

TBSS : Tract-Based Spatial Statisics

- Need: robust "voxelwise" cross-subject stats on DTI
- Problem: alignment issues confound valid local stats
- TBSS: solve alignment using alignment-invariant features:
- Compare FA taken from tract centres (via skeletonisation)

TBSS : Tract-Based Spatial Statisics

- Need: robust "voxelwise" cross-subject stats on DTI
- Problem: alignment issues confound valid local stats
- TBSS: solve alignment using alignment-invariant features:
- Compare FA taken from tract centres (via skeletonisation)

Tensor-derived parameters: Fractional Anisotropy

- FA encodes how strongly directional diffusion is
 - (derived from diffusion tensor eigenvalues)
- Hence good marker for WM integrity
 - i.e., good marker for disease, development, etc.

- Nice to have 3 orthogonal (independent) tensor-derived measures: MD, FA & "Mode"
- Mode: is the tensor tubular (one strong fibre) or flatcylindrical (two strong fibres)?

VBM-style Analysis of FA

- VBM [Ashburner 2000, Good 2001]
- Align all subjects' data to standard space
- Segment -> grey matter segmentation
- Smooth GM
- Do voxelwise stats (e.g. controls-patients)
- VBM on FA [Rugg-Gunn 2001, Büchel 2004, Simon 2005]
- Like VBM but no segmentation needed

VBM-style Analysis of FA

- VBM [Ashburner 2000, Good 2001]
- Align all subjects' data to standard space
- Segment -> grey matter segmentation
- Smooth GM
- Do voxelwise stats (e.g. controls-patients)
- VBM on FA [Rugg-Gunn 2001, Büchel 2004, Simon 2005]
- Like VBM but no segmentation needed

Büchel 2004

VBM-style Analysis of FA

- Strengths
 - Fully automated & quick
 - Investigates whole brain
- Problems [Bookstein 2001, Davatzikos 2004, Jones 2005]
 - Alignment difficult; smallest systematic shifts between groups can be incorrectly interpreted as FA change
 - Needs smoothing to help with registration problems
 - No objective way to choose smoothing extent

Hand-placed voxel/ROI-based FA Comparison

labour-intensive, subjective, potentially inaccurate, doesn't investigate whole brain

Tractography-Based FA Comparison

- Method [Gong 2005, Corouge 2006]
 - Define a given tract in all subjects
 - Parameterise FA along tract
 - Compare between subjects
- Strength: correspondence issue hopefully resolved
- Problems
 - Currently requires manual intervention to specify tract
 - Hence doesn't investigate whole brain
 - Projection of FA onto tract needs careful thought

Tractography-Based FA Comparison

Tractography-Based FA Comparison

Yushkevich & Gee, NeuroImage 2008

- cross-subject tensor averaging
- standard-space
 tractography (6
 major fasciculi)
- medial surfaces
- project MD onto medial surface
 - cross-subject stats

TBSS : Tract-Based Spatial Statisics

- Need: robust "voxelwise" cross-subject stats on DTI
- Problem: alignment issues confound valid local stats
- TBSS: solve alignment using alignment-invariant features:
- Compare FA taken from tract centres (via skeletonisation)

TBSS : Tract-Based Spatial Statisics

- Need: robust "voxelwise" cross-subject stats on DTI
- Problem: alignment issues confound valid local stats
- TBSS: solve alignment using alignment-invariant features:
- Compare FA taken from tract centres (via skeletonisation)

I. Use medium-DoF nonlinear reg to pre-align all subjects' FA (nonlinear reg: FNIRT)

I. Use medium-DoF nonlinear reg to pre-align all subjects' FA (nonlinear reg: FNIRT)

2. Create mean FA image (no smoothing)

2. "Skeletonise" Mean FA

2. "Skeletonise" Mean FA

3. Threshold Mean FA Skeleton

giving "objective" tract map

3. Threshold Mean FA Skeleton

giving "objective" tract map

3. Threshold Mean FA Skeleton

giving "objective" tract map

4. For each subject's warped FA, fill each point on the mean-space skeleton with nearest maximum FA value (i.e., from the centre of the subject's nearby tract)

4. For each subject's warped FA, fill each point on the mean-space skeleton with nearest maximum FA value (i.e., from the centre of the subject's nearby tract)

subject 2 subject 3 subject 4

2

subject 5

one skeleton voxel's data vector (to be fed into GLM)

v

5. Do cross-subject voxelwise stats on skeleton-projected FA

one skeleton voxel's data vector (to be fed into GLM)

Do cross-subject voxelwise stats on skeleton-projected FA
 Threshold, (e.g., permutation testing, including multiple comparison correction)

TFCE for TBSS

controls > schizophrenics p<0.05 corrected for multiple comparisons across space, using randomise

cluster-based: cluster-forming threshold = 2 or 3

TFCE

Differences in healthy controls

Normal variation in bimanual co-ordination skill

- Inter-individual variation in FA along a specific motor pathway is related to variation in motor skill
- Experience-dependent structural changes?

