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Detecting mixed dimensionality and density

Motivation

Goal

Detect and estimate different dimensions and densities in the same
noisy point cloud data and cluster the points according to these
characteristics.
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Local dimension estimation

Levina and Bickel’s approach

Basic idea: proportion of points falling into a ball.

k

n
≈ f (x)V (m)Rk(x)m

where:

k : number of points inside ball.

n: total number of points.

f (x): local density at point x .

V (m): volume of the unit sphere in Rm.

Rk(x): Euclidean distance from x to its k-th
nearest neighbor.
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Local dimension estimation

Levina and Bickel’s approach

Observable event: Number of points falling into a small sphere B(R, x)
(radius R, centered at x).

N(R, x) =
N∑

i=1

1{xi ∈ B(R, x)}

Making the approximations:

Binomial process by a Poisson process
(n→∞, k moderate, and k/n→ 0).

f (x) ≈ const. in a small sphere.

then, the rate λ of the counting process N

λ(r , x) = f (x)V (m)mrm−1
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Local dimension estimation

Levina and Bickel’s approach

Log-likelihood of the observed process N(R, x)

L(m(x), θ(x)) =

∫ R

0
log λ(r , x)dN(r , x)−

∫ R

0
λ(r , x)dr

ML estimators satisfy ∂L/∂θ = 0 and ∂L/∂m = 0 (θ = log f (x)).
Fixing the number of neighbors (kNN-graph) we obtain

m̂(x) =

[
1

k − 1

k−1∑
j=1

log
Rk(x)

Rj(x)

]−1

Same as Takens’ estimator in dynamical systems.
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Translated Poisson Model

Modeling a counting process under noise (Snyder & Miller)

X, λ(x) Z, µ

N(A)
M(B)

A B

Observable process

(z)

Underlying process

Transition

density

f(z|x)

• N(A) Poisson process with
integrable intensity function λ(x).
• Points translated independently.
• No insertions and deletions.

→ M(B) Poisson process
µ(z) =

∫
X f(z|x)λ(x)dx
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Translated Poisson Model

In our case, λ(r , x) is parametrized by the Euclidean distances r of the
points. We consider a random translation f (s|r) in the distances r . The
intensity of the Poisson process in the output space, is given by

µ(s, xt) =

∫ R′

0
f (s|r)λ(r , xt)dr .

Particular case:
i.i.d. Gaussian noise in the points coord.

D̂ij ≈ Dij + W

where W ∼ N(0, 2σ2) ∗ χ̂2
p ∗ χ̆2

1.

For sufficient SNR: W ∼ N(0, 2σ2).
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Translated Poisson Model

Maximize the log-likelihood of the new Translated Poisson process.

m(xt)=

[
1

k − 1

k−1∑
i=1

∫ R′

0 f (Ri (xt)|r)rm−1 log Rk (xt)
r dr∫ R′

0 f (Ri (xt)|r)rm−1dr

]−1

We substitute rm−1 by its Taylor expansion around Ri

(f has a small support concentrated around Ri ).

Local dimension estimator (noisy case):

m(xt) ≈

[
1

k − 1

k−1∑
i=1

∫ R′

0 f (Ri |r) log Rk
r dr∫ R′

0 f (Ri |r)dr

]−1

If f (s|r) = δ(s − r) (no noise) → Levina and Bickel estimator.
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Translated Poisson Mixture Model (TPMM)

Detecting mixed dimensionality and density

Consider J mixture components (Translated Poisson distributions):
vector of parameters ψ = {πj ,mj , θj ; j = 1, . . . , J} where

πj is the mixture coefficient for class j ,

θj is the density parameter (f j = eθj
)

mj is the dimension.

Observable event: y = N(R, x), # points inside ball B(R, x).

Density function:

p(yt |ψ) =
J∑

j=1

πjp(yt |θj ,mj)
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Translated Poisson Mixture Model (TPMM)

Observation sequence: Y = {yt ; t = 1, . . . ,T}, where yt = N(R, xt).

The complete-data density: p(Z ,Y |ψ) =
∏T

t=1 p(zt , yt |ψ).

Hidden-state information: Z = {zt ∈ C ; t = 1...T}, where zt = C j means
that the j-th mixture generates yt .

→ Solved by the EM algorithm:

E-step: Computation of the expectation of the membership
functions, hj(yt).

M-step: Computation of the parameters πj ,mj , θj of the J experts
by maximizing the expectation of the log-likelihood w.r.t Z .
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Regularized TPMM (R-TPMM)

Another interpretation of EM

EM is based on the following decomposition of the log-likelihood:

L(Y |ψ,H) =
T∑

t=1

J∑
j=1

hj(yt) log
[
p(yt |ψj)πj

]
−

T∑
t=1

J∑
j=1

hj(yt) log
[
hj(yt)

]
,

where H = {hj(yt) ≤ 1; t = 1, . . . ,T , j = 1, . . . , J}.

