fMRI: Cortico-striatal circuits
- DTI & HARDI segmentation
- HARDI mapping of white matter complexity

Organization of the White Matter

- Composed of axonal nerve fibers, protected by a myelin sheath
- Found in inner layer of cortex, optic nerves, central & lower areas of the brain and the spinal cord.
- Axons can be distributed diffusely or concentrated in bundles:
 - Projection tracts: connections cerebral cortex / subcortical areas
 - Association tracts: cortico-cortical connections in given hemisphere
 - Commissural tracts: connections of homologous areas

20th U.S. edition of Gray's Anatomy of the Human Body (public domain)

Images from [Williams-etal97]

Images from [Williams-etal97]

Images from [Williams-etal97]

Images from [Williams-etal97]

Basics of Diffusion MRI & Local Diffusion Models

Diffusion - Random Walk

Displacements of 4 particles starting at same origin

Images from [Beaulieu-etal02]

Diffusion in Isotropic Sample

similar molecular displacements in all directions Diffusion in Anisotropic Sample

greater molecular displacement along cylinders than across

Diffusion - Random Walk

Displacements of 4 particles starting at same origin

Images from [Beaulieu-etal02]

Diffusion in Anisotropic Sample

similar molecular displacements in all directions

greater molecular displacement along cylinders than across

$$D = \frac{1}{6\tau} \langle r^T r \rangle$$

[Einstein-1905]

Diffusion - Random Walk

Displacements of 4 particles starting at same origin

Images from [Beaulieu-etal02]

Diffusion in

similar molecular displacements in all directions greater molecular displacement

along cylinders than across

Diffusion in

$$\mathbf{D} = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{pmatrix}$$

 $\frac{1}{6\tau} \langle rr^T$

[Einstein-1905]

Diffusion - Random Walk

Displacements of 4 particles starting at same origin

Images from [Beaulieu-etal02]

 $\mathbf{D} = \begin{pmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{pmatrix} = \frac{1}{6\tau} \langle rr^T \rangle$

[Einstein-1905]

Water diffusion is sensitive to the underlying tissue microstructure and provides a unique means to assess its orientation and integrity.

similar molecular

displacements in all directions

Diffusion in Anisotropic Sample

greater molecular displacement

along cylinders than across

Anisotropic Water Diffusion in the Brain

Adapted from [Beaulieu-etal02]

A simple schematic of the longitudinal view of a myelinated axon.

 First systematic study in [Moseley-etal | 99 |]:

> $D(||) = 1.3 \times 10-5 \text{ cm}^2.\text{s}^{-1}$ $D(\perp) = 0.4 \times 10-5 \text{ cm}^2.\text{s}^{-1}$

Ratio of 2 to 4 for Δ =30ms

- Sources of anisotropy:
 - Axonal membrane
 - Myelination can modulate it
 - X Neurofibrils do not affect it

Anisotropy also found in kidney,
 skeletal muscles and myocardium.

MR Quantification of Water Diffusion

• Signal attenuation:

$$S(q_k, \tau) = S_0 \int_{\mathbb{R}^3} p(r|\tau) e^{2\pi i q_k^T r} dr$$
$$= \mathcal{F}[p(r|\tau)]$$
with $q_k = \gamma \delta q_k / 2\pi$ recipred displace

with $q_k = \gamma \delta g_k/2\pi$ reciprocal displacement and $g_k = q_k/\|q_k\|$ vector (q-space imaging)

- Fourier transform of the Ensemble Average Propagator (EAP) $p(r|r_0, \tau)$
- DTI (Assumption of Gaussian diffusion)

$$p(r|\tau) = \frac{1}{\sqrt{(4\pi)^3 |\mathbf{D}|}} e^{\frac{r^T \mathbf{D}^{-1} r}{4\tau}}$$

Examples of DWI for 2 gradients

Data: Centre IRMf, CHU La Timone, Marseille, FRANCE

MR Quantification of Water Diffusion

Signal attenuation:

$$S(q_k, \tau) = S_0 \int_{\mathbb{R}^3} p(r|\tau) e^{2\pi i q_k^T r} dr$$

= $\mathcal{F}[p(r|\tau)]$
with $q_k = \gamma \delta q_k / 2\pi$ reciprocal displace

with $q_k = \gamma \delta g_k/2\pi$ reciprocal displacement and $g_k = q_k/\|q_k\|$ vector (q-space imaging)

- Fourier transform of the Ensemble Average Propagator (EAP) $p(r|r_0, \tau)$
- DTI (Assumption of Gaussian diffusion)

$$p(r|\tau) = \frac{1}{\sqrt{(4\pi)^3 |\mathbf{D}|}} e^{\frac{r^T \mathbf{D}^{-1} r}{4\tau}}$$

Examples of DWI for 2 gradients

Data: Centre IRMf, CHU La Timone, Marseille, FRANCE

The Diffusion Tensor Model

• Pulsed Gradient Spin Echo (SPGE) imaging sequence:

$$S(q_k,\tau) = S_0 e^{-\gamma^2 \delta^2 |g_k|^2 \left(\Delta - \frac{\delta}{3}\right) g_k^T \mathbf{D} g_k}$$

 $\begin{array}{ll} S(q_k,\tau): \text{Diffusion weighted images} & \delta: \text{Gradient pulses duration} \\ \gamma: \text{Spin gyromagnetic ratio} & \Delta: \text{Time between 2 gradient pulses} \\ g_k: \text{Unit diffusion gradient} & g_k^T \mathbf{D} g_k: \text{Apparent Diffusion Coefficient} \end{array}$

• Diffusion tensor D: 3 x 3 symmetric, positive definite matrix characterizing the covariance of the local Gaussian diffusion process of water molecules

Characterizing Tissue Microstructure

Data: Center for Magnetic Resonance Research, University of Minnesota

• Applications: Cerebro-vascular diseases, multiple sclerosis, Alzheimer's and Parkinson's disease, schizophrenia, brain development, effects of aging ...etc

Limitations of the Diffusion Tensor Model

- Unable to resolve fiber crossing
- Limited information in curving areas

Biological phantom from rat spinal cords

Diffusion tensors in crossing

Q-Space Imaging / Diffusion Spectrum Imaging

Measure signal on a 3D Cartesian grid in q-space
Compute 3D inverse Fourier transform to get EAP

but...