Differences in healthy controls

Normal variation in bimanual co-ordination skill

- Inter-individual variation in FA along a specific motor pathway is related to variation in motor skill
- Experience-dependent structural changes?

Schizophrenia (Mackay)

TBSS & VBM show reduced FA in corpus callosum & fornix VBM shows spurious result in thalamus due to increased ventricles in schiz.

TBSS mean FA (controls) mean FA (schiz.) VBM

Multiple Sclerosis (Cader, Johansen-Berg & Matthews)

- 15 MS patients
- Yellow = -ve corr. FA vs EDSS
- Blue = group lesion probability (50%)
 Red = -ve corr. FA vs lesion volume Note reduced FA away from lesions

Multiple Sclerosis (Cader, Johansen-Berg & Matthews)

TBSS & FSL-VBM in adolescent-onset schizophrenia Douaud & James, Brain 2007

FA reduction GM reduction

TBSS - Conclusions

- Attempting to solve correspondence/smoothing problems
- Less ambiguity of interpretation / spurious results than VBM
- Easier to test whole brain than ROI / tractography
- Limitations & Dangers
 - Interpretation of partial volume tracts still an issue
 - Crossing tracts?
- Future work
 - Use full tensor (for registration and test statistic)
 - Use other test statistics (MD, PDD, width)
 - Multivariate stats (across voxels and/or different diffusion measures) & discriminant (ICA, SVM)

At "normal" resolutions, tracts appear thinner than they really are primarily because of the interference between orthogonal anisotropy in GM and WM

original 0.7mm data -> FA

data smoothed to match 2mm data -> FA

data smoothed to match 3.5mm data -> FA

high-resolution ex-vivo diffusion data: McNab & Miller (FMRIB)

computation resources: Jones, Stathakis & Wise (CUBRIC cluster)

- Even with the TBSS approach, if a tract is of similar size to voxels (or smaller), there will be partial-volume effects at the tract centre
- Hence: is an apparent change in FA caused by a change in partial voluming across subjects, or a change in true FA?
- Hard to disambiguate

F: original high-resolution "ground truth" MD image

G: WM PVE as it would appear in normal-res data (high-res MD -> FAST segmentation -> high-res WM PVE -> normal-res WM PVE)

H: original high-resolution "ground truth" FA

I: normal-res FA (downsample original data -> form FA -> TBSS skeletonise)

J: "corrected" normal-res FA on skeleton (feed apparent normal-res FA and normal-res WM PVE into correction model)

Quadratic model of trueFA = f(apparentFA,WM-PVE) works well

high-resolution ex-vivo diffusion data: McNab & Miller (FMRIB) computation resources: Jones, Stathakis & Wise (CUBRIC cluster)

So....model trueFA = f(apparentFA,WM-PVE) worked well....**but** in "normal" data we don't have access to such a nice tissue-type segmentation from the same diffusion acquisition.....

Hence: the "tensor-covariance" is useful [Kindlmann, IEEE-TMI 2007]. This describes how the tensor at a voxel covaries with neighbouring tensors, and hence contains useful information about effects of PVE, tract-thinning, etc.

So: use model trueFA = f(apparentFA, tensor-covariance)

So....model trueFA = f(apparentFA,WM-PVE) worked well....**but** in "normal" data we don't have access to such a nice tissue-type segmentation from the same diffusion acquisition.....

Hence: the "tensor-covariance" is useful [Kindlmann, IEEE-TMI 2007]. This describes how the tensor at a voxel covaries with neighbouring tensors, and hence contains useful information about effects of PVE, tract-thinning, etc.

So: use model trueFA = f(apparentFA, tensor-covariance)

high-resolution ex-vivo diffusion data: McNab & Miller (FMRIB)

computation resources: Jones, Stathakis & Wise (CUBRIC cluster)