Diffeomorphic Evolution Equations

Laurent Younes

Johns Hopkins University

IPAM, July 2008

Partially supported by NSF,NIH,ONR

Laurent Younes (JHU)

M. Miller, A. Trouvé, D. Holm, T. Ratnanather, J. Zweck, S. Zhang, A. Qiu, M-F Beg, F. Arrate, ...

47 ▶

Part 1: Diffeomorphic Metrics

э

< □ > < ---->

- d is the dimension of the underlying space (1,2 or 3).
- We fix an open subset Ω in \mathbb{R}^d .
- A diffeomorphism of Ω is an invertible transformation from Ω to itself, which is continuously differentiable (C¹) with a differentiable inverse.
- Diffeomorphisms form a group for composition, denoted $Diff(\Omega)$.

- Diffeomorphisms being transformations of Ω, they alter quantities that are included in, or defined on Ω.
- Examples: collections of points, functions, densities, measures, tensor fields, etc.
- Generic notation: *m* = a deformable object, belonging to some space *M*.
- Diffeomorphisms act on *M* if, for any diffeomorphism φ and any object *m*, a *deformed object* φ ⋅ *m* can be defined. The requirements are id ⋅ *m* = *m* and φ ⋅ (ψ ⋅ *m*) = (φ ∘ ψ) ⋅ *m*.

- For configurations of points, $m = (m_1, \ldots, m_N)$, we have $\varphi \cdot m = (\varphi(x_1), \ldots, \varphi(x_N))$.
- For images, $m: \Omega \to \mathbb{R}^k$, we have $\varphi \cdot m = m \circ \varphi^{-1}$.
- For densities $m : \Omega \to \mathbb{R}^+$, we have $\varphi \cdot m = m \circ \varphi^{-1} |\det D(\varphi^{-1})|$, where D is the differential.

Given a time-dependent vector field, i.e., a function
 v : (t, y) → v(t, y) defined on [0, 1] → Ω, define the ordinary differential equation (ODE) on Ω

$$\partial_t y = v(t, y).$$

- The flow associated to this equation is the function (t, x) → φ(t, x) such that, for a given x, t → φ(t, x) is the solution of the ODE with initial condition y(0) = x.
- It is uniquely defined under standard smoothness assumptions on ν, and for fixed t, x → φ(t,x) is a diffeomorphism of Ω (under suitable boundary conditions).

- Consider a Hilbert space space V of vector fields on Ω with dot product, $(v, w) \mapsto \langle v, w \rangle_V$ and norm $||v||_V^2 = \langle v, v \rangle_V$.
- Assume that the dot product is associated to an operator, L, with

$$\|v\|_V^2 = \int_{\Omega} L v^T v dx.$$

(to be understood in a generalized sense: $Lv \in V^*$ can be singular).

• L is the duality operator between V and V^{*}, with inverse $K = L^{-1}$.

 For all our models, K is a smooth kernel operator: there exists a function (x, y) → K(x, y) such that

$$(Kv)(x) = \int_{\Omega} K(x,y)v(y).$$

(We make the common abuse of notation of using the same letter for the operator and the kernel.)

- In full generality, K(.,.) is matrix valued, although all our applications use a scalar kernel.
- Typical example:

$$K(x, y) = \exp(-|x - y|^2/2\sigma^2).$$

• Use $\langle ., . \rangle_V$ for the metric at $\varphi = id$ on $Diff(\Omega)$, and use the associated right invariant metric

$$\|\mathbf{w}\|_{\varphi} = \|\mathbf{w} \circ \varphi^{-1}\|_{V}.$$

 With this metric, the kinetic energy of a path in diffeomorphisms t → φ(t,.), t ∈ [0, 1] is

$$\int_0^1 \|v(t,.)\|_V^2 dt$$

with $\partial_t \varphi(t,.) = v(t,\varphi(t,.)).$

Part 2: Diffeomorphic Gradient Evolution

 Assuming it exists, the gradient of a function E on a manifold M, denoted ∇E(m), is defined by

$$\partial_{\varepsilon} E(m(\varepsilon))|_{\varepsilon=0} = \langle \nabla E(m(0)), \partial_{\varepsilon} m|_{\varepsilon=0} \rangle_{m(0)}$$

(It is a map from M to TM.)