- Requires many (~500) measurements
- Requires large b-values / strong gradients
- Long imaging time

Diffusion Orientation Distribution Function

- Radial integration of the 3D EAP $\ \psi(u) = \int p(\alpha u | \tau) d\alpha$

Image from [Hagmann et al, Eurographics, 2006]

Fiber distribution

True diffusion profile (with Stejskal-Tanner Eq.)

Diffusion Tensor PDF

Orientation **Distribution Function**

Q-Ball Imaging

 Goal: Directly recover angular information of fibers distribution • QBI achieves this by just sampling a single shell in q-space

 $\psi(u) = \frac{1}{2} \int_{-\infty}^{\infty} p(\alpha u) d\alpha$ $\propto \int_{-\infty}^{\infty} p(0,0,z) dz$ $\propto \int_{-\infty}^{\infty} \int_{0}^{2\pi} \int_{0}^{\infty} p(r,\theta,z)\delta(r,\theta)rdrd\theta dz$

This can be approximated by the Funk-Radon Transform (FRT)

[D.Tuch, Harvard-MIT PhD thesis, 2002]

Image from [Hagmann et al, Eurographics, 2006]

Q-Ball Imaging

Goal: Directly recover angular information of fibers distribution
QBI achieves this by just sampling a single shell in q-space

$$\begin{split} \mu &= \frac{1}{2} \int_{-\infty}^{\infty} p(\alpha u) d\alpha \\ &\propto \int_{-\infty}^{\infty} p(0,0,z) dz \\ &\propto \int_{-\infty}^{\infty} \int_{0}^{2\pi} \int_{0}^{\infty} p(r,\theta,z) \delta(r,\theta) r dr d\theta dz \end{split}$$

This can be approximated by the Funk-Radon Transform (FRT) [D.Tuch, Harvard-MIT PhD thesis, 2002]

$$f(u) \simeq \mathcal{G}_{q'}[S(q)](u) = \int \delta(u^T q) S(q) dq$$

Signal ODF Funk-Radon Transform Example 1

Signal ODF Funk-Radon Transform Example 2

$$\begin{split} \mathcal{G}_{q'}[S(q)](u) &= \int_{0}^{2\pi} S(q',q_{\theta},0) dq\theta \quad \text{FRT at } q' \text{in direction } u \text{ (z here) is integral over great circle in xy-plane} \\ &= \int_{0}^{2\pi} \int_{0}^{\infty} S(q',q_{\theta},0) \delta(q_r-q') q_r dq_r dq_{\theta} \\ &= \int_{0}^{2\pi} \int_{0}^{\infty} \mathcal{F}_{2D}[S(q',q_{\theta},0)] \mathcal{F}_{2D}[\delta(q_r-q')] r dr d\theta \end{split}$$

Using Parseval-Plancherel theorem:

$$\int_{-\infty}^{\infty} f(x)\overline{g}(x)dx = \int_{-\infty}^{\infty} \mathcal{F}[f(x)](k)\overline{\mathcal{F}[g(x)]}(k)dk$$

Signal ODF Funk-Radon Transform Example 1

Signal ODF Funk-Radon Transform Example 2

$$\begin{split} \mathcal{G}_{q'}[S(q)](u) &= \int_{0}^{2\pi} S(q', q_{\theta}, 0) dq\theta \quad \text{FRT at } q' \text{ in direction } u \text{ (z here) is integral over great circle in xy-plane} \\ &= \int_{0}^{2\pi} \int_{0}^{\infty} S(q', q_{\theta}, 0) \delta(q_r - q') q_r dq_r dq_{\theta} \\ &= \int_{0}^{2\pi} \int_{0}^{\infty} \mathcal{F}_{2D}[S(q', q_{\theta}, 0)] \mathcal{F}_{2D}[\delta(q_r - q')] r dr d\theta \end{split}$$

Using Parseval-Plancherel theorem:

$$\int_{-\infty}^{\infty} f(x)\overline{g}(x)dx = \int_{-\infty}^{\infty} \mathcal{F}[f(x)](k)\overline{\mathcal{F}[g(x)]}(k)dk$$

- Central slice theorem: $\mathcal{F}_{2D}[\mathcal{L}[f(x)](u)] = \mathcal{I}[\mathcal{F}_{3D}[f(x)]](u)$ with $\mathcal{L}[f(x)](u) = \int_{-\infty}^{\infty} f(x + \alpha u) d\alpha$ (projection) $\mathcal{I}[f(x)](u) = f(x)\delta(x^T u)$ (intersection)
- Hankel transform (2D Fourier transform with no angular dependence)

$$\mathcal{F}_{2D}[f(x)] = \mathcal{F}_{2D}[f(r)] = 2\pi \int_0^\infty f(r) J_0(2\pi q r) r dr$$

hence

$$\mathcal{F}_{2D}[S(q',q_{\theta},0)] = \mathcal{F}_{2D}[\mathcal{I}[\mathcal{F}_{3D}[p(r,\theta,z)]](u)] = \mathcal{L}[p(r,\theta,z)](u) = \int_{-\infty}^{\infty} p(r,\theta,z)dz$$

$$\mathcal{F}_{2D}[\delta(q_r - q')] = 2\pi \int_0^\infty \delta(q_r - q') J_0(2\pi q_r r) q_r dq_r = 2\pi q' J_0(2\pi q' r)$$

Putting everything together

$$\mathcal{G}_{q'}[S(q)](u) = 2\pi q' \int_{-\infty}^{\infty} \int_{0}^{2\pi} \int_{0}^{\infty} p(r,\theta,z) J_0(2\pi q'r) r dr d\theta dz$$

• We recall that

$$\psi(u) = \int_{-\infty}^{\infty} \int_{0}^{2\pi} \int_{0}^{\infty} p(r,\theta,z) \delta(r,\theta) r dr d\theta dz$$

• If the zeroth-order Bessel function is close to a Dirac, the FRT approximates well the ODF. Hence the need for high b-values...

[D.Tuch, Harvard-MIT PhD thesis, 2002], [M. Descoteaux INRIA PhD thesis 2008]

8 8 *စြဲ (စို (စို) (* တို တို တိုတ်ထားသူသူသူသူ ရ ရ c 00 89 89 * * ø 8 8 8 8 6 6 0000 00 00 00 00 ی 🤡 • <mark>6) 8, 8, 8, 8, 8</mark> 2 🥒 • ۵ ک 🇞 🧐 🌮 🏈 . 🥗 🌝 🌝 • S 🔍 👀 🥶 ₽<u></u>, ₽ P . • 8 -# ٩. P 🚥 😋 ° 🧈 🦡 8 **\$** <u>م</u> -* ø . ₹ **~** (8) -۲.

