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Detecting mixed dimensionality and density

Motivation

Goal

Detect and estimate different dimensions and densities in the same

noisy point cloud data and cluster the points according to these
characteristics.
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Local dimension estimation

Levina and Bickel’s approach

Basic idea: proportion of points falling into a ball.

% ~ FO)V(m)Re(x)™

where:
@ k: number of points inside ball. .

@ n: total number of points. ’ ;
e f(x): local density at point x. &l
@ V(m): volume of the unit sphere in R™. . .k,

® Ri(x): Euclidean distance from x to its k-th
nearest neighbor. °
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Local dimension estimation

Levina and Bickel’s approach

Observable event: Number of points falling into a small sphere B(R, x)

(radius R, centered at x).

N
N(R,x) = 1{xi € B(R,x)}
i=1

Making the approximations:

@ Binomial process by a Poisson process
(n — oo, k moderate, and k/n — 0).

e f(x) = const. in a small sphere.

then, the rate A of the counting process N
Ar,x) = f(x)V(m)ymr™!
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Local dimension estimation

Levina and Bickel’s approach

Log-likelihood of the observed process N(R, x)

R R
L(m(x),ﬁ(x))—/0 Iog)\(r,x)dN(r,x)—/0 A(r, x)dr

ML estimators satisfy dL/00 = 0 and OL/Om = 0 (6 = log f(x)).
Fixing the number of neighbors (kNN-graph) we obtain

N 1 L Rk X b
m(x) = [m J_Zl log RJ((X))]

Same as Takens' estimator in dynamical systems.
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Translated Poisson Model

Modeling a counting process under noise (Snyder & Miller)

Underlying process Observable process
Y .
. o A . B
« ° flz1x) e ° e
¢ ° /—\
L]
. Na Transition |\, °
° density M(B)
° . ° °
. ° °
° L)
° ° °
X, Mx) Z u@

e N(A) Poisson process with
integrable intensity function A(x). |, M(B) Poisson process
e Points translated independently. n(z) = [y f(z[x)A(x)dx
e No insertions and deletions.
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Translated Poisson Model

In our case, A(r, x) is parametrized by the Euclidean distances r of the
points. We consider a random translation f(s|r) in the distances r. The
intensity of the Poisson process in the output space, is given by

o
(s, xe) = /O F(s|IA(r, xe)dr-
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Translated Poisson Model

In our case, A(r, x) is parametrized by the Euclidean distances r of the
points. We consider a random translation f(s|r) in the distances r. The
intensity of the Poisson process in the output space, is given by

R
,u(s,xt)—/o f(s|r)A(r, x¢)dr.

0.03
Particular case: iy [-- - Gaussian

.. . . . . 0.025 Estimated D=1
i.i.d. Gaussian noise in the points coord.

= = Estimated D=3

0.02
Dij ~ D,j + W 0.015

0.01

where W ~ N(0,202) * )A(f, * X3
For sufficient SNR: W ~ N(0,202).

0.005
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Translated Poisson Model

Maximize the log-likelihood of the new Translated Poisson process.

m(x;)= ilz

-1
xt)| )rm~Llog Rk(xt)dr

(R,-(xt)|r)r’" Ldr
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Translated Poisson Model

Maximize the log-likelihood of the new Translated Poisson process.

m(x 1 Z )|r)r™Llog Mdr
)= k1 (R (xe)|r)rm=1dr

-1

We substitute r™~1 by its Taylor expansion around R;
(f has a small support concentrated around R;).
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Translated Poisson Model

Maximize the log-likelihood of the new Translated Poisson process.

1
1 m=1|q Rk(Xt)dr
m(xe)= [ _12 )Ir)r g

(R (x¢)|r)rm=1dr

We substitute r™~1 by its Taylor expansion around R;
(f has a small support concentrated around R;).

Local dimension estimator (noisy case):

(o) ~ [ 1 Zfo f(R| |og%dr]

k=l g f(Rilrdr
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Translated Poisson Model

Maximize the log-likelihood of the new Translated Poisson process.

1
1 m=1|q Rk(Xt)dr
m(xe)= [ _12 )Ir)r g

(R (x¢)|r)rm=1dr

We substitute r™~1 by its Taylor expansion around R;
(f has a small support concentrated around R;).