Gradient descent is

$$\partial_t m = -\nabla E(m).$$

• When $M = \operatorname{Diff}(\Omega)$, the gradient is defined by

$$\partial_{\varepsilon} \mathsf{E}(\varphi + \varepsilon \delta \varphi)_{|_{\varepsilon = 0}} = \left\langle \nabla \mathsf{E}(\varphi) \circ \varphi^{-1} \,, \, \delta \varphi \circ \varphi^{-1} \right\rangle_{V}.$$

• Letting
$$v = \delta \varphi \circ \varphi^{-1}$$
,

$$\partial_{\varepsilon} E((\mathrm{id} + \varepsilon \mathbf{v}) \circ \varphi)_{|_{\varepsilon=0}} = \left\langle \nabla E(\varphi) \circ \varphi^{-1}, \, \mathbf{v} \right\rangle_{V}.$$

- The left-hand side is the shape derivative of E at φ .
- Letting $S(\varphi) = \nabla E(\varphi) \circ \varphi^{-1}$, gradient descent becomes

$$\partial_t \varphi = -S(\varphi) \circ \varphi.$$

• This generates a flow.

• Fix two images m and m' and minimize

$$E(\varphi) = \int_{\Omega} (m \circ \varphi^{-1} - m')^2 dy.$$

• Then (using the kernel on V)

$$S(\varphi)(x) = -2 \int_{\Omega} K(x, y) (m \circ \varphi^{-1}(y) - m'(u)) \nabla(m \circ \varphi^{-1})(u).$$

When K⁻¹ = L = (αId – Δ)^k (where Δ is the Laplacian), the associated gradient descent evolution is the equation proposed by Christensen et al (1993). The gradient descent formulation is due to Trouvé (1998).

Define

$$E(\varphi) = \int_{\Omega} (m \circ \varphi^{-1} - m')^2 dy + \lambda \int_{\Omega} |D\varphi|^2 dx$$

(with the matrix norm $|A|^2 = \text{trace}(AA^T)$ in the penalty term).

- The resulting function $S(\varphi)$ decomposes in $S(\varphi) = S_1(\varphi) + \lambda S_2(\varphi)$, with S_1 as before.
- For S₂, we have

$$S_{2}(\varphi) = 2 \int_{\Omega} (\det D\varphi \circ \varphi^{-1})^{-1} D\varphi \circ \varphi^{-1} (D\varphi \circ \varphi^{-1})^{T} \nabla_{1} K dx.$$

- Let *m* be a template (e.g. a binary volume).
- Define

$$E(\varphi) = -\int_{\Omega} m \circ \varphi^{-1}(x) f(y) dy$$

where f is some function, associated to an observed image, quantifying the relative likelihood for a point with coordinate y to belong in the interior of the shape rather than in the exterior.

Then

$$S(\varphi)(.) = \int_{\varphi(\partial m)} K(.,y) N^{\varphi} d\sigma^{\varphi}(y).$$

Finitely Generated Gradient (F. Arrate)

- Define N control points x_1, \ldots, x_N relative to the template geometry.
- Restrict the "gradient" to take the form $\tilde{\nabla} E(\varphi) = \tilde{S}(\varphi) \circ \varphi$ with

$$\tilde{S}(\varphi)(.) = \sum_{k=1}^{N} K_0(., \varphi(x_k)) \alpha_k.$$

Finitely Generated Gradient (F. Arrate)

- Define N control points x_1, \ldots, x_N relative to the template geometry.
- Restrict the "gradient" to take the form $\tilde{\nabla} E(\varphi) = \tilde{S}(\varphi) \circ \varphi$ with

$$\tilde{S}(\varphi)(.) = \sum_{k=1}^{N} K_0(., \varphi(x_k)) \alpha_k.$$

• Take $\tilde{S}(\varphi)$ as the orthogonal projection of $S(\varphi)$ on

$$W = \left\{ \sum_{k=1}^{N} K_0(.,\varphi(x_k)) \alpha_k : \alpha_1, \ldots, \alpha_N \in \mathbb{R}^d \right\}$$

for the dot product $\langle ., . \rangle_V$.