9 9 رت ک 8 ഗരായാസം 8 ? ? ? -ē • 8 2 -•••• k. Q - **- - - -**<u>,</u> **@** ⁶⁰00000000 2 0 ٩. **(3)** € . *~*

Mathematical Concepts for Tensors & ODFs Processing - Symmetric Positive Definite Matrices - Spherical Harmonics

n-dimensional Riemannian manifold \mathcal{M} locally looks like \mathbb{R}^n

n-dimensional Riemannian manifold \mathcal{M} locally looks like \mathbb{R}^n

Collection of inner products $\langle ., . \rangle_{\Sigma}$ associated to each tangent space $T_{\Sigma}\mathcal{M}$

[Do Carmo92]

n-dimensional Riemannian manifold \mathcal{M} locally looks like \mathbb{R}^n

Collection of inner products $\langle ., . \rangle_{\Sigma}$ associated to each tangent space $T_{\Sigma}\mathcal{M}$

Magnitude of a tangent vector depends on the tangent space it is attached to:

$$\|v\|_{\Sigma}^2 = \langle v, v \rangle_{\Sigma} = v^T G v$$

n-dimensional Riemannian manifold \mathcal{M} locally looks like \mathbb{R}^n

Collection of inner products $\langle ., . \rangle_{\Sigma}$ associated to each tangent space $T_{\Sigma}\mathcal{M}$

Magnitude of a tangent vector depends on the tangent space it is attached to:

$$\|v\|_{\Sigma}^{2} = \langle v, v \rangle_{\Sigma} = v^{T} G v$$

Notion of distance:

$$\mathcal{D}(\Sigma_1, \Sigma_2) = \int_{t_1}^{t_2} \|\dot{\Sigma}(t)\|_{\Sigma(t)} dt$$

[Do Carmo92]

Statistics on Riemannian Manifolds

- Empirical mean of a set of N random elements $\{\Sigma_i\}$ i = 1, ..., N is the minimizer $\Sigma = \overline{\Sigma}$ of the variance: $\sigma^2(\{\Sigma_i\}) = \frac{1}{N-1} \sum_{i=1}^N \mathcal{D}^2(\Sigma, \Sigma_i)$
- Empirical covariance matrix:

The Manifold of Multivariate Normal PDFs

- $\mathcal{P}(r|\Sigma)$: normal distribution for $r \in \mathbb{R}^3$ with fixed mean
- Parameterized by the 6 independent elements of its covariance matrice:

$$\Sigma = \begin{bmatrix} \Sigma^1 & \Sigma^2 & \Sigma^3 \\ \Sigma^2 & \Sigma^4 & \Sigma^5 \\ \Sigma^3 & \Sigma^5 & \Sigma^6 \end{bmatrix}$$

• When $\mathcal{P}(r|\Sigma)$ is sufficiently smooth in the Σ^i , i = 1, ..., 6, it is natural to introduce a structure of sub-manifold $S^+(3) \subset \mathbb{R}^6$
The Manifold of Multivariate Normal PDFs

The Manifold of Multivariate Normal PDFs

The Manifold of Multivariate Normal PDFs

• But, there are many possible metrics between parameterized densities: Euclidean, J-divergence, Riemannian (more than one in fact!), Log-Euclidean... which one should we use and for what?

J-divergence (Kullback-Leibler)

• Distance:
$$\mathcal{D}_{j}(A, B) = \sqrt{\frac{1}{2}}\mathcal{D}_{kl}(A, B) + \mathcal{D}_{kl}(B, A)$$

where
 $\mathcal{D}_{kl}(A, B) = \int_{\mathbb{R}^{3}} \mathcal{P}(r|A) \log \frac{\mathcal{P}(r|A)}{\mathcal{P}(r|B)} dr$

• Invariance by congruence transformation: $\mathcal{D}_{kl}(A, B) = \mathcal{D}_{kl}(XAX^T, XBX^T) \quad \forall A, B \in S^+(3), X \in GL(3)$

• For 3D Gaussian densities:

$$\mathcal{D}_j(A, B) = \sqrt{\frac{1}{4}(A^{-1}B + B^{-1}A) - 6}$$
$$\nabla_A \mathcal{D}_j^2(A, B) = \frac{1}{4}(B^{-1} - A^{-1}BA^{-1})$$

[Lenglet-etal04], [Wang-Vemuri04/05], [Lenglet-etal06]

Riemannian Metric

• The Fisher information matrix is a measure of the amount of information carried by realizations of a random variable about the unknown parameters of the underlying distribution:

$$g_{ij} = \int_{\mathbb{R}^3} \frac{\partial \mathcal{P}(r|\Sigma)}{\partial \Sigma^i} \frac{\partial \mathcal{P}(r|\Sigma)}{\partial \Sigma^j} \mathcal{P}(r|\Sigma) dr \quad i, j = 1, ..., 6$$

• Riemannian metric for Gaussian densities

$$\langle A, B \rangle_{\Sigma} = \frac{1}{2} \operatorname{trace} \left(\Sigma^{-1} A \Sigma^{-1} B \right) \quad \forall A, B \in S(3)$$

Riemannian Metric

• The Fisher information matrix is a measure of the amount of information carried by realizations of a random variable about the unknown parameters of the underlying distribution:

$$g_{ij} = \int_{\mathbb{R}^3} \frac{\partial \mathcal{P}(r|\Sigma)}{\partial \Sigma^i} \frac{\partial \mathcal{P}(r|\Sigma)}{\partial \Sigma^j} \mathcal{P}(r|\Sigma) dr \quad i, j = 1, ..., 6$$

• Riemannian metric for Gaussian densities

$$\langle A, B \rangle_{\Sigma} = \frac{1}{2} \operatorname{trace} \left(\Sigma^{-1} A \Sigma^{-1} B \right) \quad \forall A, B \in S(3)$$

Euclidean metric

Riemannian metric

Riemannian Metric, Geodesics

• Geodesic equations:

$$\frac{d^2\Sigma^k(t)}{dt^2} + \Gamma^k_{ij}\frac{d\Sigma^i(t)}{dt}\frac{d\Sigma^j(t)}{dt} = 0 \,\forall k = 1, ..., n$$

have a closed-form solution:

$$\Sigma(t) = \Sigma_0^{1/2} \exp\left(t\Sigma_0^{-1/2} \dot{\Sigma}_0 \Sigma_0^{-1/2}\right) \Sigma_0^{1/2} \,\forall t \in [0, 1]$$

