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Outline of the Presentation

• Basics of diffusion MRI & local diffusion models

• Mathematical concepts for Tensors/ODFs processing

• Reconstruction of local diffusion models

• DTI tractography

• Combining DTI and fMRI: Cortico-striatal circuits

• DTI & HARDI segmentation

• HARDI mapping of white matter complexity



• Composed of axonal nerve fibers, protected by a myelin sheath

• Found in inner layer of cortex, optic nerves, central & lower areas of the 
brain and the spinal cord.

• Axons can be distributed diffusely or concentrated in bundles:
 Projection tracts: connections cerebral cortex / subcortical areas
 Association tracts: cortico-cortical connections in given hemisphere
 Commissural tracts: connections of homologous areas

20th U.S. edition of Gray's Anatomy of the Human Body (public domain)

Organization of the White Matter



Images from [Williams-etal97]
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Basics of Diffusion MRI &
Local Diffusion Models



Anisotropic Water Diffusion

Images from [Beaulieu-etal02]
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Anisotropic Water Diffusion

Water diffusion is sensitive to the underlying tissue microstructure 
and provides a unique means to assess its orientation and integrity.

Images from [Beaulieu-etal02]
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Anisotropic Water Diffusion in the Brain

Adapted from [Beaulieu-etal02]

A simple schematic of the longitudinal view of a 
myelinated axon. 

• First systematic study in 
[Moseley-etal1991]:

	 D(||)  =  1.3 x 10-5 cm2.s-1


 D(⊥)  =  0.4 x 10-5 cm2.s-1


 Ratio of 2 to 4 for Δ=30ms

• Sources of anisotropy:

✓   Axonal membrane

✓   Myelination can modulate it
	 X  Neurofibrils do not affect it 

• Anisotropy also found in kidney, 
skeletal muscles and myocardium.

axonal membrane myelin neurofilament

microtubule

axon

D(||)

D(⊥)



MR Quantification of  Water Diffusion

Examples of DWI for 2 gradients

 [Stejskal-Tanner65], [Hashemi-Bradley04], [Karger-Heink83], [Tuch02]

Data: Centre IRMf, CHU La Timone, Marseille, FRANCE

• Signal attenuation:

• Fourier transform of the Ensemble 
Average Propagator (EAP) p(r|r0, τ)

reciprocal displacement 
vector (q-space imaging)

• DTI (Assumption of Gaussian diffusion)

= F [p(r|τ)]

with qk = γδgk/2π
gk = qk/‖qk‖and

p(r|τ) = 1√
(4π)3|D|

e
rT D−1r

4τ

S(qk, τ) = S0

∫

R3
p(r|τ)e2πiqT

k rdr
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• Pulsed Gradient Spin Echo (SPGE) imaging sequence:

	     : Diffusion weighted images	       : Gradient pulses duration

	     : Spin gyromagnetic ratio	 	       :  Time between 2 gradient pulses

	     : Unit diffusion gradient	       	       :  Apparent Diffusion Coefficient

• Diffusion tensor    : 3 x 3 symmetric, positive definite matrix 
characterizing the covariance of the local Gaussian diffusion 
process of water molecules

The Diffusion Tensor Model

S(qk, τ)
γ

S(qk, τ) = S0e
−γ2δ2|gk|2(∆− δ

3 )gT
k Dgk

gk

δ
∆

gT
k Dgk

D

[LeBihan-etal86], [Basser-etal94], [Stejskal-Tanner65]





Characterizing Tissue Microstructure

ADC

FA

SAV1

PA

LA

[Pierpaoli-Basser96], [Westin-Maier-etal02]

Data: Center for Magnetic Resonance Research, University of Minnesota

• Applications: Cerebro-vascular diseases, 
multiple sclerosis,  Alzheimer’s and Parkinson’s disease, 
schizophrenia, brain development, effects of aging ...etc



Limitations of the Diffusion Tensor Model

[J. Campbell, McGill University, PhD thesis, 2004 & Neuroimage 2005]

• Unable to resolve fiber crossing
• Limited information in curving areas

 Biological phantom from 
rat spinal cords

Diffusion tensors in crossing



Q-Space Imaging / Diffusion Spectrum Imaging
• Measure signal on a 3D Cartesian grid in q-space
• Compute 3D inverse Fourier transform to get EAP

8.5. RESULTS 147

Figure 8-6: Diffusion propagator (top-right) from a single voxel (yellow circle) containing
the intersection of the cpf with the cst. The three-dimensional propagator is visualized as
three transparent orthogonal cross-sections.

Figure 8-7: Subject B: Comparison of DSI and DTI of the brainstem. The DTI is depicted
as a cuboid icon field, with each cuboid scaled and oriented according to the local diffusion
tensor eigensystem. The anatomical image at far left is a RTO probability image. The
ROI (yellow square from anatomical image and white square from DTI) of the DSI shows
the intersection of the cst (blue) with the cpf (red). In comparison the DTI is heavily
confounded.