Local dimension estimator (noisy case):

(o) ~ [ 1 Zfo f(R| |og%dr]

k=l g f(Rilrdr

If f(s|r) =0d(s— r) (no noise) — Levina and Bickel estimator.
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Translated Poisson Mixture Model (TPMM)

Detecting mixed dimensionality and density

Consider J mixture components (Translated Poisson distributions):
vector of parameters ¢ = {n/,m/,0/;j =1,...,J} where
o 7/ is the mixture coefficient for class

o @ is the density parameter (f/ = %)
e m is the dimension.

Observable event: y = N(R, x), # points inside ball B(R, x).

Density function:

J
p(yelt)) =D 7 p(yeleV, m)

J=1
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Translated Poisson Mixture Model (TPMM)

Observation sequence: Y = {y;;t =1,..., T}, where y; = N(R, x¢).

=] = = a



Translated Poisson Mixture Model (TPMM)

Observation sequence: Y = {y;;t =1,..., T}, where y; = N(R, x¢).
The complete-data density: p(Z, Y|¢) = HtT:1 p(zt, yt|v).

Hidden-state information: Z = {z; € C;t =1...T}, where z; = CJ means
that the j-th mixture generates y;.
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Translated Poisson Mixture Model (TPMM)

Observation sequence: Y = {y;;t =1,..., T}, where y; = N(R, x¢).
The complete-data density: p(Z, Y|¢) = HtT:1 p(zt, yt|v).

Hidden-state information: Z = {z; € C;t =1...T}, where z; = CJ means
that the j-th mixture generates y;.

— Solved by the EM algorithm:

o E-step: Computation of the expectation of the membership
functions, A (y;).

o M-step: Computation of the parameters 7/, m/, ¢/ of the J experts
by maximizing the expectation of the log-likelihood w.r.t Z.
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Regularized TPMM (R-TPMM)

Another interpretation of EM

EM is based on the following decomposition of the log-likelihood:

T J
LY, H) = "> W(y:) log [plye|v)n]

t=1 j=1

T J
ZZH Yt |0g )]a

t=1 j=1

where H={HW(y;) <1;t=1,....,T,j=1,...,J}.

First term: Expectation of 3/, Z]":l &} log [p(ye|¢/)md] wart. Z.
Second term: Entropy of the membership functions.
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Regularized TPMM (R-TPMM)

Another interpretation of EM

EM can be seen as an alternate optimization algorithm of the previous
log-likelihood.

E-step:
Maximization of L(Y|y, H) w.r.t. H
with the additional constraint that 37, #(y:) =1, t=1,...,T.

M-step:
Maximization of L( Y|y, H) w.r.t. ¢
J

with an additional constraint for the mixture probabilities: ijl m=1.

4
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Regularized TPMM (R-TPMM)

Extended functional

Inspired by the neighborhood EM (NEM) [Ambroise, Govaert].

F(i, H) = L(Y]1, H) + aS(H) J

where

e S(H) is a regularization term.

@ « is a regularization parameter.
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Regularized TPMM (R-TPMM)

Regularization term

T J
S(H) - —ZZhj(yt)D(t,j,X, H)

t=1 j=1

where D is a dissimilarity function.

Provides a generic framework for introducing constraints in the soft
classification, besides the ones already present in the PMM model,
dimensionality and density.
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Regularized TPMM (R-TPMM)

Regularization term

T J
S(H) - —ZZhj(yt)D(t,j,X, H)

t=1 j=1
where D is a dissimilarity function.
Provides a generic framework for introducing constraints in the soft

classification, besides the ones already present in the PMM model,
dimensionality and density.

Spatial/ Temporal regularity
Dri=) (1-H(y))
s~t

Different neighborhoods s ~ t result in different kinds of regularization.
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Regularized TPMM (R-TPMM)

Algorithm R-TPMM
REQUIRE: The point cloud data, J, k, o and «.
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Regularized TPMM (R-TPMM)

Algorithm R-TPMM
REQUIRE: The point cloud data, J, k, o and «.

@ Initialization of ¢, = {x}, ml 6)} forall j=1,...,J.
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Regularized TPMM (R-TPMM)

Algorithm R-TPMM
REQUIRE: The point cloud data, J, k, o and «.

@ Initialization of ¢, = {x}, ml 6)} forall j=1,...,J.

@ lterations (until convergence of 4):
Foreachclass j=1,...,J,
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Regularized TPMM (R-TPMM)

Algorithm R-TPMM
REQUIRE: The point cloud data, J, k, o and «.