• Geodesic distance (Jensen, 1976)

$$\mathcal{D}_g(\Sigma_1, \Sigma_2) = \sqrt{\frac{1}{2} \operatorname{trace}\left(\log^2\left(\Sigma_1^{-1/2} \Sigma_2 \Sigma_1^{-1/2}\right)\right)}$$

[Atkinson-Mitchell81], [Skovgaard84], [Calvo-Oller92]

Riemannian Statistics

• The mean of set of tensors can be computed as the minimizer of the variance with

$$\beta_i = -\nabla \mathcal{D}_g^2(\overline{\Sigma}_g, \Sigma_i) = \overline{\Sigma}_g \log(\overline{\Sigma}_g^{-1} \Sigma_i) \in S_{\overline{\Sigma}_g}(3)$$

Geodesic gradient descent:

Spherical Harmonics

- Basis for complex functions on the unit sphere
- Analogous to Fourier transform: SH series of any function
- Even order SH are antipodally symmetric
- Satisfy the angular part of the Laplace equation:

$$\underbrace{\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta\frac{\partial Y_l^m}{\partial\theta}) + \frac{1}{\sin^2\theta}\frac{\partial^2 Y_l^m}{\partial\phi^2}}_{\Delta_h Y_l^m} + l(l+1)Y_l^m = 0$$

Reconstruction Methods for Local Diffusion Models

- •

Tensors Estimation

- Linearize the Stejskal-Tanner equation: $-\frac{1}{b}\ln\left(\frac{S(q_k)}{S_0}\right) = g_k^T \mathbf{D} g_k$
- For N diffusion gradients and with

 $G_k = (g_k^1 g_k^1, 2g_k^1 g_k^2, 2g_k^1 g_k^3, g_k^2 g_k^2, 2g_k^2 g_k^3, g_k^3 g_k^3)^T \in \mathbb{R}^6$ and $\varphi(\mathbf{D}) = (D_{xx}, D_{xy}, D_{xz}, D_{yy}, D_{yz}, D_{zz})^T \in \mathbb{R}^6$

• We end up with the linear system:

$$\begin{bmatrix} G_{1}^{T} \\ \vdots \\ G_{N}^{T} \end{bmatrix} \varphi(\mathbf{D}) = \begin{bmatrix} -\frac{1}{b} \ln \left(\frac{S_{1}}{S_{0}}\right) \\ \vdots \\ -\frac{1}{b} \ln \left(\frac{S_{N}}{S_{0}}\right) \end{bmatrix} \Rightarrow \varphi(\mathbf{D}) = \left(\left(\mathbf{G}^{T} \mathbf{G}\right)^{-1} \mathbf{G}^{T} \right) \mathbf{Y}$$

$$\underbrace{(\text{Westin-etal02}, [Mangin-etal02], [$$

- Simple and fast but no positivity constraint...
- Tschumperlé-etal03], [Wang-etal04], [Niethammer-etal06], [Koay-etal06] [Fillard-etal05/07]

Constrained Tensors Estimation

- Minimize the energy: $\mathscr{E}(S_0, ..., S_N) = \sum_{k=1}^N \psi\left(\frac{1}{b}\ln\left(\frac{S_k}{S_0}\right) + g_k^T \mathbf{D}g_k\right)$
- Intrinsic gradient: $\nabla \mathscr{E} = \sum_{k=1}^{N} \psi'(r_k(\mathbf{D})) \mathbf{D}g_k (\mathbf{D}g_k)^T$ $r_k(\mathbf{D})$ (ψ M-estimator)
- Intrinsic gradient descent:

$$\mathbf{D}_{l+1} = \mathbf{D}_{l}^{1/2} \exp\left(-dt \,\mathbf{D}_{l}^{-1/2} \left(\sum_{k=1}^{N} \psi'(r_{k}(\mathbf{D}_{l})) \mathbf{D}_{l} g_{k} \left(\mathbf{D}_{l} g_{k}\right)^{T}\right) \mathbf{D}_{l}^{-1/2} \mathbf{D}_{l}^{1/2}$$

Constrained Tensors Estimation

- Minimize the energy: $\mathscr{E}(S_0, ..., S_N) = \sum_{k=1}^N \psi\left(\frac{1}{b} \ln\left(\frac{S_k}{S_0}\right) + g_k^T \mathbf{D}g_k\right)$
- Intrinsic gradient: $\nabla \mathscr{E} = \sum_{k=1}^{N} \psi'(r_k(\mathbf{D})) \mathbf{D}g_k (\mathbf{D}g_k)^T$ $r_k(\mathbf{D})$ $(\psi M\text{-estimator})$
- Intrinsic gradient descent:

$$\mathbf{D}_{l+1} = \mathbf{D}_l^{1/2} \exp\left(-dt \,\mathbf{D}_l^{-1/2} \left(\sum_{k=1}^N \psi'(r_k(\mathbf{D}_l)) \mathbf{D}_l g_k \left(\mathbf{D}_l g_k\right)^T\right) \mathbf{D}_l^{-1/2} \right) \mathbf{D}_l^{1/2}$$

Constrained Tensors Estimation

- Minimize the energy: $\mathscr{E}(S_0, ..., S_N) = \sum_{k=1}^N \psi\left(\frac{1}{b} \ln\left(\frac{S_k}{S_0}\right) + g_k^T \mathbf{D}g_k\right)$
- Intrinsic gradient: $\nabla \mathscr{E} = \sum_{k=1}^{N} \psi'(r_k(\mathbf{D})) \mathbf{D}g_k (\mathbf{D}g_k)^T$ $r_k(\mathbf{D})$ (ψ M-estimator)
- Intrinsic gradient descent:

$$\mathbf{D}_{l+1} = \mathbf{D}_l^{1/2} \exp\left(-dt \, \mathbf{D}_l^{-1/2} \left(\sum_{k=1}^N \psi'(r_k(\mathbf{D}_l)) \mathbf{D}_l g_k \left(\mathbf{D}_l g_k\right)^T\right) \mathbf{D}_l^{-1/2} \right) \mathbf{D}_l^{1/2}$$

Diffusion ODFs Estimation

• Fast analytic ODF computation:

$$\begin{split} \psi(u) &\simeq \mathcal{G}_{q'}[S(q)](u) = \int \delta(u^T q) S(q) dq \\ &= \sum_{j=1}^N c_j \int_{|q|=1} \delta(u^T q) Y_j(q) dq \qquad \text{with} \quad S(q) = \sum_{j=1}^N c_j Y_j(q) dq \end{split}$$

• The Funk-Radon transform is linear!

