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Plan of the talk

• I. Grenander’s deformable templates and examples.

• II. Geodesic motion. (Miller-Trouvé-Younes 2003)
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Central Framework: Grenander’s Deformable
Template

Main ingredients:

• Object set: O

• Group of transformations G

• Group action G×O → O

oobs = goref︸︷︷︸
deformed template

+ n︸︷︷︸
noise

(1)
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Examples–Landmarks

• O = {x = (xi)1≤i≤N | xi ∈ Rd}.

• Finite dimensional case: G rotation group, scale and

translation group, affine group...

• Infinite dimensional case: G group of non rigid

transformation ϕ : Rd → Rd

xobs = ϕxref + n where ϕx .= (ϕ(xi))1≤i≤N (2)
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Examples–Images

• D a domain in Rd, O = { I : D → R }

• G group of diffeomorphisms on D

ϕI
.= I ◦ ϕ−1

Iobs = ϕIref︸︷︷︸
deformed template

+ n︸︷︷︸
noise

(3)
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Template Matching Problem

Bayesian or variational point of view

ĝ = argmin
g∈G

 dO(oref, goref)2︸ ︷︷ ︸
distance on object space

+ |oobs − goref|2n︸ ︷︷ ︸
noise intensity

 (4)

Idea: dO((oref, goref) should be depend on the amount of

deformation g linking oref and goref. Build a model on ĝ

and n instead of oobs.
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Metric Transfer Through Group Action

• Differentiate the action g → go at Id.

TIdG −→ ToO
v → δo

.= v.o
(5)

• Define a metric ‖v‖Id for small g ' Id + v

• Transfer the metric on ToO

‖δo‖o = inf
δo=vo

‖v‖Id
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Metric Transfer Through Group Action (cont)

O inherits a Riemannian structure

For o, o′ ∈ O:

• Oo,o′: smooth paths t → ot from o to o′.

• dO(o, o′) .= inf
Oo,o′

∫ 1

0

‖do

dt
‖otdt

We get a Riemannian distance on O
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Associated Right Invariant Dist. on G

Choose O = G, G acts onto itself: (g, g0) → gg0

Apply metric transfer:

‖δg0‖g0 = inf
δg0=v.g0

‖v‖Id .

But g → gg0 is one to one. Hence v → vg0 is an isomorphism.

Consequence: Tg0G = { v.g0 | v ∈ TIdG} and

‖vg0‖g0 = ‖v‖Id (Right invariance) .
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Associated Right Invariant Dist. on G (Cont)

Geodesic distance on G: Take infimum on sufficiently smooth

paths from g0 to g1

dG(g0, g1)
.= inf

g0→g1

∫ 1

0

‖dgt

dt
‖gtdt = inf

g0→g1

∫ 1

0

‖dgt

dt
g−1

t ‖Iddt

Right invariance property:

dG(g0, g1) = dG(g0g, g1g)

Theorem: dO(o, o′) = inf{dG(Id, g) | go = g′}.
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Rigorous construction for non rigid
deformations

• D a d-dimensional domain, G subgroup of Hom(D), g → ϕ

• Start from V be a Hilbert space of vector fields on D with

norm ‖ ‖V (to be identified with TIdG)

• Assume V
cont
↪→ C1(D, R) (admissibility)

For v ∈ L2([0, 1], V ), ϕv solution of

{
dϕv

t
dt = vt ◦ ϕv

t

ϕv
0 = Id∣∣∣∣∣∣∣

G
.= { ϕv

1 | v ∈ L2([0, 1], V ) }

dG(Id, ϕ) = inf{
∫ 1

0
‖vt‖V dt | ϕv

1 = ϕ}
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Rigorous construction (non-rigid deformation) (Cont)

Usual framework: ‖vt‖2V =
∫
〈Lv(x), v(x)〉dx with

L : D(L) ⊂ V → H = L2(D, Rd)

ex: L = (I −∆)s.