[D. Tuch, Harvard-MIT PhD thesis, 2002]

Image from [Hagmann et al, 
Eurographics, 2006]

but... 
• Requires many (~500) measurements
• Requires large b-values / strong gradients
• Long imaging time



Diffusion Orientation Distribution Function

Image from [Hagmann et al, Eurographics, 2006]

• Radial integration of the 3D EAP ψ(u) =
∫ ∞

0
p(αu|τ)dα

4 M. Descoteaux, E. Angelino, S. Fitzgibbons, R. Deriche

fiber distribution true diffusion profile DTI diffusion profile ODF

Figure 1: Diffusion profile estimate fromDTI fails to recover multiple fiber orientation. The maxima

of the diffusion profile do not agree with thin green lines corresponding to the true synthetic fiber

directions whereas maxima of the ODF do.

1 Introduction

Diffusion MRI is the only non-invasive tool to obtain information about the neural architecture in

vivo and it is used to understand functional coupling between cortical regions of the brain, for char-

acterization of neuro-degenerative diseases, for surgical planning and for other medical applications.

The method is based on the Brownian motion of water molecules in normal tissues and the obser-

vation that molecules tend to diffuse along fibers when contained in fiber bundles [4, 15]. Using

classical diffusion tensor imaging (DTI), several methods have been developed to segment and track

white matter fibers in the human brain [7, 14, 16, 17, 36, 41, 43]. However, the theoretical basis for

the DTI model assumes that the underlying diffusion process is Gaussian. While this approximation

is adequate for voxels in which there is only a single fiber orientation (or none), it breaks down for

voxels in which there is more complicated internal structure, as seen in Fig. 1 with an example of

two fibers crossing. The model is not flexible enough to describe several major diffusion directions

and therefore gives an over-smoothed estimation of the water molecule diffusion profile. This is

an important limitation, since resolution of DTI acquisition is between 1mm3 and 3mm3 while the

physical diameter of fibers can be less than 1µm and up to 30 µm [27]. From anisotropy measure
maps, we know that many voxels in diffusion MRI volumes potentially have multiple fibers with

crossing, kissing or diverging configurations.

To date, this is a reason why clinicians and neurosurgeons have been skeptical of tracking and

segmentation methods developed on DTI data. They have doubts on the principal direction followed

to track fiber bundles. In the presence of multiple fibers, the diffusion profile is oblate or planar

and there is no unique principal direction (Fig. 1). This is why recent research has been done to

generalize the existing diffusion model with new higher resolution acquisition techniques such as

Q-Space Imaging (QSI) [42] and High Angular Resolution Diffusion Imaging (HARDI) [37]. There

are currently two classes of high order processing methods for these high resolution acquisition

techniques. The first is based on apparent diffusion coefficient (ADC) modeling [2, 9, 12, 21, 22]

and the other is based on the estimation of the probability density function of the average spin

displacement of water molecules [1, 5, 7, 8, 20, 25, 26, 35, 38, 39].
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Q-Ball Imaging
• Goal: Directly recover angular information of fibers distribution
• QBI achieves this by just sampling a single shell in q-space

Image from [Hagmann et al, Eurographics, 2006]

ψ(u) =
∫ ∞

0
p(αu|τ)dα

This can be approximated by the 
Funk-Radon Transform (FRT)

[D. Tuch, Harvard-MIT PhD thesis, 2002]

ψ(u) ! Gq′ [S(q)](u) =
∫

δ(uT q)S(q)dq

ψ(u) =
1
2

∫ ∞

−∞
p(αu)dα

∝
∫ ∞

−∞
p(0, 0, z)dz

∝
∫ ∞

−∞

∫ 2π

0

∫ ∞

0
p(r, θ, z)δ(r, θ)rdrdθdz
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Funk-Radon Transform Example 1 Funk-Radon Transform Example 2

Signal Signal ODFODF

ODF Approximation by FRT

Gq′ [S(q)](u) =
∫ 2π

0
S(q′, qθ, 0)dqθ FRT at q’ in direction u (z here) is integral over great circle in xy-plane

=
∫ 2π

0

∫ ∞

0
S(q′, qθ, 0)δ(qr − q′)qrdqrdqθ

=
∫ 2π

0

∫ ∞

0
F2D[S(q′, qθ, 0)]F2D[δ(qr − q′)]rdrdθ

Using Parseval-Plancherel theorem:∫ ∞

−∞
f(x)g(x)dx =

∫ ∞

−∞
F [f(x)](k)F [g(x)](k)dk
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ODF Approximation by FRT

F2D[S(q′, qθ, 0)]

• Central slice theorem: F2D[L[f(x)](u)] = I[F3D[f(x)]](u)

with L[f(x)](u) =
∫ ∞

−∞
f(x + αu)dα (projection)

(intersection)I[f(x)](u) = f(x)δ(xT u)

• Hankel transform (2D Fourier transform with no angular dependence)