Let K and K₀ be Gaussian kernels (with Ω = ℝ^d).
With g_{σ²}(u) = (2πσ²)^{-d/2} exp(-|u|²/2σ²), take

$$K(x, y) = g_{\sigma^2}(x - y)$$
 and $K_0(x, y) = g_{\sigma_0^2}(x - y)$

with $\sigma_0 > \sigma$.

Then solve

$$\int_{\Omega} g_{\sigma_0^2 - \sigma^2}(y - \varphi(x_k)) e_j^T S(\varphi)(y) dy = \sum_{l=1}^N g_{2\sigma_0^2 - \sigma^2}(\varphi(x_k) - \varphi(x_l)) e_j^T \alpha_l.$$

Use

$$\frac{d\varphi_t}{dt}(y) = -\sum_{k=1}^N g_{\sigma_0^2}(\varphi_t(y) - \varphi_t(x_k))\alpha_k(t).$$

Example

Segmentation in the hippocampal region

Laurent Younes (JHU)

Diffeomorphic Evolution Equations

IPAM, July 2008

Image: A mathematical states and a mathem

19 / 54

æ

Example

Segmentation in the hippocampal region

Laurent Younes (JHU)

Diffeomorphic Evolution Equations

IPAM, July 2008

Image: A mathematical states and a mathem

20 / 54

æ

Diffeomorphic MCF (Zheng et al.)

- Let $E(m) = \operatorname{area}(m)$.
- Use an area-normalized metric:

$$\|\xi\|_m^2 = \inf\left\{\left\langle \rho_m v \,,\, \rho_m v\right\rangle_V, v \cdot m = \xi\right\}.$$

with

$$\rho_m(y) = \sqrt{\int_m \mathcal{K}(y, x) d\sigma(x)}.$$

• The flow for this metric is (for a point $p \in M$)

$$\frac{dp}{dt} = \rho_m(p)^{-1} \int_m K(p, y) \rho_m(y)^{-1} H(y) N(y) d\sigma(y).$$

where H is the mean curvature and N the normal to the surface.

21 / 54

Experiments

Original cortical surface

Laurent Younes (JHU)

Diffeomorphic Evolution Equations

∃ → IPAM, July 2008

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

æ

æ

Laurent Younes (JHU)

Diffeomorphic Evolution Equations

IPAM, July 2008 25

3

DMCF at t = 5.

æ

DMCF at t = 10.

æ

A B > A
 A
 B > A
 A

Part 3: Geodesics

æ

Image: A matrix

EPDiff

- Geodesic equations for our metric on groups of diffeomorphisms have a long history, starting with Arnold 1966, re-analyzed by Marsden, Ratiu, Holm (Euler-Poincaré Reduction).
- They are evolution equations that describe time-dependent diffeomorphisms t → φ(t, .) that have no acceleration in the group metric.
- This is a necessary (and locally sufficient) condition for being energy minimizing.

- Geodesic equations for our metric on groups of diffeomorphisms have a long history, starting with Arnold 1966, re-analyzed by Marsden, Ratiu, Holm (Euler-Poincaré Reduction).
- They are evolution equations that describe time-dependent diffeomorphisms t → φ(t, .) that have no acceleration in the group metric.
- This is a necessary (and locally sufficient) condition for being energy minimizing.
- The 'classical' (non-singular) form of this "EPDiff" equation is

$$\partial_t L v + D(L v) v + L v \nabla \cdot v + (D v)^T L v = 0$$

with
$$\partial_t \varphi(t,.) = v(t,.) \circ \varphi(t,.).$$

• Another, more general, characterization is: for all smooth vector field w,

$$\partial_t \int_{\Omega} Lv^T w dx = -\int_{\Omega} Lv^T (Dv w - Dw v) dx.$$

• Another, more general, characterization is: for all smooth vector field w,

$$\partial_t \int_{\Omega} L v^T w dx = -\int_{\Omega} L v^T (D v w - D w v) dx.$$