@ Initialization of ¢, = {x}, ml 6)} forall j=1,...,J.

@ lterations (until convergence of 4):
Foreachclass j=1,...,J,

> lst-step: compute h) . (y:)
i P e
Yi) = ) )
n+1\JVt Zf:l p(yt|m{1,0¢1)7réef(m(tJAX,Hﬂ)
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Regularized TPMM (R-TPMM)

Algorithm R-TPMM
REQUIRE: The point cloud data, J, k, o and «.

@ Initialization of ¢, = {x}, ml 6)} forall j=1,...,J.

@ lterations (until convergence of 4):
Foreachclass j=1,...,J,

> lst-step: compute h) . (y:)

p(ytImf 9_] )Fiefa’[)/(t.j.x.H,,)

n»-n

oy (ye) =
+1\Jt J —aD’ ’
" 311 P(yelmby, 0f)mhe P (1 X

> 2nd-step: compute 1/1{,+1 = {ﬂJ,;H, m{1+1,9{7+1}

J
Uiy = arg max F(4, Hnt1) + )\(Z T —1)

r=1
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Regularized TPMM (R-TPMM)

Computation of parameters at step n + 1:

-
Top1 = Z 1(ve)

Z 1(re)m(xe) /Z n+1 )/t)]
-1
fr{-l-l = el = [Z Yt)f Xt) /Z 1 (Y ]

t

fnj =

n+1

1

where M (x;) and f(x;) are the local estimators (Translated Poisson).
If 0 =0, PMM, they are the Levina and Bickel's estimators.

— Weighted harmonic means

(IPAM) July 2008 17 / 26



Regularized TPMM (R-TPMM)

Asymptotic behavior

Levina and Bickel’s technique

. . m2
E[m(x)] = mT, Var[m(x)] = 3
(dividing by k — 2 instead of k — 1)
R-TPMM approach (hard clustering version)
E[aY] = m +L.T Var[#/] = (m}-)20 o
TN — 1 ML= ANk — 1) — 4

where NV is the number of points in class j.
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Experiments

Notation
o Rl TPMM
a>0 R-PMM LU

=] - . ) N



Experiments

Synthetic data - two mixtures

R-TPMM GPCA Souvenir-Pless

Clustering of a spiral and a plane with noise.
Results with different algorithms.
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Experiments

Synthetic data - two mixtures

PMM H R-PMM H TPMM H R-TPMM
Estimated parameters
247 | 151 2.48 |1.43 || 1.86|1.35| 1.87 | 1.32
0.13 | 0.03 || 0.15 | 0.03 || 0.87 | 0.34 || 0.83 | 0.40
Points in each class
Pl. | 764 36 800 0 784 16 800 0
Sp. 22 278 25 275 27 273 29 271

m
0

Estimated parameters of a spiral and a plane with noise (k = 40, J = 2).
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Experiments

Clustering of a Swiss roll and a line with two different densities

——————
pp—— ] [l e

m: 1.98, 1.02, 0.99.
0: 0.49, 0.53, 6.89.

R-TPMM (k =20, J =3, a = 2).

See Haro-Randall-Sapiro, NIPS 2006 and 1JCV 2008 for numerous

image/video examples.
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Diffusion Imaging: Which Representation?

., Of v
Raw HARDI signal 4% order ODFs 6% order ODFs 47 order ODFs
with sharpening
Color __Red _ Gieen Blue _ ¥ellow L blue _Purple
HARDI
Dim. 155 4288 502 432 550 567
Dens. 927 16.01 1069 242 13.18 15.85
Prob 065 018 0005 0002 0026  0.088
ODF 4
Dim 133 453 464 236 32 54l
Dens. 1253 26.70 2059 773 25.96 28.57
Prob 070 016 0014 0002 0038  0.092
ODF 6
Dim. 134 452 464 257 33 540
Dens 1254 2664 2057 774 2594 2849
Prob. 0.70 0.16 0014 0.002 037 0.092

(IPAM)
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Conclusions and future work

Conclusions

@ Algorithm to estimate and classify different dimensions and densities
in noisy point cloud data.

@ The noise is included in the statistical model.
e Natural way to introduce spatial /temporal regularization.

@ Experiments in synthetic and real data.

Future work/ in progress

o Differentiate between manifolds of same dimension.
@ Population analysis of HARDI/DTI data.
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Thank you!
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