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Tensor-derived parameters: Fractional Anisotropy

FA=0          FA=0.8

• FA encodes how strongly directional diffusion is
• (derived from diffusion tensor eigenvalues)

• Hence good marker for WM integrity
• i.e., good marker for disease, development, etc.



Orthogonal Tensor Invariants (Kindlmann, TMI 2007)

• Nice to have 3 orthogonal (independent) tensor-derived 
measures:  MD, FA & “Mode”

• Mode: is the tensor tubular (one strong fibre) or flat-
cylindrical (two strong fibres)?
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VBM-style Analysis of FA

• VBM [Ashburner 2000, Good 2001]
• Align all subjects’ data to standard space
• Segment -> grey matter segmentation
• Smooth GM
• Do voxelwise stats (e.g. controls-patients)

• VBM on FA [Rugg-Gunn 2001, Büchel 2004, Simon 2005]
• Like VBM but no segmentation needed
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VBM-style Analysis of FA
• Strengths
• Fully automated & quick
• Investigates whole brain

• Problems [Bookstein 2001, Davatzikos 2004, Jones 2005]
• Alignment difficult; smallest systematic shifts between 

groups can be incorrectly interpreted as FA change
• Needs smoothing to help with registration problems
• No objective way to choose smoothing extent



Hand-placed voxel/ROI-based FA Comparison

labour-intensive, subjective, potentially inaccurate, doesn’t investigate whole brain



!

Tractography-Based FA Comparison

Gong 2005
• Method [Gong 2005, Corouge 2006]

• Define a given tract in all subjects
• Parameterise FA along tract
• Compare between subjects

• Strength: correspondence issue hopefully resolved
• Problems

• Currently requires manual intervention to specify tract
• Hence doesn’t investigate whole brain
• Projection of FA onto tract needs careful thought



!

Tractography-Based FA Comparison

Gong 2005



Yushkevich & Gee, 
NeuroImage 2008

• cross-subject 
tensor averaging

➡ standard-space 
tractography (6 
major fasciculi)

➡ medial surfaces

➡ project MD onto 
medial surface

➡ cross-subject 
stats

Tractography-Based FA Comparison
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1. Use medium-DoF nonlinear reg to 
pre-align all subjects’ FA

(nonlinear reg: FNIRT)



2. Create mean FA image   (no smoothing)
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2. “Skeletonise” Mean FA



2. “Skeletonise” Mean FA



3. Threshold Mean FA Skeleton
giving “objective” tract map
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4. For each subject’s warped FA, fill each point on the 
mean-space skeleton with nearest maximum FA value 

(i.e., from the centre of the subject’s nearby tract)
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5. Do cross-subject voxelwise stats on skeleton-projected FA



5. Do cross-subject voxelwise stats on skeleton-projected FA
6. Threshold, (e.g., permutation testing, including multiple 

comparison correction)



TFCE for TBSS
controls > schizophrenics

p<0.05 corrected for multiple comparisons across space, 
using randomise

cluster-based: 
cluster-forming 
threshold = 
2 or 3

TFCE



Differences in healthy controls

Normal variation in bimanual 
co-ordination skill
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• Inter-individual variation in FA along a specific motor   
pathway is related to variation in motor skill

• Experience-dependent structural changes?
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Schizophrenia (Mackay)
• TBSS & VBM show reduced FA in corpus callosum & fornix
• VBM shows spurious result in thalamus due to increased ventricles in schiz.

           TBSS                     VBM           mean FA (controls)   mean FA (schiz.)



Multiple Sclerosis (Cader, Johansen-Berg & Matthews)

• 15 MS patients

• Yellow = -ve corr. FA vs EDSS

• Blue = group lesion probability (50%)
• Red = -ve corr. FA vs lesion volume

• Note reduced FA away from lesions



Multiple Sclerosis (Cader, Johansen-Berg & Matthews)



TBSS & FSL-VBM in 
adolescent-onset schizophrenia

Douaud & James, Brain 2007

FA reduction
GM reduction



TBSS - Conclusions

• Attempting to solve correspondence/smoothing problems
• Less ambiguity of interpretation / spurious results than VBM
• Easier to test whole brain than ROI / tractography

• Limitations & Dangers
• Interpretation of partial volume tracts still an issue
• Crossing tracts?

• Future work
• Use full tensor (for registration and test statistic)
• Use other test statistics (MD, PDD, width)
• Multivariate stats (across voxels and/or different

diffusion measures) & discriminant (ICA, SVM)



original 0.7mm data -> FA
data smoothed to match

2mm data -> FA
data smoothed to match

3.5mm data -> FA

At “normal” resolutions, tracts appear thinner than they really are
primarily because of the interference between orthogonal anisotropy in GM and WM

high-resolution ex-vivo diffusion data:
McNab & Miller (FMRIB)     

computation resources:
Jones, Stathakis & Wise (CUBRIC cluster) 



Disambiguating PVE changes from FA changes

• Even with the TBSS approach, if a tract is of 
similar size to voxels (or smaller), there will be 
partial-volume effects at the tract centre

• Hence: is an apparent change in FA caused by a 
change in partial voluming across subjects, or a 
change in true FA?

• Hard to disambiguate



F G H I J

Disambiguating PVE changes from FA changes
F: original high-resolution “ground truth” MD image

G: WM PVE as it would appear in normal-res data
         (high-res MD -> FAST segmentation -> high-res WM PVE -> normal-res WM PVE)

H: original high-resolution “ground truth” FA

I: normal-res FA
         (downsample original data -> form FA -> TBSS skeletonise)

J: “corrected” normal-res FA on skeleton
         (feed apparent normal-res FA and normal-res WM PVE into correction model)

Quadratic model of trueFA = f(apparentFA,WM-PVE) works well

high-resolution ex-vivo diffusion data: McNab & Miller (FMRIB)     computation resources: Jones, Stathakis & Wise (CUBRIC cluster) 



Disambiguating PVE changes from FA changes
So....model trueFA = f(apparentFA,WM-PVE) worked well....but in “normal” data we don’t 
have access to such a nice tissue-type segmentation from the same diffusion acquisition.....

Hence: the “tensor-covariance” is useful [Kindlmann, IEEE-TMI 2007]. This describes how 
the tensor at a voxel covaries with neighbouring tensors, and hence contains useful 
information about effects of PVE, tract-thinning, etc.

So: use model trueFA = f(apparentFA, tensor-covariance) R̂3R̂2R̂1 Φ̂1 Φ̂2 Φ̂3
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Disambiguating PVE changes from FA changes

high-resolution ex-vivo diffusion data: McNab & Miller (FMRIB)     computation resources: Jones, Stathakis & Wise (CUBRIC cluster) 
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So....model trueFA = f(apparentFA,WM-PVE) worked well....but in “normal” data we don’t 
have access to such a nice tissue-type segmentation from the same diffusion acquisition.....

Hence: the “tensor-covariance” is useful [Kindlmann, IEEE-TMI 2007]. This describes how 
the tensor at a voxel covaries with neighbouring tensors, and hence contains useful 
information about effects of PVE, tract-thinning, etc.

So: use model trueFA = f(apparentFA, tensor-covariance)