• Letting $a_t = Lv_t$, EPDiff can also be written as

$$\begin{cases} \mathbf{v}_t = \mathbf{K}\mathbf{a}_t \\\\ \partial_t \varphi_t = \mathbf{v}_t \circ \varphi_t \\\\ \partial_t \mathbf{a}_t = -\mathbf{D}\mathbf{a}_t \mathbf{v}_t - \mathbf{a}_t \nabla \cdot \mathbf{v}_t - (\mathbf{D}\mathbf{v}_t)^T \mathbf{a}_t \end{cases}$$

- EPDiff provides an important representation of diffeomorphisms via the *Riemannian exponential map*.
- This map takes in input an initial velocity v_0 (or the corresponding momentum Lv_0) and solves the EPDiff equation until time t = 1.
- The output being the final diffeomorphism, $\varphi_{1},$ this yields a transformation

$$P: Lv_0 \mapsto \varphi_1 = P(Lv_0) \in G$$

Visualizing the momentum on a binary volume. Left: template image; center: target image; right: momentum superimposed on the template image. The momentum can then be used as a deformation signature for shape studies.

- EPDiff coincides with the Euler-Lagrange equation for the *Large Deformation Diffeomorphic Metric Matching* algorithms (LDDMM).
- LDDMM minimizes energy of the form

$$E(\varphi) = d_V(\mathrm{id}, \varphi)^2 + E_{\mathrm{data}}(\varphi \cdot m_0)$$

• So, solving the LDDMM problem automatically provides the momentum representation of the optimal diffeomorphism φ .

- The EPDiff equation "projects" on shapes and images when combined with the notion of horizontality, which are preferred directions of deformation relative to the object.
- A geodesic starting from $m_0 \in M$ must take the form $m_t = \varphi_t \cdot m_0$ with
 - (i) $t \mapsto \varphi_t$ is a geodesic on G_V (it satisfies EPDiff).
 - (ii) The initial velocity at time t = 0 is horizontal at m_0 .
- Property (ii) propagates over time: if it is true, then v_t is horizontal at m_t for all t.
- Because horizontal vector fields have specific forms for specific types of objects, this simplifies in specific object-dependent forms of EPDiff.

Case of point sets

• Horizontal vector fields at $m = (x_1, \ldots, x_N)$ must take the form

$$v(.) = \sum_{k=1}^{N} K(., x_k) \alpha_k.$$

EPdiff becomes

$$\begin{cases} v_t(.) = \sum_{l=1}^N K(., x_l) \alpha_l \\ \partial_t x_k - v_t(x_k) = 0 \\ \partial_t \alpha_k = -\sum_{l=1}^N \nabla_1 K(x_k, x_l) \alpha_k^T \alpha_l \end{cases}$$

Here, $\nabla_1 K$ represent the gradient of $(x, y) \mapsto K(x, y)$ with respect to the first coordinate, x.

• The momentum representation for landmarks is captured by the family of d dimensional vectors, a_0 . The initial conditions (m_0, a_0) uniquely specify the values of m_t and a_t at all times.

Laurent Younes (JHU)

Diffeomorphic Evolution Equations

- When objects are images, horizontal vector fields are characterized by the property that *Lv* is orthogonal to the level lines of the image.
- Important example: $Lv_0(x) = a_0(x)\nabla m_0(x)$.
- In this case, geodesics satisfy

$$\begin{cases} v_t = -\int_{\Omega} K(., y) a_t(y) \nabla m_t(y) dy \\ \partial_t m_t + \nabla m_t^T v_t = 0 \\ \partial_t a_t + \nabla \cdot (a_t v_t) = 0 \end{cases}$$

Horizontal momenta at *m* are also orthogonal to the level sets of *m*.
With Lv₀ = a₀∇m₀, the evolution equations are

$$\begin{cases} v_t = \int_{\Omega} K(., y) \nabla a_t(y) m_t(y) dy \\ \partial_t m_t + \nabla \cdot (m_t v_t) = 0 \\ \partial_t a_t + \nabla a_t^{\mathsf{T}} v_t = 0 \end{cases}$$

• The roles of *m* and *a* are reversed compared to the image case.