Funk-Hecke Theorem: Let f be a continuous function on [-1, 1] and H_l any spherical harmonic of order l. Then, given a unit vector u

$$\int_{|v|=1} f(u^T v) H_l(v) dv = \lambda(l) H_l(u)$$

where

$$\lambda(l) = \frac{2\pi}{p_l(1)} \int_{-1}^{1} P_l(t) f(t) dt$$

with P_l the Legendre polynomial of degree l.

[Descoteaux et al. 2006], [Hess et al. 2006]

Diffusion ODFs Estimation

• Fast analytic ODF computation:

$$\psi(u) \simeq \mathcal{G}_{q'}[S(q)](u) = \int \delta(u^T q) S(q) dq$$
$$= \sum_{j=1}^N c_j \int_{|q|=1} \delta(u^T q) Y_j(q) dq \qquad \text{with} \quad S(q) = \sum_{j=1}^N c_j Y_j(q)$$

• The Funk-Radon transform is linear!

with
$$\delta_n(x) = \frac{n}{\sqrt{\pi}} e^{-n^2 x^2}$$
 s.t. $\lim_{n \to \infty} \delta_n(x) = \delta(x)$, $\lim_{n \to \infty} \int_{\mathbb{R}} \delta_n(x) f(x) = f(0)$

$$\int \delta(u^T q) Y_j(q) dq = \int \lim_{n \to \infty} \delta_n(u^T q) Y_j(q) dq = 2\pi \frac{P_{l(j)}(0)}{P_{l(j)}(1)} Y_j(q)$$

and so $\mathcal{G}_{q'}[S(q)](u) = \sum_{j} 2\pi \frac{P_{l(j)}(0)}{P_{l(j)}(1)} c_j Y_j(q)$

[Descoteaux et al. 2006], [Hess et al. 2006]

•

- Brain Anatomical
- Connectivity Mapping
- •
- •
- : Neural fibers as shortest paths
- (Joint work with E. Prados & J.P. Pons)
- ullet
- •
- \bullet

Fiber Tracts as Geodesic Paths

Geodesics

Data: CEA-SHFJ, Orsay

Fiber Tracts as Geodesic Paths

Geodesics

Data: CEA-SHFJ, Orsay

Geometry Induced by a Diffusion Process

Notion of diffusion variance metric: $G = \mathbf{D}^{-1}$

 $\lambda_2 \equiv 1$

$$||v||^{2} \in \mathbb{R}^{2}$$

$$||v||^{2} \in \mathbb{R}^{2}$$

$$||v||^{2} = \frac{1}{3}v_{1}^{2} + v_{2}^{2}$$

$$||v||^{2} = v_{1}^{2} + v_{2}^{2}$$

$$\lambda_{1} = 1 \Rightarrow ||v||^{2} = v_{1}^{2} + v_{2}^{2}$$

[Darling98], [de Lara95]

Geometry Induced by a Diffusion Process

Notion of diffusion variance metric: $G = \mathbf{D}^{-1}$

- Use the complete information provided by diffusion tensors
- How do we:
 - compute the geodesic distance?
 - compute the shortest paths (= fiber tracts?)
 - > assess the likelihood of connection?

[Darling98], [de Lara95]

Intrinsic Distance Computation: 2 perspectives

The distance function ϕ is the unique solution of the anisotropic eikonal equation:

$$\|\operatorname{grad}\phi\| = \left(\frac{\partial\phi}{\partial x^{i}}\frac{\partial\phi}{\partial x^{j}}g^{ij}\right)^{1/2} = 1 \quad \text{in } \mathcal{M} \setminus x_{0}$$
with
$$\phi(x_{0}) = 0$$
Foundary value formulation
$$\|\operatorname{grad}\phi\| = 1$$
Front:
$$\psi(x) = \{x \in \mathcal{M} : \phi(x) = t\}$$

$$\mathcal{S}(t) = \{x \in \mathcal{M} : \psi(x, t) = 0\}$$

[Crandall-Evans-Lions84], [Osher93], [Kimmel-etal95], [Mantegazza02]

Intrinsic Distance Computation: 2 perspectives

The distance function ϕ is the unique solution of the anisotropic eikonal equation:

$$\|\operatorname{grad}\phi\| = \left(\frac{\partial\phi}{\partial x^{i}}\frac{\partial\phi}{\partial x^{j}}g^{ij}\right)^{1/2} = 1 \quad \text{in } \mathcal{M} \setminus x_{0}$$
with
$$\phi(x_{0}) = 0$$
Boundary value formulation
$$\|\operatorname{grad}\phi\| = 1$$
Front:
$$\mathcal{S}(t) = \{x \in \mathcal{M} : \phi(x) = t\}$$
Initial value formulation
$$\frac{\partial\psi}{\partial t} + \|\operatorname{grad}\psi\| = 0$$
Front:
$$\mathcal{S}(t) = \{x \in \mathcal{M} : \phi(x) = t\}$$

$$\mathcal{S}(t) = \{x \in \mathcal{M} : \psi(x, t) = 0\}$$

[Crandall-Evans-Lions84], [Osher93], [Kimmel-etal95], [Mantegazza02]

• FMM constructs solution by propagating information one way: From small to large values.

• Key point: Approximation of the differential $d\phi \in T_x^*\mathcal{M}$ in the Hamiltonian :

$$H(x,d\phi) = d\phi^T G(x) d\phi - 1$$

• FMM constructs solution by propagating information one way: From small to large values.

• Key point: Approximation of the differential $d\phi \in T_x^* \mathcal{M}$ in the Hamiltonian :

$$H(x,d\phi) = d\phi^T G(x) d\phi - 1$$

- Choose optimal combination of neighbors (optimal simplex) that yields the smallest value of ϕ

 $\mathbf{x} \in \Omega \subset \mathbb{R}^3$

• Used to compute, on the fly, geodesics' velocity $\gamma'(x)$ and statistics of a connectivity measure

• FMM constructs solution by propagating information one way: From small to large values.