Theorem (T. 1995): Let V
cont
↪→ C1(D, R) (admissibility)

* G is a subgroup of homeomorphisms

* G is complete for the right invariant metric dG( , )
* Existence of geodesics

If V
cpct
↪→ C1(D, R), G is a subgroup of diffeomorphisms (T.

1995, Dupuis et al. 1998)
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Template Matching Revisited

Energetic formulation: dG(Id, ϕ)2 = inf
ϕv

1=ϕ

∫ 1

0

‖vt‖2V dt

Template matching problem:

ϕ̂ = argmin
ϕ∈G

(
dO(oref, ϕoref)2 + |oobs − ϕoref|2n

)
= argmin

ϕ∈G

(
dG(Id, ϕ)2 + |oobs − ϕoref|2n

)
becomes:

v̂ = argmin
v∈L2([0,1],V )

(
1
2

∫ 1

0

‖vt‖2V dt + |oobs − ϕv
1oref|2n

)
, ϕ̂

.= ϕv̂
1

→ Existence of solutions (T. 1995, Dupuis et al. 1998)
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Application to Landmark Matching

• O = { x = (xi)1≤i≤N | xi ∈ Rd }

• gx .= (g(xi))1≤i≤N ⇒ vx = (v(xi))1≤i≤N .

v̂ = argmin
v∈L2([0,1],V )

∫
‖vt‖2V dt +

1
σ2

N∑
i=1

|xobs − gv
1(x

ref
i )|2

Gives Large Deformation Extension of Bookstein Splines.

* 2d example: (Joshi, Miller (00), Camion,Younes (00))

* Landmark on the sphere, (Glaunes,Vaillant (02))
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Application to Image Matching

• O = { I : D → R }

• V satisfying admissibility conditions

• Action : ϕI = I ◦ ϕ−1

v̂ = argmin
v∈L2([0,1],V )

∫
‖vt‖2V dt +

1
σ2

∫
|Iobs(x)− I ref(ϕv

1(x))|2dx

Large deformation extension of Amit-Grenander-Piccioni model:

argmin
v∈V

‖v‖2V +
1
σ2

∫
|Iobs(x)− I ref(x− v(x))|2dx
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Application To Submanifold Matching

• Point x

→ δx Dirac measure at x.

• M k-dimensional submanifold

→ µM uniform probability measure on M

• M = ∪r
i=1Mi union of manifold with different dimensions

→ µM =
∑r

i=1 µMi

• More general situations (noisy representations)

→ arbitrary distributions

Glaunes et al. (CVPR 04)
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Action on measure

Action (ϕ, µ) → ϕµ given by the mass transport∫
f d(ϕµ) =

∫
f ◦ ϕ dµ
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Action on measure

Action (ϕ, µ) → ϕµ given by the mass transport∫
f d(ϕµ) =

∫
f ◦ ϕ dµ

• Points: ϕ(
∑

x∈S δx) =
∑

x∈S δϕ(x)

• Abs. cont. distribution: ϕ(gdλ) = g ◦ ϕ−1|dϕ−1|dλ

supp(ϕµ) = ϕ(suppµ)
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Comparison between two distributions µ and ν

Principle: µ is defined by its behavior on test functions:

〈µ, f〉 def=
∫

f dµ

W Hilbert space of space functions:

|µ− ν|W ∗ = sup
|f |W=1

|〈µ, f〉 − 〈ν, f〉|
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Complete Model for Submanifold Matching

• D a bounded domain in Rd. The object space is O = W ∗

where W is a Hilbert space of functions on D.

