

	Two Approaches: Whole Brain Stats	
B.	<u>vvnole volume statistical approacn</u>	
1.	Make predictions about what differences you should see if	
	your hypotheses are correct	
2.	Decide on statistical measures to test for predicted	
	differences (e.g., t-tests, correlations, GLMs)	
3.	Determine appropriate statistical threshold	
4.	See if statistical estimates are significant	
<u>Sta</u>	Statistics available	
1.	T-test Source: Tootell et al. 1995	
2.	Correlation	
3.	Frequency-Based (Fourier/Wavelet/Fractal) modeling	
4.	General Linear Model	
-0V	erarching statistical model that lets you perform many types	
	of statistical analyses (incl. correlation/regression, ANOVA)	
	Slide 14 UCLA, Ivo Dinov	

Wavelet-space Shrinkage

Bayesian Mixture Models for fMRI Analysis

• We use two component mixture prior distributions on the wavelet coefficients $\theta_{j,k}$ with

$$\theta_{j,k} \mid \pi_j \tau_j \sim \pi_j N(0, \tau_j^2) + (1 - \pi_j) \delta(0)$$

where π_j is a proportion between 0 and 1, $\delta(0)$ is the Dirac point mass at zero and $\tau_j > 0$. In other words, there is a level-dependent positive probability π_j *a priori* that each wavelet coefficient will be exactly zero. If not, the coefficient will be normally distributed with mean zero and a level-specific standard deviation τ_j

Slide 67

UCLA, Ivo Dinov

UCLA, Ivo Dinov

Bayesian Mixture Models for fMRI Analysis • Given the observed data over an ROI $y=f+\varepsilon$, the corresponding wavelet representation $w = \theta + z$, where *W* is the discrete WT, w = Wy, $\theta = Wf$ and $z = W\varepsilon$, and the above prior distribution for the true wavelet coefficients, the *posterior distributions of* $\theta_{j,k}$ are again independent two-component mixtures: $p(\theta_{j,k} | w_{j,k}) \sim \lambda_{j,k} N\left(\frac{w_{j,k}\tau_j^2}{\sigma^2 + \tau_j^2}, \frac{\sigma^2\tau_j^2}{\sigma^2 + \tau_j^2}\right) + (1 - \lambda_{j,k})\delta(0)$ Where the $\lambda_{j,k} = 1/(1 + \rho_{j,k})$ are the posterior odds that $\theta_{j,k}$ is exactly zero are: $\rho_{j,k} = \frac{1 - \pi_j \sqrt{\tau_j^2 + \sigma^2}}{\pi_j} \exp\left(\frac{-\tau_j^2 w_{j,k}}{2\sigma^2(\tau_j^2 + \sigma^2)}\right)$

Slide 68

