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Conjecture: There are only
three things you need for an

fMRI experiment.



T.T. Liu July 22, 2004 Copyright © 2004



T.T. Liu July 22, 2004 Copyright © 2004

The manipulation of statistical formulas (or
software) is no substitute for knowing what one is
doing. --Hubert M. Blalock, Jr., Social Statistics

You should understand what the analysis software
is doing -- Bob Cox, Author of AFNI
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Overview
Geometric view of basic statistical tests.

Efficiency and the Design of Experiments
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Why a geometric view?

For a historical account see: D.G. Herr, The
American Statistician, 34:1 1980.

1) Vector space interpretation of linear
algebra

2) “simpler, more general, more
elegant”  W.H. Kruskal 1961

3) Avoid lots of messy algebra.
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General Linear Model
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Example 2
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Simplest Case

€ 

y = xh1 + sb1 + n

=

0
0
0.5
1
1
1
0.5
0
0

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

h1 +

1
1
1
1
1
1
1
1
1

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

s1 +

−1
−2
0
3
−1
1
2
.5
−.2

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

€ 

r =
y − y ( )T x − x ( )

y − y ( )T y − y ( ) x − x ( )T x − x ( )

Correlation Coefficient
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Plan of attack
1. First derive statistics assuming there

are no nuisance functions
2. Then add in nuisance functions.
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General Linear Model

y      =      Xh      +  n

Data
Design
Matrix

Hemodynamic
Response



T.T. Liu July 22, 2004 Copyright © 2004

Principle of Orthogonality

y

x

E

h1x
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 ETx = 0

y − h1x( )T x = 0

h1 =
yTx
xTx

Minimum error vector is orthogonal to the

model space.



T.T. Liu July 22, 2004 Copyright © 2004

Correlation Coefficient
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From a previous slide …
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Principle of Orthogonality
y

E

XXh
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XT y −Xh( ) = 0⇒ h = XTX( )
−1
XTy
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Projection Matrices
y

E

XXh
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h = XTX( )
−1
XT y

Xh = X XTX( )
−1
XT y

= PXy

€ 

E = y −PXy
= I−PX( )y
= PX⊥y

€ 

PXPX = PX
PXT = PX

Useful Facts
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Orthogonality again

y
E

XXh

€ 

hTXTE = 0
yTPXPX⊥y = 0

yTPX I−PX( )y = 0
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F-statistic
y E

XXh

€ 

F =
Xh 2 #of model functions( )

E 2 #of datapoints −  #of model functions( )

=
N − k
k

yTPXTPXy
yT I−PX( )T I−PX( )y

=
N − k
k

yTPXy
yT I−PX( )y

=
N − k
k

cot2θ
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Coefficient of Determination

y
E

XXh
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R2 =
Xh 2

y 2

=
yTPXy
yTy

= cos2θ
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N − k
k

R2

1− R2

Easy to show that
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General Linear Model
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Nuisance Functions

y

X

S

XS

€ 

PXSy is the data explained by both X and S

€ 

E = I−PXS( )y is the residual error
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Nuisance Functions

y
E

X

S

XS

Data explained by X

Data explained by S

Data explained by X that
can’t be explained

by S
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Nuisance Functions
y

E

X

S

€ 

The space spanned by the columns of PS⊥X is the part of
the model space that is orthogonal to S. 
PPS⊥Xy  is the projection of the data onto that space, and 

is therefore the data explained by the model that can't be
explained by S.

€ 

 PS⊥ = I−PS



T.T. Liu July 22, 2004 Copyright © 2004

Geometric Picture
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Pythagorean Relation

€ 

PS⊥y =  data not explained by S

€ 

PPS⊥Xy = data explained by X 

             but not by S

€ 

I−PXS( )y = data explained 

       by neither X nor S
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Pythagorean Relation

€ 

yTPS⊥y = yT I−PXS( )y + yTPPS⊥Xy
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F-statistic

€ 

yTPS⊥y = yT I−PXS( )y + yTPPS⊥Xy

€ 

F =
N − k − l

k
yTPPs⊥xy

yT I−PXS( )y

=
N − k − l

k
cot2θ

k = # model functions, l = # of nuisance functions
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Coeffcient of Determination R2