F2D[f(x)] = F2D[f(r)] = 2π

∫ ∞

0
f(r)J0(2πqr)rdr

hence
= F2D[I[F3D[p(r, θ, z)]](u)] = L[p(r, θ, z)](u) =

∫ ∞

−∞
p(r, θ, z)dz

F2D[δ(qr − q′)] = 2π
∫ ∞

0
δ(qr − q′)J0(2πqrr)qrdqr = 2πq′J0(2πq′r)



Gq′ [S(q)](u) = 2πq′
∫ ∞

−∞

∫ 2π

0

∫ ∞

0
p(r, θ, z)J0(2πq′r)rdrdθdz

ODF Approximation by FRT

[D. Tuch, Harvard-MIT PhD thesis, 2002], [M. Descoteaux INRIA PhD thesis 2008]

• Putting everything together

• We recall that

ψ(u) =
∫ ∞

−∞

∫ 2π

0

∫ ∞

0
p(r, θ, z)δ(r, θ)rdrdθdz

• If the zeroth-order Bessel function is close to a Dirac, the FRT 
approximates well the ODF. Hence the need for high b-values...

b=1 b=4000b=1000







Mathematical Concepts for
Tensors & ODFs Processing

- Symmetric Positive Definite Matrices

- Spherical Harmonics
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Riemannian Geometry 101

[Do Carmo92]

n-dimensional Riemannian manifold
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Σ(t)

Riemannian Geometry 101

[Do Carmo92]

Notion of distance:

n-dimensional Riemannian manifold
locally looks like 

Collection of inner products 
associated to each tangent space  

Magnitude of a tangent vector depends on the
tangent space it is attached to:

!v

Σ1

Σ2

M

TΣM = Rn

Rn
M

〈., .〉Σ
TΣM

‖v‖2
Σ = 〈v, v〉Σ = vT Gv

D(Σ1,Σ2) =
∫ t2

t1

‖Σ̇(t)‖Σ(t)dt



Statistics on Riemannian Manifolds

• Empirical mean of a set of N random elements 
	 	 	 is the minimizer            of the variance:

• Empirical covariance matrix:

[Fréchet48], [Pennec-etal, IJCV/JMIV’06]

Σ = Σ

σ2 ({Σi}) =
1

N − 1

N∑

i=1

D2(Σ,Σi)

{Σi} i = 1, ..., N

Σ1 Σ2

Σ3

Σ5

Σ4

Σ
β1

β2

β3
β4

β5

Λ =
1

N − 1

N∑

i=1

ϕ(βi)ϕ(βi)T

βi = −∇ΣD
2(Σ,Σi)



The Manifold of Multivariate Normal PDFs

•           : normal distribution for           with fixed mean

• Parameterized by the 6 independent elements of its 
covariance matrice:

• When           is sufficiently smooth in the                      , it 
is natural to introduce a structure of sub-manifold 

P(r|Σ)

Σ =




Σ1 Σ2 Σ3

Σ2 Σ4 Σ5

Σ3 Σ5 Σ6





Σi, i = 1, ..., 6P(r|Σ)

r ∈ R3

S+(3) ⊂ R6

[Rao45], [Burbea-Rao82], [Amari90]



The Manifold of Multivariate Normal PDFs

Σ
Σ(t)

S+(3)

TΣ(S+(3)) = S(3)

[Rao45], [Burbea-Rao82], [Amari90]



The Manifold of Multivariate Normal PDFs

ϕ(Σ) ⊂ R6

E1

E6

Σ
Σ(t)

S+(3)

TΣ(S+(3)) = S(3)

[Rao45], [Burbea-Rao82], [Amari90]



The Manifold of Multivariate Normal PDFs

• But, there are many possible metrics between parameterized 
densities: Euclidean, J-divergence, Riemannian (more than one in 
fact!), Log-Euclidean... which one should we use and for what?

ϕ(Σ) ⊂ R6

E1

E6

Σ
Σ(t)

S+(3)

TΣ(S+(3)) = S(3)

[Rao45], [Burbea-Rao82], [Amari90]



J-divergence (Kullback-Leibler)

• Distance: Dj(A,B) =
√

1
2
Dkl(A,B) +Dkl(B,A)

Dkl(A,B) =
∫

R3
P(r|A) log

P(r|A)
P(r|B)

dr
where

• Invariance by congruence transformation:
Dkl(A,B) = Dkl(XAXT , XBXT ) ∀A,B ∈ S+(3), X ∈ GL(3)

• For 3D Gaussian densities:

Dj(A,B) =
√

1
4
(A−1B + B−1A)− 6

[Lenglet-etal04], [Wang-Vemuri04/05], [Lenglet-etal06]

∇AD2
j (A,B) =

1
4
(B−1 −A−1BA−1)



Riemannian Metric

• The Fisher information matrix is a measure of the amount of 
information carried by realizations of a random variable about the 
unknown parameters of the underlying distribution:

• Riemannian metric for Gaussian densities

gij =
∫

R3

∂P(r|Σ)
∂Σi

∂P(r|Σ)
∂Σj

P(r|Σ)dr i, j = 1, ..., 6

〈A,B〉Σ =
1
2
trace

(
Σ−1AΣ−1B

)
∀A,B ∈ S(3)
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• The Fisher information matrix is a measure of the amount of 
information carried by realizations of a random variable about the 
unknown parameters of the underlying distribution:

• Riemannian metric for Gaussian densities
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Riemannian Metric, Geodesics

• Geodesic equations:

have a closed-form solution:

d2Σk(t)
dt2

+ Γk
ij

dΣi(t)
dt

dΣj(t)
dt

= 0∀k = 1, ..., n

Σ(t) = Σ1/2
0 exp

(
tΣ−1/2

0 Σ̇0Σ
−1/2
0

)
Σ1/2

0 ∀t ∈ [0, 1]

• Geodesic distance (Jensen, 1976)

[Atkinson-Mitchell81], [Skovgaard84], [Calvo-Oller92]

Dg(Σ1,Σ2) =
√

1
2 trace

(
log2

(
Σ−1/2

1 Σ2Σ
−1/2
1

))



Riemannian Statistics

• The mean of set of tensors can be computed as the minimizer 
of the variance with

[Fletcher-etal04], [Lenglet-etal04/06],  [Pennec-etal04/06], 
[Arsigny-etal05/06],  [Schwartzmann06], [Moakher05], 
[Kindlmann07]

β1

β6
Σ(t)

Σ(0) Σ1

Σ2

Σ3

Σ4

Σ5

Σ6

β2

β3
β4

β5

βi = −∇D2
g(Σg,Σi) = Σglog(Σ−1

g Σi) ∈ SΣg
(3)

Geodesic gradient descent:

• Covariance matrix:

Σt+1 = Σ1/2
t exp

(
−dtΣ−1/2

t

(
1
N

N∑

i=1

βi

)
Σ−1/2

t

)
Σ1/2

t

Λg =
1

N − 1

N∑

i=1

βiβ
T
i

• Recent Log-Euclidean framework



Spherical Harmonics

! = 0

! = 1

! = 2

! = 3

m = −3 m = −2 m = −1 m = 0 m = 1 m = 2 m = 3

Figure 5.1: Real part squared Re[Y m
! (θ,φ)]2 of the spherical harmonics basis up to

order 3. The color map is going from red to blue for maximal to minimal values on
the sphere respectively. The 0-th order harmonic is blue because it is constant on the
sphere.

where integration over Ω denotes integration over the unit sphere (dΩ = sin θdθdφ),
and Y m′

!′ denotes the complex conjugate of Y m′

!′ . That is,

< Y m
! (θ,φ), Y m′

!′ (θ,φ) >= δmm′δ!!′ , (5.19)

where δij is the Kronecker delta, i.e.

δij =

{

1 i = j

0 i "= j

Finally, observe that with respect to the transformation T : (θ,φ) → (π − θ,φ + π),

the spherical harmonics have the following very simple behavior,

Y m
! (T (θ,φ)) =

{

Y m
! (θ,φ), if ! even

−Y m
! (θ,φ), if ! odd

(5.20)

In other words, the even order spherical harmonics are antipodally symmetric, while
the odd order spherical harmonics are antipodally anti-symmetric. In order to have
an idea of what spherical harmonics look like, we show in Figure 5.1 the real part
squared, Re[Y m

! (θ,φ)]2, of the spherical harmonics Y m
! up to order 3.

5.3 THE MODIFIED SPHERICAL HARMONICS BASIS

The spherical harmonics Y m
! (Eq. 5.17) are a basis for complex functions on

the unit sphere. Hence, any complex function defined on the sphere can be expressed
as a series of spherical harmonics. This is very powerful and analogous to the Fourier

65

• Basis for complex functions on the unit sphere
• Analogous to Fourier transform: SH series of any function
• Even order SH are antipodally symmetric
• Satisfy the angular part of the Laplace equation:

1
sin θ

∂

∂θ
(sin θ

∂Y m
l

∂θ
) +

1
sin2 θ

∂2Y m
l

∂φ2
︸ ︷︷ ︸

∆bY m
l

+l(l + 1)Y m
l = 0

l=0

l=1

l=2

l=3

m=0 m=1 m=2 m=3m=-1m=-2m=-3

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!
(l + m)!

Pm
l (cos θ)eimφ

• SH of order l and degree m are:

• SH series fit of discrete data
X = BC

⇒ C = (BT B)−1BT X



Reconstruction Methods for
Local Diffusion Models
(with contributions from M. Descoteaux)



Tensors Estimation

• Linearize the Stejskal-Tanner equation: −
1
b

ln
(

S(qk)
S0

)
= gT

k Dgk

• For N diffusion gradients and with

Gk = (g1
kg1

k, 2g1
kg2

k, 2g1
kg3

k, g2
kg2

k, 2g2
kg3

k, g3
kg3

k)T ∈ R6

ϕ(D) = (Dxx, Dxy, Dxz, Dyy, Dyz, Dzz)T ∈ R6and

• We end up with the linear system:

⇒ ϕ(D) =
((

GT G
)−1

GT
)
Y




GT

1
...

