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The Whole-Brain Approach
to Population Analysis
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Why Focus on Structures?

Evaluate specific a priori hypotheses

Reduce confounding effects of surrounding
structures

Enable structures to be normalized independently
Increase the level of detall
Present findings in the context of anatomy




Structure-Specific Coordinate Systems
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Structure-Specific Normalization




Preliminaries

A specialized method for A surface-based
DTI registration framework for
and template-building DTI population studies



Normalization with Diffeomorphisms

Image |

1/4) Vv(x,1/2)
v(x,0) et Vo3 v(x,1)

Find o(x,t) =x+ /01 v(p(x,t),t)dt

with qb(:c, 1)] = J and D(¢(x,0),d(x,1)) :/1 |v(x,t)||Ldt minimal.



A Diffeomorphic Deformation

:1;+/O v(p(x,t),t)dt

Discretize v(x,t) and integrate at
sub-voxel resolution

v(x,dt) . v(x,2dt)

o VLN

Qﬁ( IS a path of diffeomorphisms and

glves a smooth curve at each voxel

dt



mmetric Normalization
with Diffeomorphisms

Find é(z,t) =x+/

0.5

vi(é(z,t),t)dt +
° gradients wrt |

1

'UZ(QS(:C: t)a t)dt
- gradients wrt J

with ¢1(z,0.5)] = ¢2(2,0.5)J and ¢(z,1) = ¢3 ' (¢1(x,0.5),0.5)
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A Symmetric Normalization
Diffeomorphic Deformation




Extension to Symmetric Population Studies
Optimal Template Construction

Find the and

that gives the
“smallest” parameterization of
the dataset:

D inf / CIREIE + (lwbl3 } dt +

/Q ST04(0.5)) — Ji(84(0.5))Fa.
where Vi, ¢%(0) = o4 I 0} (x.1)) = J;

and each pairwise problem is solved with

SyN (see equation 1 and 2).
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Extension to Symmetric Population Studies
Optimal Template Construction

Find the and

that gives the
“smallest” parameterization of
the dataset:

D inf / CIREIE + (lwbl3 } dt +

/ wIT(84(0.5)) — Ji(#h(0.5)) Pd2.
Q
where Vi, ¢%(0) £ ) I(¢%(x.1)) = J;

and each pairwise problem is solved with

SyN (see equation 1 and 2).



Steps Iin Template Construction

for Lesioned Brains
Benefit of Shape Update

Initial Template
Later Template

Shape
Update
to the
Previous
Template



Comparison with Appearance Averaging Only
Need for Shape Update

Initial Image A

SyN Result

Initial Image B

Intensity averaging
does not fully correct
blurring caused by
mismatch during
initialization

This problem becomes
more severe with more
complex shapes or
worse initialization



Comparison with Appearance Averaging Only
Need for Shape Update

.. .. Intensity averaging
Initial Image A Initial Image B does not fully correct
blurring caused by
mismatch during
initialization

This problem becomes
more severe with more
complex shapes or
worse initialization




Example SyN Templates

Neonatal
CHD

Adolescent

Adult
Control




Example DTI Template
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Spatial Transformations
Need for DT Reorientation

No Reorientation With Reorientation
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Affine Tensor Transformations

Original
Tensor
We wish to
of the DTs

But we must reorient
them appropriately

Require R that reflects
reorientation due to F

Transformed
Tensor

D—F-D-FT

D—R-D-R"

For an affine
transformation, (F,t),
D—F.D-FT?

e Decompose F into:
 Rigid rotation, R, and
e Deformation, U:
F=RU
R=F (F" F)2
e Then reorient D using R:
D’ =R:-D:RT



Affine Tensor Transformations

Original Transformed
Tensor Tensor For an affine
transformation, (F,t),
. ' o
D—F-D-FT
We wish to « Decompose F into:
of the DTs

 Rigid rotation, R, and

But we must reorient e Deformation, U:

them appropriately

F=RU
Require R that reflects . R=F .(FT .F)?
reorientation due to F D—=R-DR * Then reorient D using R:




Piece-wise Affine DTI Registration

Task-Driven Evaluation Study:
White matter changes in ALS
Cross-sectional design (8 patients, 8 controls)
Key Findings:
Increased sensitivity of detected FA changes with
Reduced susceptibility to false positives due to shape confounds




Tensor SyN Captures Large Deformations

Deformed
to match

Subject

Template




Tensor SyN vs SyN on FA

Template DT Tensor SyN SyN registration
registration on FA



Tract-Specific Analysis Framework

Fasciculus Surface-Based

Normalization Segmentation Modeling

Representation via

Population-Specific WM Atlas Fiber tracking geometrical Models

Tract-Wise

Track grouping and labeling Statistical Mapping

Visualization
and Flattening




Tract-Based Analysis in the Literature

/end

origin




Surface-Based Tract Representation

fibers segmentation cm-rep skeleton cm-rep boundary

»

*

n
=

INN  Od4l




Expert-Driven Tract Labeling

corpus callosum (CC)
corticospinal tract (CST)
inferior longitudinal
fasciculus (ILF)
superior longitudinal
fasciculus (SLF)
inferior fronto-occipital
fasciculus ()

uncinate fasciculus
(UNC)

=




Tracking and Labeling on the Surface

- Brodmann Area 8

Brodmann Area 9

- Brodmann Area 10

Brodmann Area 6 Brodmann Area 18

- Brodmann Area 7 - Brodmann Area 19




Tract-Wise Statistical Mapping




Flattening for White Matter Tracts
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