• (ϕµ, f) .= (µ, f ◦ ϕ)

v̂ = argmin
v∈L2([0,1],V )

∫
‖vt‖2V dt +

1
σ2
|ϕv

1µ0 − µ1|2W ∗

Importantly, we have existence and consistancy results
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Existence Result

Let µ, ν ∈Ms, and let for any v ∈ L2([0, 1], V )

Jµ,ν(v) .=
∫
‖vt‖2V dt +

1
σ2
|ϕv

1µ− ν|2W ∗

Theorem 1. [Existence] Under suitable regularity conditions

on V (admissibility condition), there exists a minimiser v∗ in

L2([0, 1], V ) of Jµ,ν for any µ, ν in Ms.
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Existence Result

Let µ, ν ∈Ms, and let for any v ∈ L2([0, 1], V )

Jµ,ν(v) .=
∫
‖vt‖2V dt +

1
σ2
|ϕv

1µ− ν|2W ∗

Theorem 1. [Existence] Under suitable regularity conditions

on V (admissibility condition), there exists a minimiser v∗ in

L2([0, 1], V ) of Jµ,ν for any µ, ν in Ms.

For v∗ is a minimiser, ϕ∗ is the associated diffeomorphism.
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Consistency Result

Theorem 2. [Consistency] Assume the regularity condition

of Thm 1. Let µ and ν be two probability distributions on Rd

and let x1, · · · , xm and y1, · · · , yn be iid samples drawn from

distribution µ and ν. Let µ̂m = 1
m

∑
i δxi

and ν̂n = 1
n

∑
j δyj

be the associated empirical measures. Then if ϕ∗(m,n) is an

minimiser of Jµ̂m,ν̂n, almost surely, ϕ∗(m,n) tends uniformly

(up to the extraction of a subsequence) to ϕ∗ minimiser of Jµ,ν

when m,n →∞.
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Rangarajan Test Data

Figure 1: Rangarajan test set
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Matching heterogeneous manifolds

Figure 2: Left Initial configuration, Right: Final matching
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Consistency

Figure 3: Various sampling rate of the same manifolds
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Robustness against noise

Figure 4: Various noise levels
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Robustness against outliers
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3D examples

Figure 5: Left and Right Hippocampus (Surface tessellation

provided by CNRS Cognitive Neuroscience and Brain Imaging

Laboratory, La Salpetriere Hospital, Paris)
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Morphing Metrics on Object Space

Previous construction:

dO(o, o′) < +∞ iff o and o′ on same orbit

For images: dI(I, I ′) < +∞⇔ I ′ ◦ ϕ = I, ϕ ∈ G

no apparition of new structure in one orbit
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• Assume the object space O = H Hilbert space.

Let G̃ = { a = (g, h) | g ∈ G, h ∈ H }

• If the action o → go is linear, G̃ is a group for the composition

law (g, h)(g′, h′) = (gg′, gh′ + h) (semi-direct product G n H)

and G̃ acts (affinely) on O by (g, h)o = go + h.

But now: G̃oref = O

• Let W = V ×H be the tangent space at eG̃ of G̃ equip with

the induced product metric: 〈(v, z), (v′, z′)〉W = 〈v, v′〉V +
〈z, z′〉H. Consider the associated invariant metric on G̃

dO,morph(o, o′) = inf{ dG̃(eG̃, (g, h)) | (g, h)o = o′} .

Many extensions in Laurent’s talk yesterday.
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The central role of geodesic paths in G

• Inexact Matching

ĝ = argmin
g∈G

dO(oref, goref)2 + E(oref, oobs)

• Exact Matching

ĝ = argmin
g∈G

dO(oref, goref)2 subject to goref = oobs

If (gt) is a geodesic path in G from Id to ĝ, then ot = gtoref is

a geodesic path in O from oref to ĝoref.

A key fact is that G is always equip with a right invariant

metric.
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• Start with G Lie group of matrices with right invariant metric

• Define L : TIdG → TIdG
∗ (Inertial operator)

Lv is the Momentum

‖v‖2Id
.= (Lv, v)TIdG

∗×TIdG

Note that dG(g0, g1)2 is given by:

min
∫

(Lvt, vt)dt subject to:

∣∣∣∣∣∣∣
gv
0 = g0 and gv

1 = g1

where
dgv

gt = vtg
v
t

(LAP)

This is exactly the least action principale for a Lagragian

reduced to the kinetic energy.
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The Euler-Poincaré equation for group of
matrices

Let gt be an extremal curve for the kinetic energy and gt,ε

be a smooth deformation around ε = 0 with fixed end values

(g0,ε = g0, g1,ε = g1). Let vt,ε and wt,ε such that

∂g

∂t
= vg and

∂g

∂ε
= wg .