• All previous geodesic equations have the form

$$\begin{cases} v_t = F(m_t, a_t) \\ \partial_t m_t = H(m_t, v_t) \\ \partial_t a_t = G(m_t, a_t, v_t) \end{cases}$$

where the functions F, G, H are linear in a and v, but not necessarily in m.

 The function t → at can be interpreted as a representation for horizontal momenta, via the relation Lv = LF(m, a).

Part 4: Parallel translation

э.

• • • • • • • •

æ

- The momentum representation (exponential map) is an important tool that can provide a normalized representation of a family of shapes relative to a fixed template.
- Parallel translation can be used to transport this representation from one template to another.
- Applications: asymmetry, longitudinal studies (follow-up vs. baseline), etc...

- Parallel translation on a manifold is an operation that takes a tangent vector at some point in the manifold and translate it along a given curve (for example: a geodesic between two 'templates').
- Assume that the geodesic equation is

$$\begin{cases} v_t = F(m_t, a_t) \\ \partial_t m_t = H(m_t, v_t) \\ \partial_t a_t = G(m_t, a_t, v_t) \end{cases}$$

• Then parallel translation is

$$\begin{cases} H(m_t, F(m_t, \partial_t b_t)) = \frac{1}{2} \Big\{ H_m(m_t, v_t) \eta_t - H_m(m_t, w_t) \xi_t \\ + H(m_t, F_m(m_t, a_t) \eta_t - F_m(m_t, b_t) \xi_t) \\ + H(m_t, F(m_t, G(m_t, b_t, v_t) + G(m_t, a_t, w_t))) \Big\} \\ \xi_t = H(m_t, v_t) = \partial_t m_t \\ \eta_t = H(m_t, w_t) \\ v_t = F(m_t, a_t) \\ w_t = F(m_t, b_t) \end{cases}$$

- F_m and H_m the differentials for F and H with respect to the first variable, m.
- The first equation defines db/dt implicitly, involving the inversion of the linear operator $\beta \mapsto H(m, F(m, \beta))$.

$$\partial_t b_t = \frac{1}{2} L(Dv_t \cdot w_t - Dw_t \cdot v_t) \\ - \frac{1}{2} (Db_t v_t + b_t \nabla \cdot v_t + Dv_t^T b_t + Da_t w_t + a_t \nabla \cdot w_t + Da_t^T w_t)$$

with $a_t = Lv_t$ and $b_t = Lw_t$.

- ∢ ศ⊒ ▶

3

Point sets

۲

•
$$m_t = (x_1(t), ..., x_N(t)) \text{ and } a_t = (\alpha_1(t), ..., \alpha_N(t))$$

$$\sum_{l=1}^{N} K(x_{k}, x_{l}) \partial_{t} \beta_{l} = \frac{1}{2} \Big(Dv_{t}(x_{k}) \eta_{k} - Dw_{t}(x_{k}) \xi_{k} + \sum_{l=1}^{N} (\nabla_{2} K(x_{k}, x_{l})^{T} \eta_{l} \alpha_{l} + \nabla_{2} K(x_{k}, x_{l})^{T} \xi_{l}^{T} \beta_{l}) - \sum_{l=1}^{N} K(x_{k}, x_{l}) (Dv_{t}(x_{l})^{T} \beta_{l} + Dw_{t}^{T}(x_{l}) \alpha_{l}) \Big)$$
$$w_{t} = \sum_{l=1}^{N} K(., x_{l}(t)) \beta_{l}(t) + \sum_{l=1}^{N} K(x_{l}) \sum_{l=1}^{N} K(x_{l}) \Big| \xi_{l}(t) + \sum_{l=1}^{N} K(x_{l$$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