• Key point: Approximation of the differential $d\phi \in T_x^*\mathcal{M}$ in the Hamiltonian :

$$H(x,d\phi) = d\phi^T G(x) d\phi - 1$$

- Choose optimal combination of neighbors (optimal simplex) that yields the smallest value of ϕ

 $\mathbf{x}\in\Omega\subset\mathbb{R}^3$

• Used to compute, on the fly, geodesics' velocity $\gamma'(x)$ and statistics of a connectivity measure

$$C(\mathbf{x}) = \sqrt{\gamma'(x)D(x)^{\alpha}\gamma'(x)}$$

1. Boundary value

- 1. Boundary value
- 2. Update "downwind"

- 1. Boundary value
- 2. Update "downwind"
- 3. Compute new possible values

- 1. Boundary value
- 2. Update "downwind"
- 3. Compute new possible values
- 4. Choose smallest green sphere (for example A)

- 1. Boundary value
- 2. Update "downwind"
- 3. Compute new possible values
- 4. Choose smallest green sphere (for example A)
- 5. Freeze value A, update neighboring "downwind" points

- 1. Boundary value
- 2. Update "downwind"
- 3. Compute new possible values
- 4. Choose smallest green sphere (for example A)
- 5. Freeze value A, update neighboring "downwind" points
- 4. Choose smallest green sphere (for example B)

- 1. Boundary value
- 2. Update "downwind"
- 3. Compute new possible values
- 4. Choose smallest green sphere (for example A)
- 5. Freeze value A, update neighboring "downwind" points
- 4. Choose smallest green sphere (for example B)

6. Freeze value B, update Neighboring "downwind" points

- 1. Boundary value
- 2. Update "downwind"
- 3. Compute new possible values
- 4. Choose smallest green sphere (for example A)
- 5. Freeze value A, update neighboring "downwind" points
- 4. Choose smallest green sphere (for example B)

6. Freeze value B, update Neighboring "downwind" points

Upwind side

- 1. Boundary value
- 2. Update "downwind"
- 3. Compute new possible values
- 4. Choose smallest green sphere (for example A)
- 5. Freeze value A, update neighboring "downwind" points
- 4. Choose smallest green sphere (for example B)

6. Freeze value B, update Neighboring "downwind" points

Upwind side
Boundary Value Formulation (Fast Marching)

- 1. Boundary value
- 2. Update "downwind"
- 3. Compute new possible values
- 4. Choose smallest green sphere (for example A)
- 5. Freeze value A, update neighboring "downwind" points
- 4. Choose smallest green sphere (for example B)

6. Freeze value B, update Neighboring "downwind" points

Upwind side

Boundary Value Formulation (Update Scheme)

• At each location $x \in \mathcal{M}$, test the 2^3 possible approximations:

$$\begin{bmatrix} d\phi \end{bmatrix}_i = rac{\phi(x) - \phi(x + s_i h_i e_i)}{-s_i h_i} egin{array}{c} 1 = 1, 2, 3 \ s_i = \pm 1 \ e_i ext{ canonical basis of } \mathbb{R}^3 \ h_i ext{ voxel size} \end{array}$$

• Optimal dynamics: $f^*(x) = \operatorname{grad} \phi(x) = D(x) d\phi(x)$

has to verify $\operatorname{sign}(\mathbf{f}^*(x))_i = s_i \; \forall i = 1, 2, 3$

This automatically yields the minimum update value for ϕ

Computational Efficiency

Top 10% connections to the CC splenium

Computational Efficiency

- Brain Anatomical
- Connectivity Mapping
- •
- Diffusion Tensor Sharpening
- (Joint work with M. Descoteaux)
- •

Tensor Sharpening "improves" Tractography

- Using the full diffusion tensor is good but...
- Front propagation / stochastic tractography techniques are sensitive to the intrinsic "smoothness" of the DT
- Tracts may leak into unexpected regions

Tensor Sharpening "improves" Tractography

- Using the full diffusion tensor is good but...
- Front propagation / stochastic tractography techniques are sensitive to the intrinsic "smoothness" of the DT
- Tracts may leak into unexpected regions

Tensor Sharpening "improves" Tractography

- Using the full diffusion tensor is good but...
- Front propagation / stochastic tractography techniques are sensitive to the intrinsic "smoothness" of the DT
- Tracts may leak into unexpected regions

HARDI & Fiber Orientation Estimation: Sharpening

- Goal: Enhance the different fiber compartments
- Go from diffusion ODF to fiber ODF
- Model: Diffusion ODF is the spherical convolution of an axially symmetric single fiber response with a fiber ODF

Diffusion tensor D

Spherical function

Step 2: Sharpening as a Deconvolution

- Inspired by Tournier et al. (Neuroimage 2004)
- Diffusion ODF S is a smoothed version of the fiber ODF F

Step 2: Sharpening as a Deconvolution

- Inspired by Tournier et al. (Neuroimage 2004)
- Diffusion ODF S is a smoothed version of the fiber ODF F

With k, the sharpening factor $R_{sharp}(t) = e^{(t^2(c^{1/k} - a^{1/k}) + a^{1/k})}$ and $t := \cos(\theta)$

Step 2: Deconvolution

- Choice of parameters *a*, *c* and *k*:
 - One can fix (a,a,c) and vary k to obtain various FA
 - One can fix k and vary the ratio a/c
 - We choose to fix (a,a,c) and vary k to achieve realistic FA

 $(a, a, c) = (300^{1/k}, 300^{1/k}, 1700^{1/k}) \times 10^{-6} mm^2/s$ (FA = 0.5 for k =2)

• Deconvolution is done using the Funk-Hecke theorem:

$$\begin{split} S(u) &= \int_{|v|=1} R(\langle u, v \rangle) F(v) dv & (\text{Convolution of } \textit{F} \text{ with } \textit{R}) \\ \sum_{j} c_{j} Y_{j}(u) &= \sum_{j} c'_{j} \int_{|v|=1} R(\langle u, v \rangle) Y_{j}(v) dv \\ &= \sum_{j} c'_{j} \lambda(j) Y_{j}(u) \\ \text{(Funk-Hecke)} \\ c'_{j} &= c_{j} / \lambda(j) \quad \text{with} \quad \lambda(j) = 2\pi \int_{-1}^{1} P_{l(j)}(t) R(t) dt \end{split}$$

Splenium of the Corpus Callosum

Diffusion tensor

Fiber tensor

Anterior Thalamic Radiation

Images from [Koch et al, NeuroImage 2002, Anwander et al, Cerebral Cortex 2007]

Cortico-spinal Tract

Diffusion tensor

Fiber tensor

Images from [Koch et al, NeuroImage 2002, Anwander et al, Cerebral Cortex 2007]

Combining DTI & fMRI

- •
- Architecture of the cortico-striatal connections
- (Joint work with S. Lehéricy)
- •

Overview

- Anatomical connections of the human striatum can be parceled by DTI deterministic tractography.
- Invasive animal studies showed that cortico-striatal fibers are organized in a set of discrete circuits.
- Each circuit is related to distinct behavioral functions:
 - Movement preparation and execution
 - Planning and decision making
 - Learning

• We investigate the connectivity patterns of 2 regions of the striatum.

