Tract-Specific Analysis for DTI of Brain White Matter

Paul Yushkevich, Hui Zhang, James Gee Penn Image Computing & Science Lab Department of Radiology University of Pennsylvania

The Whole-Brain Approach to Population Analysis

From Simon et al., Neuroimage, 2005

Why Focus on Structures?

- Evaluate specific a priori hypotheses
- Reduce confounding effects of surrounding structures
- Enable structures to be normalized independently
- Increase the level of detail
- Present findings in the context of anatomy

Structure-Specific Coordinate Systems

Talairach space: a coordinate system for the whole brain

A shape-based coordinate system for the corpus callosum in 2D

A three-dimensional shapebased coordinate system

Structure-Specific Normalization

Geometrical Correspondence

Motivation:

Anatomical correspondences may not be always continuous across structures

Motivation:

In the absence of strong intensity features, structures may be better normalized on the basis of shape cues

Preliminaries

A specialized method for DTI registration and template-building

A surface-based framework for DTI population studies

Normalization with Diffeomorphisms

A Diffeomorphic Deformation

$$\phi(\mathbf{x}, t) = x + \int_0^1 v(\phi(\mathbf{x}, t), t) dt$$

$$\int \text{Discretize } v(\mathbf{x}, t) \text{ and integrate at sub-voxel resolution}$$

$$\phi(\mathbf{x}, t) = x + \int_0^1 \underbrace{\bullet \quad v(\mathbf{x}, dt) \quad v(\mathbf{x}, 2dt) \quad v(\mathbf{x}, 1)}_{\phi(\mathbf{x}, dt) \quad v(\mathbf{x}, 2dt)} dt$$

 $\phi(x,t)$ is a path of diffeomorphisms and gives a smooth curve at each voxel

Optimization is performed by manipulating v at each x and t

Symmetric Normalization with Diffeomorphisms

Find
$$\phi(x,t) = x + \int_0^{0.5} v_1(\phi(x,t),t)dt + \int_{0.5}^1 v_2(\phi(x,t),t)dt$$

gradients wrt / gradients wrt /

with $\phi_1(x, 0.5)I = \phi_2(x, 0.5)J$ and $\phi(x, 1) = \phi_2^{-1}(\phi_1(x, 0.5), 0.5)$

A Symmetric Normalization Diffeomorphic Deformation

Extension to Symmetric Population Studies Optimal Template Construction

Find the template and set of transformations that gives the "smallest" parameterization of the dataset:

$$\begin{split} \sum_{i} \inf_{\phi_1^i} & \inf_{\phi_2^i} \int_{t=0}^1 \{ \|v_1^i\|_L^2 + \|v_2^i\|_L^2 \} dt + \\ & \int_{\Omega} \omega \overline{I(\phi_1^i(0.5))} - J_i(\phi_2^i(0.5))|^2 d\Omega. \\ & \text{where } \forall i, \phi_1^i(0) = \psi \overline{I(\phi_1^i(x,1))} = J_i, \\ & \text{and each pairwise problem is solved with} \\ & \text{SyN} \text{ (see equation 1 and 2).} \end{split}$$

Varying the geometric origin of the study is fundamental to minimizing the total distance between the template and the population

Extension to Symmetric Population Studies Optimal Template Construction

Find the template and set of transformations that gives the "smallest" parameterization of the dataset:

$$\begin{split} \sum_{i} \inf_{\phi_1^i} & \inf_{\phi_2^i} \int_{t=0}^1 \{ \|v_1^i\|_L^2 + \|v_2^i\|_L^2 \} dt + \\ & \int_{\Omega} \omega |\bar{I}(\phi_1^i(0.5)) - \underbrace{J_i}\phi_2^i(0.5))|^2 d\Omega. \\ & \text{where } \forall i, \phi_1^i(0) = \psi, \bar{I}(\phi_1^i(\mathbf{x}, 1)) = \underbrace{J_i} \\ & \text{and each pairwise problem is solved with} \\ & \text{SyN} \text{ (see equation 1 and 2).} \end{split}$$

Varying the geometric origin of the study is fundamental to minimizing the total distance between the template and the population

Extension to Symmetric Population Studies Optimal Template Construction

Find the template and set of transformations that gives the "smallest" parameterization of the dataset:

$$\begin{split} \sum_{i} \inf_{\phi_1^i} & \inf_{\phi_2^i} \int_{t=0}^1 \{ \|v_1^i\|_L^2 + \|v_2^i\|_L^2 \} dt + \\ & \int_{\Omega} \omega |\bar{I}(\phi_1^i(0.5)) - J_i(\phi_2^i(0.5))|^2 d\Omega. \\ & \text{where } \forall i, \phi_1^i(0) = \psi \bar{I}(\phi_1^i(\mathbf{x}, 1)) = J_i, \\ & \text{and each pairwise problem is solved with} \\ & \text{SyN} \text{ (see equation 1 and 2).} \end{split}$$

