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Why Is a Model of the 
Cortical Surface Useful?

Local functional organization of cortex is largely 2-
dimensional!

From (Sereno et al, 1995, Science).



Why Is Constructing a 
Model of The Cortical 

Surface Difficult?
The cortex is highly folded!

• Partial voluming.

• Subject motion.

• Susceptibility artifacts.

• Bias field.

• Tissue inhomogeneities.

Intensity of a tissue 
class varies as a 

function of spatial 
location



Which Surface to 
Reconstruct?

Pial surface is ultimate goal, but pretty much impossible 
to directly generate a representation of from MRI images 
(many have tried!).

Alternative: construct an interim representation of the 
interface between gray matter and white matter, and use 
it to infer the location of the true cortical surface (Dale 
and Sereno, 1993).



MRI Segmentation and Surface 
Reconstruction



Topology Correction

We would like the reconstructed gray/white boundary 
to have spherical topology (Euler number=2), but 
errors in the segmentation and non-cortical 
anatomical features of the white matter cause 
departures from spherical topology (“defects”).

The true topology of the cortical ribbon is that of a 
sheet (Euler number=1). 



Typical “Defects”
Cut Fornix

Fill Pallidum 
and Putamen

“spackle”
hippocampus

Fill Ventricles 
and Caudate

Cortical 
Defects



Topological Defects



Standard method*: shrink wrapping

start with a surface S (e.g. sphere) of known topology find a mapping 
M:SaC of it to the cortex C that doesn’t change its topology (e.g. 

Davatzikos, 1996; Macdonald 2000)

*newer  volumetric work (Shattuck and Leahy, 2001; Han et al., 2002)



How to maintain geometric 
accuracy?

Problems: 

1. The initial surface S is typically much smoother than 
the target surface C. The energy functionals for 
finding M are therefore highly non-convex.

2. Local errors that would have given rise to inaccurate 
segmentation if the topology were not constrained, 
can cause large scale geometric inaccuracies in the 
surfaces.



What Surface Would a Shrink-
Wrapping Algorithm Result in?



Solution: Manifold Surgery.

Generate C’ and find a mapping M-1 from C’ to S that is 
invertible over as much of C as possible. Noninvertible 
regions contain defects!



Manifold Surgery: Equations
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Ri – jacobian at the ith face in tessellation

F – number of faces in tessellation

k – positive real constant

det(J)



Detection of non-homeomorphic 
Regions
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Detection of non-homeomorphic 
Regions



Manifold Surgery: 
Retessellation

1. Mark all triangles that have any edge overlapping any 
other edge in the tessellation.

2. Discard all faces and edges in marked triangles.

3. Use a genetic retessellation algorithm: keep adding edges 
between all vertices in defects until no more can be added 
without causing an intersection with an existing edge on 
the sphere or in the embedding space. Optimize p(S|I) 
(posterior probability of observed surface S given the MR 
image I).



Manifold Surgery: Results

BEFORE AFTER



Surface Inflation



Gray-white boundary

Pial surface

White matter and pial surfaces



superior temporal

Inflated surface with cuts

Metrically optimal flat map

calcarine

central

sylvian

anterior
posterior

Surface Flattening – Whole 
Hemisphere



Borrowed from (Halgren et al., 1999)Borrowed from (Halgren et al., 1999)



Talairach Coordinates
Can mean many things, but most common is linear 
transform to align input image with a target image that is 
average of many individuals aligned with the atlas of 
Talairach and Tournoux (1988).

Not Good For Cortex!

1. Typical transform is too low dimensional to account for 
variability in cortical folds.

2. Landmarks are subcortical (and far from much of cortex).

3. Implicit assumption that 3D metric is appropriate one.



Average of 40

Single subject

Talairach averaging



How to align different cortical 
surfaces?

e.g. Thompson and Toga, Drury and Van Essen, Tosun and Prince



A Surface-Based Coordinate System



Spherical Morphing: Equations

Jc:   Correlation error (aligns folding patterns)

Jd:   Metric distortion (constrains allowable shape differences)

Energy Functional: Jc+λdJd+λTJT

JT:   Topology term (forces mapping to be invertible)



Spherical Morphing: Equations
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Transformed Surface

Inflated Surface

Maximally Isometric Spherical Mapping



Average (Target)

Individual Subject

Inter-Subject Morphing



Surface-Based Averaging

Average surface created from 30 subjects



Applications
• Increased statistical power for inter-subject averaging

• Automatic functional/anatomical labeling

• Statistical analysis of morphometric properties
– aging
– neurodegenerative diseases
– longitudinal studies of structural changes
– hemispheric asymmetry