Since ∂
∂ε

(
∂g
∂t

)
= ∂

∂t

(
∂g
∂ε

)
, we get ∂v

∂εg + vwg = ∂w
∂t g + wvg i.e.

∂v

∂ε
=

∂w

∂t
− (vw − wv)︸ ︷︷ ︸

[v,w]

=
∂w

∂t
− [v, w] =

∂w

∂t
− advw .
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Reminder:
∂v

∂ε
=

∂w

∂t
− advw .

The curve wt,ε can vary freely in g, with boundary conditions

w0,ε = w1,ε = 0. From d
dε

(∫
〈v, v〉edt

)
|ε=0

= 0, we get

∫ 1

0

〈v,
∂v

∂ε
〉g =

∫
〈v,

∂w

∂t
− advw〉g =

∫
(Lv,

∂w

∂t
− advw) = 0

Introducing the adjoint operator ad∗, we get (Lv, advw) =
(ad∗v(Lv), w) so that by integration by part, we have finally the

following Euler-Poincaré equation

∂Lv

∂t
+ ad∗v(Lv) = 0 . (6)
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Euler-Poincaré equation in the case of
diffeomorphisms

Let ϕt be an extremal curve for the kinetic energy and ϕt,ε be a

perturbation of ϕt with fixed end points (ϕt,0 = ϕt, ϕ0,ε = ϕ0

and ϕ1,ε = ϕ1 for any ε). Let vt,ε and wt,ε such that

∂ϕ

∂t
= v ◦ ϕ and

∂ϕ

∂ε
= w ◦ ϕ .

Since ∂
∂ε

(
∂ϕ
∂t

)
= ∂

∂t

(
∂ϕ
∂ε

)
, we get ∂v

∂ε ◦ ϕ + dϕv(w ◦ ϕ) =
∂w
∂t ◦ ϕ + dϕw(v ◦ ϕ) and finally

∂v

∂ε
=

∂w

∂t
− (dv(w)− dw(v))︸ ︷︷ ︸

[v,w]

=
∂w

∂t
− adv(w)
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As for the case of matrices, we have obtained

∂v

∂ε
=

∂w

∂t
− advw .

and reproducing exactly the same computation we get the Euler

Poincaré equation for the diffeomorphisms

∂Lv

∂t
+ ad∗v(Lv) = 0 .

or equivalently for any u ∈ g and mt = Lvt

∂

∂t
(mt, u)+(mt, advtu) =

∂

∂t
(mt, u)+(mt, dvt(u)−du(vt)) = 0
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By integration by parts:
∂

∂t
(mt, u) + (mt, dvt(u)− du(vt))

= (
∂

∂t
mt + div(mt ⊗ vt) + dv∗t (mt), u).

Hence the Euler Poincaré equation (EPDiff equation) is
∂

∂t
mt + div(mt ⊗ vt) + dv∗t (mt) = 0

vt = L−1mt

(Mumford-Vishik (98), Holm-Marsden-Ratiu (98), Miller-

Trouvé-Younes (02), Holm-Trouvé-Younes (04)...).

For Lu = u− α2∆u: Camassa-Holm Equation (93)
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Momentum Map
The Euler Poincaré equation is a conservation equation: Indeed,

(check for matrices): If Adg(u) .= gug−1 = (deLg−1deRg(u)),
then

d

dt
(Adgt(u)) = advt(Adgt(u)) .