GT
N





︸ ︷︷ ︸
G

ϕ(D) =





− 1
b ln

(
S1
S0

)

...
− 1

b ln
(

SN
S0

)





︸ ︷︷ ︸
Y

• Simple and fast but no positivity constraint...

[Westin-etal02], [Mangin-etal02], 

[Tschumperlé-etal03], [Wang-etal04], 

[Niethammer-etal06], [Koay-etal06]

[Fillard-etal05/07]



Constrained Tensors Estimation

Least squares method Riemannian method

Figure 6.2: Estimation of Diffusion Tensors: comparison between classical least

squares (Left) and gradient descent in S+(3) (Right). (Blue: low anisotropy; Red:

high anisotropy). Notice the difficulty to represent tensors in the middle of the cor-

pus callosum with the least square approach, suggesting degenerate “needle-shaped”

tensors in this region.

puted from the trace of the diffusion tensor:

MD =
tr(Σ)

3
=

λ1 + λ2 + λ3

3

• The fractional anisotropy is certainly the most widely used anisotropy measure.

It is based on the variance of the eigenvalues and expressed as

FA =

√
3 ((λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2)√

2
(
λ2

1 + λ2
2 + λ3

3

)

• Westin et al. [313] introduced the notions of linear, planar and spherical

anisotropy which respectively measure the tendency of a tensor to be elon-

gated, oblate or spherical. They come from the fact that any tensor Σ can be

expressed in a basis composed by a linear tensor L = u1u
T
1 , a planar tensor

P = u1u
T
1 + u2u

T
2 and a spherical tensor S = u1u

T
1 + u2u

T
2 + u3u

T
3 , in other

words Σ = clL + cpP + csS with cl = LA = λ1−λ2

λ1+λ2+λ3
, cp = PA = 2(λ2−λ3)

λ1+λ2+λ3
and

cs = SA = 3λ3

λ1+λ2+λ3
.

6.1.5 Conclusion

We have demonstrated that it was possible to naturally enforce the positivity con-

straint in the tensor estimation procedure by working with adequate numerical tools
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• Minimize the energy:

• Intrinsic gradient: ψ(    M-estimator)

E (S0, ..., SN ) =
N∑

k=1

ψ

(
1
b

ln
(

Sk

S0

)
+ gT

k Dgk

)

︸ ︷︷ ︸
rk(D)

• Intrinsic gradient descent:

∇E =
N∑

k=1

ψ′(rk(D))Dgk (Dgk)T

Dl+1 = D1/2
l exp

(
−dtD−1/2

l

(
N∑

k=1

ψ′(rk(Dl))Dlgk (Dlgk)T

)
D−1/2

l

)
D1/2

l
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Diffusion ODFs Estimation

• Fast analytic ODF computation:

[Descoteaux et al. 2006], [Hess et al. 2006]

Funk-Hecke Theorem: Let f be a continuous function on [−1, 1] and Hl

any spherical harmonic of order l. Then, given a unit vector u
∫

|v|=1
f(uT v)Hl(v)dv = λ(l)Hl(u)

where

λ(l) =
2π

Pl(1)

∫ 1

−1
P )l(t)f(t)dt

with Pl the Legendre polynomial of degree l.

• The Funk-Radon transform is linear!

with S(q) =
N∑

j=1

cjYj(q)=
N∑

j=1

cj

∫

|q|=1
δ(uT q)Yj(q)dq

ψ(u) ! Gq′ [S(q)](u) =
∫

δ(uT q)S(q)dq

λ(l) =
2π

pl(1)

∫ 1

−1
Pl(t)f(t)dt
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Funk-Hecke Theorem: Let f be a continuous function on [−1, 1] and Hl

any spherical harmonic of order l. Then, given a unit vector u
∫

|v|=1
f(uT v)Hl(v)dv = λ(l)Hl(u)

where

λ(l) =
2π

Pl(1)

∫ 1

−1
P )l(t)f(t)dt

with Pl the Legendre polynomial of degree l.

• The Funk-Radon transform is linear!

with S(q) =
N∑

j=1

cjYj(q)=
N∑

j=1

cj

∫

|q|=1
δ(uT q)Yj(q)dq

ψ(u) ! Gq′ [S(q)](u) =
∫

δ(uT q)S(q)dq
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pl(1)

∫ 1
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Pl(t)f(t)dt

with lim
n→∞

δn(x) = δ(x)δn(x) =
n√
π

e−n2x2
s.t. , lim

n→∞

∫

R
δn(x)f(x) = f(0)

∫
δ(uT q)Yj(q)dq =

∫
lim

n→∞
δn(uT q)Yj(q)dq = 2π

Pl(j)(0)
Pl(j)(1)

Yj(q)

and so Gq′ [S(q)](u) =
∑

j

2π
Pl(j)(0)
Pl(j)(1)

cjYj(q)



Brain Anatomical
Connectivity Mapping

Neural fibers as shortest paths
(Joint work with E. Prados & J.P. Pons)





Distance function Geodesics

Fiber Tracts as Geodesic Paths

Data: CEA-SHFJ, Orsay
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Geometry Induced by a Diffusion Process

Notion of diffusion variance metric: G = D−1

v = (v1, v2)T ∈ R2

‖v‖ ?