First term: Expectation of
∑T

t=1

∑J
j=1 δ

j
t log

[
p(yt |ψj)πj

]
w.r.t. Z .

Second term: Entropy of the membership functions.
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Regularized TPMM (R-TPMM)

Another interpretation of EM

EM can be seen as an alternate optimization algorithm of the previous
log-likelihood.

E-step:

Maximization of L(Y |ψ,H) w.r.t. H

with the additional constraint that
∑J

j=1 hj(yt) = 1, t = 1, . . . ,T .

M-step:

Maximization of L(Y |ψ,H) w.r.t. ψ

with an additional constraint for the mixture probabilities:
∑J

j=1 π
j =1.
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Regularized TPMM (R-TPMM)

Extended functional

Inspired by the neighborhood EM (NEM) [Ambroise,Govaert].

F (ψ,H) = L(Y |ψ,H) + αS(H)

where

S(H) is a regularization term.

α is a regularization parameter.
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Regularized TPMM (R-TPMM)

Regularization term

S(H) = −
T∑

t=1

J∑
j=1

hj(yt)D(t, j ,X ,H)

where D is a dissimilarity function.

Provides a generic framework for introducing constraints in the soft
classification, besides the ones already present in the PMM model,
dimensionality and density.

Spatial/Temporal regularity

DR :=
∑
s∼t

(1− hj(ys))

Different neighborhoods s ∼ t result in different kinds of regularization.
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Regularized TPMM (R-TPMM)

Algorithm R-TPMM

REQUIRE: The point cloud data, J, k , σ and α.

1 Initialization of ψj
0 = {πj

0,m
j
0, θ

j
0} for all j = 1, . . . , J.

2 Iterations (until convergence of ψj
n):

For each class j = 1, . . . , J,

I 1st-step: compute hj
n+1(yt)

hj
n+1(yt) =

p(yt |mj
n, θ

j
n)πj

ne
−αD′(t,j,X ,Hn)∑J

l=1 p(yt |ml
n, θ

l
n)πl

ne
−αD′(t,l,X ,Hn)

,

I 2nd-step: compute ψj
n+1 = {πj

n+1,m
j
n+1, θ

j
n+1}

ψj
n+1 = arg max

ψ
F (ψ,Hn+1) + λ(

J∑
r=1

πr − 1)
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Regularized TPMM (R-TPMM)

Computation of parameters at step n + 1:

πj
n+1 =

1

T

T∑
t=1

hj
n+1(yt)

mj
n+1 =

[∑
t

hj
n+1(yt)m̂(xt)−1/

∑
t

hj
n+1(yt)

]−1

f j
n+1 = eθj

n+1 =

[∑
t

hj
n+1(yt)f̂ (xt)−1/

∑
t

hj
n+1(yt)

]−1

where m̂(xt) and f̂ (xt) are the local estimators (Translated Poisson).
If σ = 0, PMM, they are the Levina and Bickel’s estimators.

→ Weighted harmonic means
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Regularized TPMM (R-TPMM)

Asymptotic behavior

Levina and Bickel’s technique

E[m̂(x)] = mT , Var[m̂(x)] =
m2

T

k − 3

(dividing by k − 2 instead of k − 1)

R-TPMM approach (hard clustering version)

E[m̂j ] = mj
T +

mj
T

(k − 1)N j − 1
, Var[m̂j ] = (mj

T )2O

(
1

N j(k − 1)− 4

)
where N j is the number of points in class j .
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Experiments

Notation

σ = 0 σ > 0

α = 0 PMM TPMM

α > 0 R-PMM R-TPMM
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Experiments

Synthetic data - two mixtures

PMM R-PMM TPMM

R-TPMM GPCA Souvenir-Pless

Clustering of a spiral and a plane with noise.
Results with different algorithms.
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Experiments

Synthetic data - two mixtures

PMM R-PMM TPMM R-TPMM
Estimated parameters

m 2.47 1.51 2.48 1.43 1.86 1.35 1.87 1.32
θ 0.13 0.03 0.15 0.03 0.87 0.34 0.83 0.40

Points in each class

Pl. 764 36 800 0 784 16 800 0
Sp. 22 278 25 275 27 273 29 271

Estimated parameters of a spiral and a plane with noise (k = 40, J = 2).
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Experiments

Clustering of a Swiss roll and a line with two different densities

m: 1.98, 1.02, 0.99.
θ: 0.49, 0.53, 6.89.

R-TPMM (k = 20, J = 3, α = 2).

See Haro-Randall-Sapiro, NIPS 2006 and IJCV 2008 for numerous
image/video examples.
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Diffusion Imaging: Complexity in the Forceps Minor
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Diffusion Imaging: Which Representation?
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Conclusions and future work

Conclusions

Algorithm to estimate and classify different dimensions and densities
in noisy point cloud data.

The noise is included in the statistical model.

Natural way to introduce spatial/temporal regularization.

Experiments in synthetic and real data.

Future work/ in progress

Differentiate between manifolds of same dimension.

Population analysis of HARDI/DTI data.
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Thank you!
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