• Inter-subject averaging of morphometric properties

• Shape analysis of cortical folding patterns.
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Cortical Parcellation: Manual vs. Automated 

Automatic ParcellationManual Parcellation

Thanks to Christophe Destrieux for this slide.
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Rosas et al., 2002

Kuperberg et al., 2003

Gold et al., 2005

Rauch et al., 2004Salat et al., 2004

Fischl et al., 2000

Sailer et al., 2003
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Shape Analysis: Spherical Wavelets

…

Aj-1 A1

Bj Bj-1

Wavelet decomposition of cortical surface

wavelet coefficients             wavelet coefficients

Aj Aj-1 A1

…

Bj Bj-1

Joint work with Peng Yu, Polina Golland and B.T. Thomas Yeo

Biorthogonal Wavelets (c.f. Nain et al, 2008, Yu et al., 2008)



Bi-orthogonal wavelets are not rotation 
invariant due to aliasing

Bump aligned with the 
center of a wavelet basis 

function at low level
Rotated surface 
parameterization

Synthetic 
Surface

Original Surface Surface Parameterization
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No aliasing in over-complete spherical 
wavelet transformation (Yeo 07)

Based on continuous filter bank theory
• Fast convolution in spherical harmonics space
• No aliasing
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Wavelet Shape Analysis: Newborn Growth 
Model

Dataset: 
Eight normal neonates with 
corrected gestational ages 
(cGA) of 31.1, 34, 38.1,38.4, 
and 39.72 weeks and 3 children. 
Growth model of the cortical 
surface using Gompertz
functions in the wavelet 
domain

In collaboration with Peng Yu, Polina Golland, B.T. Thomas Yeo and Ellen Grant

Age8 Newborns in gestational ages 3 kids

30.57 31.1 34 37.71 38.1 38.4 39.72 40.43 (weeks)    2  3 7 (years)



Over-complete wavelets: Newborn Growth Curves
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Wavelet Shape Analysis: newborns

Joint work with Peng Yu, B.T. Thomas Yeo, Ellen Grant and Rudolph Pienaar
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Whole-Brain Segmentation

Goal: Segment T1-weighted MRI into anatomically and 
semantically meaningful structures (e.g. caudate, 
putamen, etc…).

Requirements:
• Insensitive to pathology.
• Insensitive to varying pulse sequences.

Prerequisite: registration with anatomically meaningful 
space (e.g. Talairach)



Why Segmentation is Hard!
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Inter-subject Registration

Problem: this information is in general unavailable

Typical solution: align image intensities and hope this results
in alignment of function/structure as well.

Goal: align functionally homologous points across subjects
(e.g. hippocampus with hippocampus, amygdala with 
amygdala, etc…).



What does Mean-Squared Error
Estimation mean from a 

Probabilistic Perspective?

Assume rrr dTfITfIp ∫∫∫ −−= 2))())((()),|(log(

Then: ∏ −−=
2))())(((),|( rr TfIeTfIp

f is the maximum likelihood solution assuming the image 
noise can be modeled  as a set of IID random variables with 
means T(r) and equal (unit) variances.

Find f that minimizes 
(T is target image, I is input image, r is spatial coordinate)

rrr dTfI∫∫∫ − 2))())(((



Mean-squared Error Registration: 
Low Quality Data

I(r)                          T(r)                        I(Lr)



Mean-squared Error Registration

Anatomy is variable, particularly in cases of pathology* 

A given spatial location may contain a different 
tissue class in different types of subjects!

* Thanks to Marilyn Albert and Ron Killiany for providing this data.



Segmentation-based 
Registration

Find the transformation that maximizes the probability 
that each point in the individual is drawn from one of the 
tissue classes in the template.

Find the L that maximizes the probability of observing 
image I given the segmentation C:

),|(maxarg CLIpL =

How do we find the segmentation C?



Segmentation-based 
Registration

Problem of finding L is highly overdetermined (many, 
many more data points than parameters to solve for).

Can assume C in certain atlas locations (a few thousand) 
where prior probabilities are high, and use them to find L 
using a global search (local minima/maxima not a 
problem).



Atlas Points After Registration



Normal

AD

Segmentation-based Registration: 
Results



Segmentation Results: CMA 
Labeling



Tissue Segmentation
Given a transform f into an atlas space, C can be estimated 
using a Maximum a Posteriori (MAP) approach: what is the 
most likely tissue classification C given the observed 
image I , the transformation f, and prior information  about 
C?

),|(maxarg fICpC
C

′=
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What prior information p(C) can we use to constrain the 
allowable segmentations? 