λ2 = 1

λ1 = 3 ⇒ ‖v‖2 = 1
3v2

1 + v2
2

λ1 = 1 ⇒ ‖v‖2 = v2
1 + v2

2

[Darling98], [de Lara95]



Geometry Induced by a Diffusion Process

Notion of diffusion variance metric: G = D−1

v = (v1, v2)T ∈ R2

‖v‖ ?

• Use the complete information provided by diffusion tensors
• How do we:
‣ compute the geodesic distance?
‣ compute the shortest paths (= fiber tracts?)
‣ assess the likelihood of connection?

λ2 = 1

λ1 = 3 ⇒ ‖v‖2 = 1
3v2

1 + v2
2

λ1 = 1 ⇒ ‖v‖2 = v2
1 + v2

2

[Darling98], [de Lara95]



Intrinsic Distance Computation: 2 perspectives

The distance function     is the unique solution of 
the anisotropic eikonal equation:

φ

‖gradφ‖ =
(

∂φ
∂xi

∂φ
∂xj gij

)1/2
= 1 inM\x0

φ(x0) = 0with

Boundary value formulation

‖gradφ‖ = 1

S(t) = {x ∈M : φ(x) = t}
Front:

Initial value formulation
∂ψ
∂t + ‖gradψ‖ = 0

S(t) = {x ∈M : ψ(x, t) = 0}
Front:

[Crandall-Evans-Lions84], [Osher93], [Kimmel-etal95], [Mantegazza02]
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Boundary Value Formulation (Fast Marching)

• FMM constructs solution by propagating information one 
way: From small to large values.

• Key point: Approximation of the differential                  in the 
Hamiltonian :

dφ ∈ T ∗
xM

H(x,dφ) = dφT G(x)dφ− 1
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x ∈ Ω ⊂ R3

• FMM constructs solution by propagating information one 
way: From small to large values.

• Key point: Approximation of the differential                  in the 
Hamiltonian :

dφ ∈ T ∗
xM

H(x,dφ) = dφT G(x)dφ− 1
• Choose optimal combination of neighbors (optimal simplex) 
that yields the smallest value of 

• Used to compute, on the fly, geodesics’ velocity 
and statistics of a connectivity measure

φ

γ′(x)



Boundary Value Formulation (Fast Marching)

x ∈ Ω ⊂ R3

• FMM constructs solution by propagating information one 
way: From small to large values.

• Key point: Approximation of the differential                  in the 
Hamiltonian :

dφ ∈ T ∗
xM

H(x,dφ) = dφT G(x)dφ− 1
• Choose optimal combination of neighbors (optimal simplex) 
that yields the smallest value of 

• Used to compute, on the fly, geodesics’ velocity 
and statistics of a connectivity measure

φ

C(x) =
√

γ′(x)D(x)αγ′(x)

γ′(x)
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• At each location           , test the    possible approximations:23x ∈M

[dφ]i = φ(x)−φ(x+sihiei)
−sihi

i = 1,2,3
si = ±1
ei canonical basis of R3

Boundary Value Formulation (Update Scheme)

hi voxel size

• Optimal dynamics:
 
has to verify

This automatically yields the minimum update value for 

f∗(x) = gradφ(x) = D(x)dφ(x)

sign(f∗(x))i = si ∀i = 1, 2, 3

φ



Computational Efficiency
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[Lenglet-etal04]: 20 min

Geodesics:
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PC: 1.7 GHz / 1.5 Gb 
RAM

Data: CMRR, University of Minnesota

Top 10% connections to the CC splenium
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Brain Anatomical
Connectivity Mapping

Diffusion Tensor Sharpening
(Joint work with M. Descoteaux)
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• Using the full diffusion tensor is good but...

• Front propagation / stochastic tractography techniques 
are sensitive to the intrinsic “smoothness” of the DT

• Tracts may leak into unexpected regions
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Original ODF k=1 k=2 k=3

• Goal: Enhance the different fiber compartments

• Go from diffusion ODF to fiber ODF

• Model: Diffusion ODF is the spherical convolution of an axially 
symmetric single fiber response with a fiber ODF



HARDI & Fiber Orientation Estimation: Sharpening

Original ODF k=1 k=2 k=3

• Goal: Enhance the different fiber compartments

• Go from diffusion ODF to fiber ODF

• Model: Diffusion ODF is the spherical convolution of an axially 
symmetric single fiber response with a fiber ODF

fiber ODF

fiber ODF

diffusion ODF



Outline of the Tensor Sharpening Procedure
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Spherical function
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Sharp spherical function