€ 

yTPS⊥y = yT I−PXS( )y + yTPPS⊥Xy

k = # model functions, l = # of nuisance functions
€ 

R2 =
yTPPs⊥xy
yTPS⊥y

= cos2 θ( )
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F and R2

€ 

yTPS⊥y = yT I−PXS( )y + yTPPS⊥Xy

€ 

F =
N − k − l

k
yTPPs⊥ xy

yT I−PXS( )y
=
N − k − l

k
cot2θ

R2 =
yTPPs⊥ xy
yTPS⊥y

= cos2θ

F =
N − k − l

l
R2

1− R2

k = # model functions, l = # of nuisance functions
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Multiple Correlation Coefficient

€ 

R =
y −PSy( )T ˆ y −PSX ˆ h ( )

y −PSy( )T y −PSy( ) ˆ y −PSX ˆ h ( )
T

ˆ y −PSX ˆ h ( )

After a bit of algebra, we can show that…

€ 

R =
y − y ( )T x − x ( )

y − y ( )T y − y ( ) x − x ( )T x − x ( )

For 1 model function and  1 constant nuisance
function, this reduces to the familiar
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Application
In the analysis of most fMRI experiments, we need to
properly deal with nuisance terms, such as low
frequency drifts.  A reasonable approach is to project
out the nuisance terms and then correlate the
detrended data with a reference function.  Does this
give us the correct correlation coefficient?
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Multiple Correlation Coefficient
For 1 model function and  multiple nuisance
function, we obtain

€ 

R =
y −PSy( )T x −PSx( )

y −PSy( )T y −PSy( ) x −PSx( )T x −PSx( )

So, this tells us that we should detrend both the
data and the reference function before
correlating.
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One more thing

When there is only one model function (k=1) and l
nuisance functions, the F-statistic is simply the squared
of the t-statistic with N-l-1 degrees of freedom.
So, we also have the useful relation

€ 

t = N − l −1 R
1− R2
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Efficiency and Design

If your result needs a statistician then you
should design a better  experiment. --Baron
Ernest Rutherford
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Power, Efficiency, Predictability

Random
P = 0.5

SemiRandom
   P = 0.63

Block
P =0.9 
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Experimental Data

F-
sta

tis
tic
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General Linear Model

y      =      Xh      +      Sb    +  n

Data
Design
Matrix
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Statistical Efficiency

€ 

ˆ h = XT PS
⊥X( )

−1
XT PS

⊥y

= X⊥
T X⊥( )

−1
X⊥

T y

Least Square Estimate (for now assume white noise)

€ 

ξ = Efficiency∝ 1
variance of ˆ h 
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Statistical Efficiency

Efficiency depends on:

1) Model Assumptions
2) Experimental Design
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Model Assumptions
How much do we want to assume about the
shape of the hemodynamic response (HDR)?

1) Assume we know nothing about its shape

2) Assume we know its shape completely, but
not its amplitude.

3) Assume we know something about its
shape.
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Assumptions and Design
Assumption 1:  Experiments where you want to
characterize in detail the shape of the HDR.

Assumption 2: Experiments where you have a good
guess as to the shape (either a canonical form or
measured HDR)  and want to detect activation.

Assumption 3:  A reasonable compromise between 1
and 2.  Detect activation when you sort of know the
shape.  Characterize the shape when you sort of
know its properties.
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Assumption 1

€ 

If we assume nothing about the shape (except for length)
then the GLM is what we had before :  y = Xh + Sb + n
 

Covariance :  C ˆ h =σ
2 X⊥

T X⊥( )
−1

Efficiency :ξ ∝ 1
average variance

=
1

σ 2Trace X⊥
T X⊥( )

−1 
  

 
  
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Assumption 2

€ 

Assume we know the HDR shape but not the amplitude 
              h = h0c
GLM :
y = Xh0c + Sb + n
    = ˜ X c + Sb + n
Efficiency :

ξ ∝
1

var(amplitude estimate)
=

1
var( ˆ c )

=
h0

T X⊥
T X⊥h0

σ 2
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Assumption 3

€ 

If we know something about the shape, we can use a
basis function expansion :  h = Bc

GLM : y = XBc + Sb + n = ˜ X c + Sb + n

Estimate : ˆ c = BT X⊥
T X⊥B( )

−1
BT X⊥

T y

                ˆ h = Bˆ c = B BT X⊥
T X⊥B( )

−1
BT X⊥

T y

Efficiency :ξ =
1

σ 2Trace B BT X⊥
T X⊥B( )

−1
BT 

  
 
  
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Summary

€ 

No assumed  shape :  ξ =
1

σ 2Trace X⊥
TX⊥( )

−1 
  

 
  

Assume basis functions :  ξ =
1

σ 2Trace B BTX⊥
TX⊥B( )

−1
BT 

  
 
  

Assume known shape :ξ =
h0
TX⊥

TX⊥h0

σ 2
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Impact on Design
Definition of efficiency depends on model
assumptions.

