

























|            | Two Approaches: Whole Brain Stats                             |  |
|------------|---------------------------------------------------------------|--|
|            |                                                               |  |
| B.         | <u>vvnole volume statistical approacn</u>                     |  |
| 1.         | Make predictions about what differences you should see if     |  |
|            | your hypotheses are correct                                   |  |
| 2.         | Decide on statistical measures to test for predicted          |  |
|            | differences (e.g., t-tests, correlations, GLMs)               |  |
| 3.         | Determine appropriate statistical threshold                   |  |
| 4.         | See if statistical estimates are significant                  |  |
| <u>Sta</u> | Statistics available                                          |  |
| 1.         | T-test Source: Tootell et al. 1995                            |  |
| 2.         | Correlation                                                   |  |
| 3.         | Frequency-Based (Fourier/Wavelet/Fractal) modeling            |  |
| 4.         | General Linear Model                                          |  |
| -0V        | erarching statistical model that lets you perform many types  |  |
|            | of statistical analyses (incl. correlation/regression, ANOVA) |  |
|            | Slide 14 UCLA, Ivo Dinov                                      |  |









































## Wavelet-space Shrinkage

















































## **Bayesian Mixture Models for fMRI Analysis**

• We use two component mixture prior distributions on the wavelet coefficients  $\theta_{j,k}$  with

$$\theta_{j,k} \mid \pi_j \tau_j \sim \pi_j N(0, \tau_j^2) + (1 - \pi_j) \delta(0)$$

where  $\pi_j$  is a proportion between 0 and 1,  $\delta(0)$  is the Dirac point mass at zero and  $\tau_j > 0$ . In other words, there is a level-dependent positive probability  $\pi_j$  *a priori* that each wavelet coefficient will be exactly zero. If not, the coefficient will be normally distributed with mean zero and a level-specific standard deviation  $\tau_j$ 

Slide 67

UCLA, Ivo Dinov

UCLA, Ivo Dinov

## **Bayesian Mixture Models for fMRI Analysis** • Given the observed data over an ROI $y=f+\varepsilon$ , the corresponding wavelet representation $w = \theta + z$ , where *W* is the discrete WT, w = Wy, $\theta = Wf$ and $z = W\varepsilon$ , and the above prior distribution for the true wavelet coefficients, the *posterior distributions of* $\theta_{j,k}$ are again independent two-component mixtures: $p(\theta_{j,k} | w_{j,k}) \sim \lambda_{j,k} N\left(\frac{w_{j,k}\tau_j^2}{\sigma^2 + \tau_j^2}, \frac{\sigma^2\tau_j^2}{\sigma^2 + \tau_j^2}\right) + (1 - \lambda_{j,k})\delta(0)$ Where the $\lambda_{j,k} = 1/(1 + \rho_{j,k})$ are the posterior odds that $\theta_{j,k}$ is exactly zero are: $\rho_{j,k} = \frac{1 - \pi_j \sqrt{\tau_j^2 + \sigma^2}}{\pi_j} \exp\left(\frac{-\tau_j^2 w_{j,k}}{2\sigma^2(\tau_j^2 + \sigma^2)}\right)$

Slide 68