Diffusion tensor D

Spherical function

Fiber tensor

Deconvolution 
on the sphere by

fiber response function

Outline of the Tensor Sharpening Procedure
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• Diffusion ODF S is a smoothed version of the fiber ODF F
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Step 2: Sharpening as a Deconvolution

• Inspired by Tournier et al. (Neuroimage 2004)
• Diffusion ODF S is a smoothed version of the fiber ODF F

Fiber ODF F Diffusion ODF SIdeal fiber response R

• Need to define a “good” fiber response function R
• Assumption of Gaussian profile θR(u) = e−buT Du

u

D =




a 0 0
0 a 0
0 0 c



With R(θ) ∝ e−((c−a) cos2 θ+a)

Rsharp(t) = e(t2(c1/k−a1/k)+a1/k)With k, the sharpening factor
and t := cos(θ)



Step 2: Deconvolution

• Choice of parameters a, c and k:
• One can fix (a,a,c) and vary k to obtain various FA
• One can fix k and vary the ratio a/c
• We choose to fix (a,a,c) and vary k to achieve realistic FA

(a, a, c) = (3001/k, 3001/k, 17001/k)× 10−6mm2/s (FA = 0.5 for k =2)

• Deconvolution is done using the Funk-Hecke theorem:

S(u) =
∫

|v|=1
R(〈u, v〉)F (v)dv (Convolution of F with R)

∑

j

cjYj(u) =
∑

j

c′
j

∫

|v|=1
R(〈u, v〉)Yj(v)dv

λ(j) = 2π

∫ 1

−1
Pl(j)(t)R(t)dtc′

j = cj/λ(j) with

=
∑

j

c′
jλ(j)Yj(u)

(Funk-Hecke)
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Anterior Thalamic Radiation

Seed

Diffusion tensor Fiber tensor





Images from [Koch et al, NeuroImage 2002, Anwander et al, Cerebral Cortex 2007]



Cortico-spinal Tract

Diffusion tensor Fiber tensor

Seed





Images from [Koch et al, NeuroImage 2002, Anwander et al, Cerebral Cortex 2007]



Combining DTI & fMRI
 
Architecture of the cortico-striatal connections
(Joint work with S. Lehéricy)



Overview

•Anatomical connections of the human striatum can be 
parceled by DTI deterministic tractography.

• Invasive animal studies showed that cortico-striatal fibers 
are organized in a set of discrete circuits.

• Each circuit is related to distinct behavioral functions:

‣ Movement preparation and execution

‣ Planning and decision making

‣ Learning

•We investigate the connectivity patterns of 2 regions of 
the striatum.

[Lehericy-Ducros-etal04], [Alexander-DeLong-etal86]



Architecture of the Cortico-Striatal Connections

Image from [Lehericy-Ducros-etal04] [Graybiel95], [Lehericy-Benali-etal03], [Lehericy-etal05]
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>> Anterior compartment
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Architecture of the Cortico-Striatal Connections

 Associative striatal regions 
are implicated in movement 
selection / decision, mental 
simulation of grasping, task 
planning and learning of 
new motor skills
>> Anterior compartment

 Sensorimotor striatal regions 
important for movement 
execution and skills storage 
(maintain speedy 
representation and 
automaticity)
>> Posterior compartment

Image from [Lehericy-Ducros-etal04] [Graybiel95], [Lehericy-Benali-etal03], [Lehericy-etal05]



• In [Lehericy-etal05], 13 right-handed subjects followed over 4 weeks

• Subjects asked to practice sequence of 8 moves with fingers 2 and 5

• 2 main foci of activation in the putamen:  Anterodorsal (day 1, black) / 
Posteroventral (day 28, gray).

• Regression analysis on pecentage signal increase:

• Activation decreases with practice in anterodorsal putamen (bilateral)

• Activation increases with practice in posteroventral putamen (bilateral)

Architecture of the Cortico-Striatal Connections

Image from [Lehericy-etal05]



Architecture of the Cortico-Striatal Connections



Native Individual maps 
(13 subjects)

Normalized 
Individual maps

Average of Normalized 
Individual maps

Before 
learning

After 
learning

Architecture of the Cortico-Striatal Connections







DTI / HARDI Segmentation

Variational formulation
(Joint work with M. Rousson, with contributions from M. Descoteaux)
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Fiber Bundles Segmentation by 
Statistical Surface Evolution

?