Image from [Lehericy-Ducros-etal04]

Associative striatal regions are implicated in movement selection / decision, mental simulation of grasping, task planning and learning of new motor skills >> Anterior compartment

Associative striatal regions are implicated in movement selection / decision, mental simulation of grasping, task planning and learning of new motor skills >> Anterior compartment

Sensorimotor striatal regions important for movement execution and skills storage (maintain speedy representation and automaticity) >> Posterior compartment

- In [Lehericy-etal05], 13 right-handed subjects followed over 4 weeks
- Subjects asked to practice sequence of 8 moves with fingers 2 and 5

Image from [Lehericy-etal05]

- 2 main foci of activation in the putamen: Anterodorsal (day I, black) / Posteroventral (day 28, gray).
- Regression analysis on pecentage signal increase:
 - Activation decreases with practice in anterodorsal putamen (bilateral)
 - Activation increases with practice in posteroventral putamen (bilateral)

Native Individual maps (13 subjects) Normalized Individual maps Average of Normalized Individual maps

After learning

Before

learning

	:	
		,

DTI / HARDI Segmentation Variational formulation (Joint work with M. Rousson, with contributions from M. Descoteaux)

- •
- •
- \bullet

Fiber Bundles Segmentation by Statistical Surface Evolution

Fiber Bundles Segmentation by Statistical Surface Evolution

Fiber Bundles Segmentation by Statistical Surface Evolution

Key idea: Modeling of diffusion tensors distribution

Key idea: Modeling of diffusion tensors distribution

> Evolve a 3D surface to maximize the partition likelihood

• \mathcal{B} : Evolving surface (implicitly represented by ψ) • $\Sigma(x)$: Diffusion tensor at voxel x

$$\begin{cases} \psi(x) = 0, & \text{if } x \in \mathcal{B} \\ \psi(x) = \mathcal{D}(x, \mathcal{B}), & \text{if } x \in \Omega_1 \\ \psi(x) = -\mathcal{D}(x, \mathcal{B}), & \text{if } x \in \Omega_2 \end{cases}$$

• The structure of interest is extracted by minimizing:

$$E(\psi, \Sigma_{1,2}, \Lambda_{1,2}) = \nu \int_{\Omega} \delta(\psi) \|\nabla\psi\| \, dx + \int_{\Omega} \delta(\psi) \|\nabla\psi\| g_{\alpha}(\Sigma(x)) \, dx \\ - \int_{\Omega_1} \log p(\Sigma(x)|\overline{\Sigma}_1, \Lambda_1) \, dx - \int_{\Omega_2} \log p(\Sigma(x)|\overline{\Sigma}_2, \Lambda_2) \, dx$$

• \mathcal{B} : Evolving surface (implicitly represented by ψ) • $\Sigma(x)$: Diffusion tensor at voxel x

$$\begin{cases} \psi(x) = 0, & \text{if } x \in \mathcal{B} \\ \psi(x) = \mathcal{D}(x, \mathcal{B}), & \text{if } x \in \Omega_1 \\ \psi(x) = -\mathcal{D}(x, \mathcal{B}), & \text{if } x \in \Omega_2 \end{cases}$$

• The structure of interest is extracted by minimizing: $E(\psi, \Sigma_{1,2}, \Lambda_{1,2}) = \nu \int_{\Omega} \delta(\psi) \|\nabla \psi\| \, dx + \int_{\Omega} \delta(\psi) \|\nabla \psi\| g_{\alpha}(\Sigma(x)) \, dx$ $- \int_{\Omega_{1}} \log p(\Sigma(x) |\overline{\Sigma}_{1}, \Lambda_{1}) \, dx - \int_{\Omega_{2}} \log p(\Sigma(x) |\overline{\Sigma}_{2}, \Lambda_{2}) \, dx$

• \mathcal{B} : Evolving surface (implicitly represented by ψ) • $\Sigma(x)$: Diffusion tensor at voxel x

$$\begin{cases} \psi(x) = 0, & \text{if } x \in \mathcal{B} \\ \psi(x) = \mathcal{D}(x, \mathcal{B}), & \text{if } x \in \Omega_1 \\ \psi(x) = -\mathcal{D}(x, \mathcal{B}), & \text{if } x \in \Omega_2 \end{cases}$$

• The structure of interest is extracted by minimizing:

$$E(\psi, \Sigma_{1,2}, \Lambda_{1,2}) = \nu \int_{\Omega} \delta(\psi) \|\nabla\psi\| \, dx + \int_{\Omega} \delta(\psi) \|\nabla\psi\| g_{\alpha}(\Sigma(x)) \, dx \\ - \int_{\Omega_1} \log p(\Sigma(x)|\overline{\Sigma}_1, \Lambda_1) \, dx - \int_{\Omega_2} \log p(\Sigma(x)|\overline{\Sigma}_2, \Lambda_2) \, dx$$

• \mathcal{B} : Evolving surface (implicitly represented by ψ) • $\Sigma(x)$: Diffusion tensor at voxel \mathcal{X}

$$\begin{cases} \psi(x) = 0, & \text{if } x \in \mathcal{B} \\ \psi(x) = \mathcal{D}(x, \mathcal{B}), & \text{if } x \in \Omega_1 \\ \psi(x) = -\mathcal{D}(x, \mathcal{B}), & \text{if } x \in \Omega_2 \end{cases}$$

• The structure of interest is extracted by minimizing:

$$E(\psi, \Sigma_{1,2}, \Lambda_{1,2}) = \nu \int_{\Omega} \delta(\psi) \|\nabla\psi\| \, dx + \int_{\Omega} \delta(\psi) \|\nabla\psi\| g_{\alpha}(\Sigma(x)) \, dx \\ - \int_{\Omega_1} \log p(\Sigma(x)|\overline{\Sigma}_1, \Lambda_1) \, dx - \int_{\Omega_2} \log p(\Sigma(x)|\overline{\Sigma}_2, \Lambda_2) \, dx$$