Gibbs Priors: Motivation 

What is the probability that cortical gray 
matter occurs inferior to hippocampus?



Markov Random Fields

Modeling the segmentation as a Markov Random Field (MRF) 
means:
p(C(r)|the rest of the labels) = p(C(r)|labels in a neighborhood around r)



Segmentation: MRF

Problem: the segmentation is fractured because no 
spatial smoothness constraints are encoded in model.

Solution: incorporate prior probability of one tissue 
class being the neighbor of another into model:
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Segmentation: MRF
p(C(ri)|C(r), I, r,ri) encodes the probability that tissue class 
C(ri) occurs at spatial location ri when tissue class C(r) 
occurred at r. The segmentation is thus modeled as an 
anisotropic nonstationary MRF.

C(r)

C(r1)
C(r2)

C(r3)

C(r4)

C(r6)

C(r5)



Segmentation: MRF

Final Segmentation

Preliminary Segmentation



Segmentation with
MRF: Fly Through



Volume Differences Predictive of AD
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Data courtesy of Drs Marilyn Albert Ron Killiany
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Can we do better than this?

Brodmann, 1909



Automated Detection of Architectonic 
Boundaries

From (Amunts, et al, 2000)



Predicting Brodmann Areas: Talairach 
Coordinates

BA17                          BA18                        BA44 BA45
(Amunts et al, 2000, 2004)1 subject

10 subjects
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Predicting Brodmann Areas from 
Cortical Geometry

Thanks to Katrin Amunts, Karl Zilles and Hartmut Mohlberg for the data, and to Niranjini Rajendran and Evelina
Busa for the analysis

Area 6 Area 4a Area 4p Area 2

Area 44 Area 45 Area 18 Area 17

100%0%



Predicting Brodmann Areas from 
Cortical Geometry

Area 6 Area 4a Area 4p Area 2

Area 44 Area 45 Area 18 Area 17

100%0%

Thanks to Katrin Amunts, Karl Zilles and Hartmut Mohlberg for the data, and to Niranjini Rajendran and Evelina
Busa for the analysis



Brodmann Area Predictability

Thanks to Katrin Amunts, Karl Zilles and H. Mohlberg for the data, to B.T. Thomas Yeo, Niranjini
Rajendran and Evelina Busa for the analysis, and to Kilian Pohl for suggesting the distance measure.



What Features To Use?
),(1),(

1
θϕθϕ ∑

=

=
N

i
iC

N
CAverage Folding Pattern:

2)),(),(
1
(

1
1),(2 θϕθϕθϕσ C

N

i
C

N i −∑
=−

=Variance of Folding:

2

1
)

))(),((
)))(),(((*(

2
1 ∑

=

−
=

V

v

v
P vv

vvCCG
V

J
θφσ

θφαLikelihood Term:

What space should mean and variance be computed in?

What if we align labels (instead of geometry) and compute 
statistics in label-aligned space?

Variance becomes natural weighting of predictive features!

Joint work with Thomas Yeo and Mert Sabuncu



Brodmann Area Predictability 
(geometry)

Joint work with B.T. Thomas Yeo and Mert Sabuncu



Brodmann Area Predictability 
(labels)

Joint work with B.T. Thomas Yeo and Mert Sabuncu



Histology 
(can we do it with MRI?)

Nissl Stain thioflavin S 
(neurofibrillary tangles 
and neuritic plaques)

CONTROL                                 AD

Thanks to Brad Hyman and Jean Augustinack for this slide.



Delineating Area 17

7T, 160μm isotropic, NEX=2, 4 echos, TR=55 ms, esp 13ms, α=10o



100μm isotropic MR, 7T, TR=20msec, TE=7.8msec, α=23o (synthesized)

Temporal Lobe Fly-Through

1mm

S
M    L   

I



Entorhinal Islands with MRI!

1mm



Coronal sections of the hippocampus at identical level on 7T MRI (A) and Nissl-stained 
histology (B).  Significant maxima distinguishing cytoarchitectonic areas within the 
parahippocampal region are found in the same location for both modalities.

Abbreviations: EC=entorhinal cortex; PC=perirhinal cortex; para-sub=parasubiculum; 
pre-sub=presubiculum

A B

PC

EC

pre/para
subiculum

subiculum

PC

EC

pre/para
subiculum

subiculum

Automated Areal Border Detection: 
Comparison with Histology

Joint work with Neda Bernasconi, Gheorghe Postelnicu and Jean Augustinack



Predicting Brodmann Areas from MRI

AREA 
17

AREA 
28

LEFT RIGHT

100%

0%
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