<≣> IPAM, July 2008

æ

A B > A
 A
 B > A
 A

э. IPAM, July 2008

2

A B > 4
 B > 4
 B

Case of images

- Let m_t be a geodesic for the image metric with $v_t = K(a_t \nabla m_t)$. Let $\xi_t = -\nabla m_t^T v_t$, and assume that $w_0 = -K(b_0 \nabla m_0)$ is given with $\eta_0 = -\nabla m_0^T w_0$.
- The parallel translation of η_0 along m_t for the image metric is

$$\begin{cases} \nabla m_t^T \mathcal{K}(\partial_t b_t \nabla m_t) = \frac{1}{2} \Big(\nabla \eta_t^T \mathbf{v}_t - \nabla \xi_t^T \mathbf{w}_t + \nabla m_t^T \mathcal{K}(\mathbf{a}_t \nabla \eta_t - b_t \nabla \xi_t) \\ - \nabla m_t^T \mathcal{K}(\nabla \cdot (b_t \mathbf{v}_t + \mathbf{a}_t \mathbf{w}_t) \nabla m_t) \Big) \\ \eta_t = - \nabla m_t^T \mathcal{K}(b_t \nabla m_t) \\ \mathbf{w}_t = \mathcal{K}(b_t \nabla m_t) \end{cases}$$

• To explicitly compute db_t/dt , one needs to invert the operator $\zeta \mapsto \nabla m_t^T \mathcal{K}(\zeta \nabla m_t)$.

$$\nabla \cdot (m_t \mathcal{K}(m_t \nabla \partial_t b_t)) = -\frac{1}{2} \Big(\nabla \cdot (\eta_t v_t - \xi_t w_t) - \nabla \cdot (m_t \mathcal{K}(\eta_t \nabla a_t - \xi_t \nabla b_t)) + \nabla \cdot (m_t \mathcal{K}(m_t \nabla \cdot (\nabla a_t^T w_t + \nabla b_t^T v_t))) \Big)$$
$$\eta_t = \nabla \cdot (m_t \mathcal{K}(m_t \nabla b_t))$$
$$w_t = -\mathcal{K}(m_t \nabla b_t)$$

æ

Image: A mathematical states and a mathem

General characterization of Par. Trans.

• The relation between parallel translation on diffeomorphisms and on objects is

(i)
$$(\partial_t w_t - KA(v_t, w_t)) \cdot m_t = 0$$
,
(ii) w_t is horizontal at m_t .
with

$$A(v_t, w_t) = \frac{1}{2}L(Dv_t.w_t - Dw_t.v_t) \\ -\frac{1}{2}(Db_tv_t + b_t\nabla \cdot v_t + Dv_t^Tb_t \\ +Da_tw_t + a_t\nabla \cdot w_t + Da_t^Tw_t)$$

with $a_t = Lv_t$ and $b_t = Lw_t$.

Part 5: The Jacobi Equation

2

- They are first order variations of geodesics with respect to changes in their initial conditions.
- Important when solving variational problems that involve geodesics: LDDMM, J.Ma's template estimation algorithm,...
- Also provides an alternate implementation of parallel transport.

• The equation is

$$\begin{cases} \delta v_t = F_m(m_t, a_t) \delta m_t + F(m_t, \delta a_t) \\ \\ \partial_t \delta m_t = H_m(m_t, v_t) \delta m_t + H(m_t, \delta v_t) \\ \\ \partial_t \delta a_t = G_m(\delta m_t, a_t, v_t) \delta m_t + G(m_t, \delta a_t, v_t) + G(m_t, a_t, \delta v_t) \end{cases}$$

• The Jacobi field is, by definition, $J(t) = t\delta m_t$.

Bayesian Template Estimation: hippocampi (110 images) (Jun Ma)

Laurent Younes (JHU)

Diffeomorphic Evolution Equations

IPAM, July 2008 53 / 54

- We have described, in this paper, a whole range of evolution equations (gradient descent, geodesics, parallel transport, Jacobi fields) that are related to important aspects of computational anatomy.
- These equations have all taken part in medical imaging applications, for smoothing, segmentation, registration, longitudinal analysis etc.
- This provides a complementary angle on computational anatomy, which more often focuses on variational formulations, like LDDMM.
- This also brings new open problems: extension to new shape modalities, their numerical implementation, new applications for medical data.