• Energy comes from the fact that, if tensors are *iid*, we have

$$p(\Sigma|\psi) = \prod_{x \in \Omega_1} p_1(\Sigma(x)) \cdot \prod_{x \in \Omega_2} p_2(\Sigma(x)) \cdot \prod_{x \in \mathcal{B}} p_b(\Sigma(x))$$

with

$$p_b(\Sigma(x)) = \exp\left(-g_\alpha(\|\nabla\Sigma(x)\|)\right)$$

and typically

$$g_{\alpha}(y) = \frac{1}{1+y^{\alpha}}$$

• Evolution equation:

$$\frac{\partial \psi}{\partial t} = \delta(\psi) \left(\left(\nu + g_{\alpha}(\Sigma) \right) \operatorname{div} \left(\frac{\nabla \psi}{\|\nabla \psi\|} \right) + \frac{\nabla \phi}{\|\nabla \phi\|} \cdot \nabla g_{\alpha}(\Sigma) + \log \frac{p(\Sigma | \overline{\Sigma}_{1}, \Lambda_{1})}{p(\Sigma | \overline{\Sigma}_{2}, \Lambda_{2})} \right)$$

• Energy comes from the fact that, if tensors are *iid*, we have

$$p(\Sigma|\psi) = \prod_{x \in \Omega_1} p_1(\Sigma(x)) \cdot \prod_{x \in \Omega_2} p_2(\Sigma(x)) \cdot \prod_{x \in \mathcal{B}} p_b(\Sigma(x))$$

with

$$p_b(\Sigma(x)) = \exp\left(-g_\alpha(\|\nabla\Sigma(x)\|)\right)$$

and typically

$$g_{\alpha}(y) = \frac{1}{1+y^{\alpha}}$$

• Evolution equation:

$$\frac{\partial \psi}{\partial t} = \delta(\psi) \left((\nu + g_{\alpha}(\Sigma)) \operatorname{div} \left(\frac{\nabla \psi}{\|\nabla \psi\|} \right) + \frac{\nabla \phi}{\|\nabla \phi\|} \cdot \nabla g_{\alpha}(\Sigma) + \log \frac{p(\Sigma|\overline{\Sigma}_{1}, \Lambda_{1})}{p(\Sigma|\overline{\Sigma}_{2}, \Lambda_{2})} \right)$$

Euclidean (45) / J-divergence (30) / Riemannian (28) probability metrics

Euclidean (45) / J-divergence (30) / Riemannian (28) probability metrics

Euclidean metric (130)

J-divergence metric (80)

Rough initialization in the genu and splenium

Euclidean metric

Riemannian metric

J-divergence metric

Rough initialization in the genu and splenium

Rough initialization in the genu and splenium

Rough initialization in the genu and splenium

Corpus Callosum: Euclidean metric

Corpus Callosum: J-divergence metric

Corpus Callosum: Riemannian metric

Metrics Comparison

Human Brain DTI: Corticospinal Tract

Human Brain DTI: Corticospinal Tract

©INRIA, Odyssée

Scanned at 1.5T with a knee coil.

90 DW directions b-value = 1300 s/mm² TR = 8s TE = 110ms 40 slices, 2.5 mm isotropic 10 min scan.

Produced by J. Campbell et al. at the McConnel Brain Imaging Center and Montreal Neurological Institute.

From 2 excised Sprague-Dawley rat spinal cords embedded in 2% agar. Cords are 7-12 cm by 5 mm.

[Campbell-etal Neuroimage 2005]

Biological Phantom

HARDI Segmentation

• Dissimilarity measure: L2 norm of SH coefficients difference

$$\begin{aligned} \langle \psi, \psi' \rangle &= \int_{S^2} \psi(r) \cdot \psi'(r) dr = \int_{S^2} \left(\sum_{i=1}^R c_i Y_i(r) \right) \left(\sum_{i=1}^R c_i' Y_i(r) \right) dr = \sum_{i=1}^R c_i \cdot c_i' \\ \Rightarrow \| \psi - \psi' \|^2 &= \sum_{i=1}^R (c_i - c_i')^2 \end{aligned}$$

• Assumption of Gaussian distribution for SH coefficients:

Distribution in manual segmentation of Corpus Callosum

Synthetic Example

Initialization

DTI Segmentation

HARDI Segmentation

Synthetic Example

Initialization

DTI Segmentation

HARDI Segmentation

Human Brain DTI: Corpus Callosum

Data: Max Planck Institute, Leipzig, Germany

Human Brain DTI: Corticospinal Tract

Data: Max Planck Institute, Leipzig, Germany

HARDI Mapping of

- White Matter Complexity
- •

- •
- A manifold learning approach
- (Joint work with G. Haro, G. Sapiro and P. Thompson)
- \bullet

Detecting Mixed Dimensionality and Density

Goal:

Detect & estimate different dimensions and densities in the same noisy point cloud (stratifications)
Cluster the points accordingly

Haro, Randal & Sapiro's Approach

- Translated Poisson model to account for noise
- Local dimension and density estimator
- Translated Poisson mixture model to account for different sub-manifolds
- Clustering algorithm algorithm using EM based on mixture model

Numerical Experiments

Swiss roll and line with 2 different densities

Clustering from HARDI

FA Raw HARDI signal 4th order ODFs 6th order ODFs 6th order ODFs 6th order ODFs with sharpening with sharpening

Raw HARDI signal

4th order ODFs

4th order ODFs with Sharpening

4th order ODFs with Sharpening

Complexity 5.41 5.32 4.64 4.53 2.56 1.33

-• --2 4th Order ODFs 0 0

• ٠ • Ĩ 2 0 2 1 ľ ň 2 ŕ

~

•

 \mathbf{A}

.

. r

4th Order ODFs

~

Acknowledgments

- G. Sapiro
- K. Ugurbil
- G. Haro
- P. Thompson
- M. Descoteaux
- E. Prados
- N. Wotatwa
- R. Deriche
- O. Faugeras
- S. Lehéricy
- J. Campbell
- K. Siddiqi
- J.L. Anton
- M. Roth
- A. Anwander

ECE, University of Minnesota, Minneapolis CMRR, University of Minnesota, Minneapolis Univ. Polytècnica de Catalunya, Barcelona LONI, UCLA, Los Angeles CEA/Neurospin, Paris Perception Lab. INRIA Rhône-Alpes Odyssée Lab. INRIA, Sophia Antipolis Odyssée Lab. INRIA, Sophia Antipolis Odyssée Lab. INRIA, Sophia Antipolis Hospital La Pitié-Salpêtrière, Paris BIC / CIM, McGill University, Montréal CIM, McGill University, Montréal Centre IRMf, Hospital la Timone, Marseille Centre IRMf, Hospital la Timone, Marseille Max Planck Institute - CBS, Leipzig

Questions?