Hence

∂

∂t
(Ad∗gt

(mt), u) = (
∂mt

∂t
,Adgt(u)) + (mt, advt(Adgt(u)) = 0

and

mt = Ad∗
g−1

t
(m0)

or equivalently

(mt, u) = (m0,Adg−1
t

(u))
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Momentum Map for EPDiff

• (mt, u) = (m0, g
−1
t ugt) translates to

(mt, u) = (m0, (dϕt)−1u ◦ ϕt)

• Let m0
.= ∇f0 µ0 (µ0 signed measure) ie

(m0, u) =
∫

D

〈∇f0, u〉dµ0

Then we get mt = ∇ftµt with

ft = ϕtf0︸︷︷︸
action on fonctions

and µt = ϕtµ0︸︷︷︸
action on measures

.
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Normal Momentum Motion

Let t → It be a geodesic path in image space between I0 to I1.

We know

It = ϕtI0 = I0 ◦ ϕ−1
t

with t → ϕt geodesic path in G

Assume that m0 = ∇I0dµ0 (Normality Constraint).

Then

mt = ∇It dµt

with µt = µ0 ◦ ϕ−1
t .

The momentum stays normal to level sets of It
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Normality Constraint

Image case:
∂

∂t
(ϕtI0)|t=0 = −〈∇I0, v0〉

Let V0 = { w ∈ V | 〈∇I0(x), v(x)〉 = 0, ∀x }. We have

〈∇I0, v0〉 = 〈∇I0, v0 + w〉, w ∈ V0

This leads to the constraint v0 ∈ V ⊥
0 .

However, if m0 = Lv0 = α∇I0λ then

〈v0, w〉V = (m0, w) =
∫

α〈∇I0, w〉dx = 0, w ∈ V0 .
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Normal Momentum Constraint in Valid for
Template Matching

v̂ = argmin
v∈L2([0,1],V )

J(v) :
∫
‖vt‖2V dt+

1
σ2

∫
|Iobs−I ref◦(ϕv

1)
−1|2dx

It
.= ϕv̂

t I
ref is a geodesic path from I ref to ϕv̂

1I
ref in image space.

The gradient of J in L2([0, 1], V ) (Beg et al. 2002) satisfies

L(∇J)t = 2vt +
2
σ2
|dϕt,1|(Iobs

t − I ref
t )∇I ref

t

where ϕs,u = ϕu ◦ ϕ−1
s , I ref

t = ϕ0,tI
ref, Iobs

t = ϕt,1I
obs
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Euler-Lagrange Equation ∇J = 0 gives at t = 0

(m0, u) =
∫

D

〈∇I ref, u〉αdx

with α = 1
σ2|dϕ1|(ϕ1I

obs − I ref)

Selected geodesics from Iref satisfy

Normal Momentum Constraint
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Geodesic Motion Equation in Image Space

If αt = |dϕ−1
t |α0 ◦ ϕ−1

t , and It = Iref ◦ ϕ−1
t , then we get

vt = L−1(αt∇Itdx) and


∂αt

∂t
+ div(αtvt) = 0

∂It

∂t
+ 〈∇It, vt〉 = 0

Geodesic shooting build the Exponential Map

ExpI0
: TI0O → O

The complete geodesic coded by α0.
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Direct vs Inverse Exponential Mapping
Minimal Path vs Geodesic Shooting for macaque brain

I ref : α0 ↔ I1

Given I ref (Template)

• Coding Process: From any I1, compute (Beg’s Algorithm)

α0

• Decoding Process: From any α0, compute I1 (Geodesic

Shooting)
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Extension in the case of metamorphosis

Semi-directe product case

If It = Iref ◦ ϕ−1
t , then we get for the geodesic evolution

equation:

vt = −L−1(zt∇Itdx) and


∂zt

∂t
+ div(ztvt) = 0

∂It

∂t
+ 〈∇It, vt〉 = σ2zt
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Geodesic shooting for metamorphosis

Iref z0 I1
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Generatif model with normal coordinates

– Typeset by FoilTEX – IPAM MBI 2004 48



Towards New Tools For Shape Analysis ?

• Natural interplay between photometry and geometry

• Good framework the learning generative models (statistical

models on α0 or z0 + geodesic shooting
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