Varying the geometric origin of the study is fundamental to minimizing the total distance between the template and the population

Steps in Template Construction for Lesioned Brains Benefit of Shape Update

Initial Template Later Template Shape Update to the Previous Template

Comparison with Appearance Averaging Only Need for Shape Update

Intensity averaging does not fully correct blurring caused by mismatch during initialization

This problem becomes more severe with more complex shapes or worse initialization

SyN finds the theoretical result for the **mean shape and appearance**

Comparison with Appearance Averaging Only Need for Shape Update

Intensity averaging does not fully correct blurring caused by mismatch during initialization

This problem becomes more severe with more complex shapes or worse initialization

SyN finds the theoretical result for the **mean shape and appearance**

Example SyN Templates

Example DTI Template

Spatial Transformations Need for DT Reorientation

No Reorientation

With Reorientation

Tensors are re-located but not reoriented Tensors are correctly re-located and reoriented

Affine Tensor Transformations

Original Tensor

Transformed

Tensor

 $D \rightarrow F \cdot D \cdot F^{\mathrm{T}}$

For an affine transformation, (F,t), $D \rightarrow F \cdot D \cdot F^{\mathsf{T}}$?

No...

We wish to preserve the shape of the DTs

- But we must reorient them appropriately
- Require *R* that reflects reorientation due to F

 $D \rightarrow R \cdot D \cdot R^{\mathrm{T}}$

Finite Strain Estimation

- Decompose *F* into:
 - Rigid rotation, R, and
 - Deformation, U: $F = R \cdot U$
 - $R = F \cdot (F^T \cdot F)^{-1/2}$
- Then reorient *D* using *R*:

 $D' = R \cdot D \cdot R^T$

Affine Tensor Transformations

Original Tensor

Transformed

Tensor

 $D \rightarrow F \cdot D \cdot F^{\mathrm{T}}$

For an affine transformation, (F,t), $D \rightarrow F \cdot D \cdot F^{\mathsf{T}}$?

• No...

 We wish to preserve the shape of the DTs

- But we must reorient them appropriately
- Require *R* that reflects reorientation due to *F*

 $D \rightarrow R \cdot D \cdot R^{\mathrm{T}}$

 $\phi(x,1)I = J$

Finite Strain Estimation

- Decompose *F* into:
 - Rigid rotation, R, and
 - Deformation, U: $F = R \cdot U$
 - $R = F \cdot (F^T \cdot F)^{-1/2}$
- Then reorient D using R:

 $D' = R \cdot D \cdot R^T$

Piece-wise Affine DTI Registration

- Task-Driven Evaluation Study:
 - White matter changes in ALS
 - Cross-sectional design (8 patients, 8 controls)
- Key Findings:
 - Increased sensitivity of detected FA changes with full-tensor registration
 - Reduced susceptibility to false positives due to shape confounds

Deformable registration of FA images to an external template using SPM2 Population-Specific Atlas via diffeomorphic registration of FA images Population-Specific Atlas via registration of full diffusion tensors

Tensor SyN Captures Large Deformations

Tensor SyN vs SyN on FA

Template DT

Tensor SyN registration

SyN registration on FA

Tract-Specific Analysis Framework

Tract-Based Analysis in the Literature

Curve-Based

Skeleton-Based

Curve-based tract representation (Corouge et al., *MedIA*, '06)

Skeleton-based white matter representation (Smith et al., *Neuroimage*, '06)

Surface-Based Tract Representation

Expert-Driven Tract Labeling

ROI delineation

Fiber selection

corpus callosum (CC) corticospinal tract (CST) inferior longitudinal fasciculus (ILF) superior longitudinal fasciculus (SLF) inferior fronto-occipital fasciculus (IFO) uncinate fasciculus (UNC)

Surface representation

Six sheet-like fasciculi

Tracking and Labeling on the Surface

Tract-Wise Statistical Mapping

Dimensionality Reduction

Model and fibers

Subject FA Maps

Tract-wise t-map

Flattening for White Matter Tracts

3D t-statistic map

Results shown are ADC difference maps from a 22q11.2 deletion syndrome study (Tony J. Simon, PI)

2D FWER-controlled cluster analysis

L-ILF

L-IFO

R-IFO R-ILF

ADC cluster z-score