The design that achieves optimal efficiency depends
on the definition of efficiency and therefore also
depends on the model assumptions.
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What does a matrix do?

€ 

y = Xh

N-dimensional vector

N x k matrix

k-dimensional vector

The matrix maps from a k-dimensional
space to a N-dimensional space.
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Matrix Geometry

Xv = σ u1       1  1

v1

σ u1  1

Geometric fact: The image of the a k-
dimensional unit sphere under any N x k matrix
is an N-dimensional hyperellipse.
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Singular Value Decomposition

Xv = σ u1       1  1

v1

σ u1  1v2
σ u2  2€ 

The right singular vectors v1 and v 2 are transformed
into scaled vectors σ1u1 and σ 2u2 , where u1 and u2 are
the left singular vectors and σ1 and σ 2 are the singular values.

€ 

The singular values are the k square roots of the eigenvalues
of  kxk matrix XTX.
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Assumed HDR shape

Xv = σ u1       1  1

v1

σ u1  1

Parameter 
   Space

   Data 
   Space

  Parameter
Noise Space

Good for
Detectionh0

Efficiency here is optimized by amplifying the singular
vector closest to the assumed HDR. This corresponds to
maximizing one singular value while minimizing the
others.
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No assumed HDR shape

v1

σ u1  1
Xv = σ u1       1  1

Parameter 
   Space

   Data 
   Space

  Parameter
Noise Space

Here the HDR can point in any direction, so we don’t
want to preferentially amplify any one singular value.
This corresponds to an equal distribution of singular
values.
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Theoretical Curves
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Efficiency vs. Power

Detection Power
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Basis Functions
If no basis functions, then use equal eigenvalues.

If we know the the HDR lies within a  subspace, we
should maximize the singular values in this subspace
and minimize outside of this subspace.
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Basis Functions
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Overview of designs
Known HDR: Maximize one dominant singular
value -- block designs.

Unknown HDR: Equalize singular values --
randomized designs, m-sequences.

Somewhat known HDR:  Amplify singular values
within the subspace of interest -- semi-random
designs, permuted block, clustered m-sequences.
(also good in presence of correlated noise).
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Multiple Trial Types
Previously: 1 trial type + control (null)

A A N A A N A A A N

Extend to experiments with multiple trial types

A B A B N N A N B B A N A N A

B A D B A N D B C N D N B C N 
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Multiple Trial Types GLM

y      =      Xh      +      Sb    +  n

X = [X1 X2  …  XQ]

h = [h1
T

  h2
T  … hQ

T]T
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Multiple Trial Types Overview
Efficiency includes individual trials and also contrasts
between trials.

€ 

Rtot =
K

average variance of HRF amplitude estimates
 for all trial types and pairwise contrasts
 

 
 

 

 
 

€ 

ξtot =
1

average variance of HRF estimates
for all trial types and pairwise contrasts
 

 
 

 

 
 



T.T. Liu July 22, 2004 Copyright © 2004

Multiple Trial Types Trade-off
Can show that the same geometric intuition about
singular values applies.
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Optimal Frequency
Can also weight how much you care about individual
trials or contrasts.  Or all trials versus events.
Optimal frequency of occurrence depends on weighting.
Example: With Q = 2 trial types, if only contrasts are of
interest p = 0.5. If only trials are of interest,  p = 0.2929.
If both trials and contrasts are of interest p = 1/3.

€ 

p =
Q(2k1 −1)+Q

2 (1− k1)+ k1
1/2 Q(2k1 −1)+Q

2 (1− k1)( )1/2

Q(Q −1)(k1Q −Q − k1)
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Design
As the number of trial types increases, it becomes more
difficult to achieve the theoretical trade-offs. Random
search becomes impractical.

For unknown HDR, should use an m-sequence based
design when possible.

Designs based on block or m-sequences are useful for
obtaining intermediate trade-offs or for optimizing with
basis functions or correlated noise.
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Optimality of m-sequences
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Clustered m-sequences
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Topics we haven’t covered.
The impact of correlated noise -- this will change the
optimal design. Can  you the geometric intuition from
singular values to gain some understanding.

Entropy of designs.
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Concluding remarks
Geometric view is useful for developing intuition into
the meaning of basis statistical measures and design
principles.

It is also very useful as a sanity check of one’s
theoretical results.