Images from [Williams-etal97]

Key idea:
Modeling of

diffusion tensors distribution

Evolve a 3D surface
to maximize the 

partition likelihood



Statistical Surface Evolution

•     : Evolving surface (implicitly represented by     )
•          : Diffusion tensor at voxel
B ψ






ψ(x) = 0, if x ∈ B
ψ(x) = D(x,B), if x ∈ Ω1

ψ(x) = −D(x,B), if x ∈ Ω2

E(ψ, Σ1,2,Λ1,2) =

ν

∫

Ω
δ(ψ)‖∇ψ‖ dx +

∫

Ω
δ(ψ)‖∇ψ‖gα(Σ(x)) dx

−
∫

Ω1

log p(Σ(x)|Σ1,Λ1)dx−
∫

Ω2

log p(Σ(x)|Σ2,Λ2)dx

• The structure of interest is extracted by minimizing:

Σ(x) x
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Statistical Surface Evolution

∂ψ

∂t
= δ(ψ)

(
(ν + gα(Σ)) div

(
∇ψ

‖∇ψ‖

)
+

∇φ

‖∇φ‖ ·∇gα(Σ) + log
p(Σ|Σ1,Λ1)
p(Σ|Σ2,Λ2)

)

•Energy comes from the fact that, if tensors are iid, we have

p(Σ|ψ) =
∏

x∈Ω1

p1(Σ(x)).
∏

x∈Ω2

p2(Σ(x)).
∏

x∈B
pb(Σ(x))

with

and typically

•Evolution equation:

pb(Σ(x)) = exp (−gα(‖∇Σ(x)‖))

gα(y) =
1

1 + yα
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Human Brain DTI: Corpus Callosum

Rough initialization in the genu and splenium

Euclidean metric

J-divergence metric

Riemannian metric

Data: Center for Magnetic Resonance Research, University of Minnesota
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Rough initialization in the genu and splenium
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Data: Center for Magnetic Resonance Research, University of Minnesota



Corpus Callosum: Euclidean metric



Corpus Callosum: J-divergence metric



Corpus Callosum: Riemannian metric



Metrics Comparison

Euclidean

J-divergence

Riemannian

Data: Center for Magnetic Resonance Research, University of Minnesota



Human Brain DTI: Corticospinal Tract
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Biological Phantom

[Campbell-etal Neuroimage 2005]

Produced by J. Campbell et al. at the 
McConnel Brain Imaging Center and Montreal
Neurological Institute.

From 2 excised Sprague-Dawley rat spinal cords
embedded in 2% agar. Cords are 7-12 cm by 5 mm.

Scanned at 1.5T with a knee coil.

90 DW directions
b-value = 1300 s/mm2

TR = 8s
TE = 110ms
40 slices, 2.5 mm isotropic
10 min scan.
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Biological Phantom



Biological Phantom

Euclidean
J-divergence
Geodesic



HARDI Segmentation

[Descoteaux-etal JMIV 2008]

〈ψ, ψ′〉 =
∫

S2
ψ(r).ψ′(r)dr =

∫

S2

(
R∑

i=1

ciYi(r)

)(
R∑

i=1

c′
iYi(r)

)
dr =

R∑

i=1

ci.c
′
i

⇒ ‖ψ − ψ′‖2 =
R∑

i=1

(ci − c′
i)

2

• Dissimilarity measure: L2 norm of SH coefficients difference

• Assumption of Gaussian distribution for SH coefficients:

Distribution in
manual segmentation
of Corpus Callosum



Synthetic Example
DTI ODFs

Initialization DTI Segmentation HARDI Segmentation
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Initialization DTI Segmentation HARDI Segmentation



Human Brain DTI: Corpus Callosum

Data: Max Planck Institute, Leipzig, Germany



Human Brain DTI: Corticospinal Tract

Data: Max Planck Institute, Leipzig, Germany



HARDI Mapping of 
White Matter Complexity
 
A manifold learning approach
(Joint work with G. Haro, G. Sapiro and P.  Thompson)



Detecting Mixed Dimensionality and Density

Detecting mixed dimensionality and density

Motivation

Goal
Detect and estimate different dimensions and densities in the same
noisy point cloud data and cluster the points according to these
characteristics.
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Motivation

Goal
Detect and estimate different dimensions and densities in the same
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characteristics.
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Goal: 
• Detect & estimate different dimensions and densities 
in the same noisy point cloud (stratifications)
• Cluster the points accordingly



Haro, Randal & Sapiro’s Approach

• Translated Poisson model to account for noise

• Local dimension and density estimator

•Translated Poisson mixture model to account for 
different sub-manifolds

• Clustering algorithm algorithm using EM based on 
mixture model



Experiments

Clustering of a Swiss roll and a line with two different densities

m: 1.98, 1.02, 0.99.
θ: 0.49, 0.53, 6.89.

R-TPMM (k = 20, J = 3, α = 2).

(TDA meeting) December 10, 2007 22 / 27

Numerical Experiments

Swiss roll and line with 2 different densities



FA Raw HARDI signal 4th order ODFs 6th order ODFs
4th order ODFs
with sharpening

6th order ODFs
with sharpening

Clustering from HARDI



Raw HARDI signal



4th order ODFs



4th order ODFs with Sharpening



4th order ODFs with Sharpening

5.41 5.32 4.64 4.53 2.56 1.33
Complexity
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d = 28.57
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m = 5.41
d = 28.57

m = 5.32
d = 25.96

m = 4.64
d = 20.59

m = 2.56
d = 7.73

4th Order ODFs
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