Computational Anatomy and EPDiff A "Reconnection" Path

Alain Trouvé Ecole Normale Supérieure de Cachan

> and University Paris 13

> > July 15, 2004

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ – IPAM MBI 2004

Plan of the talk

- I. Grenander's deformable templates and examples.
- II. Geodesic motion. (Miller-Trouvé-Younes 2003)

Plan of the talk

- I. Grenander's deformable templates and examples.
- II. Geodesic motion. (Miller-Trouvé-Younes 2003)

Central Framework: Grenander's Deformable Template

Main ingredients:

- Object set: \mathcal{O}
- \bullet Group of transformations G
- Group action $G \times \mathcal{O} \to \mathcal{O}$

(1)

Examples–Landmarks

- $\mathcal{O} = \{ \mathbf{x} = (x_i)_{1 \le i \le N} \mid x_i \in \mathbb{R}^d \}.$
- \bullet Finite dimensional case: G rotation group, scale and translation group, affine group...
- Infinite dimensional case: G group of non rigid transformation $\varphi: \mathbb{R}^d \to \mathbb{R}^d$

$$\mathbf{x}_{obs} = \varphi \mathbf{x}_{ref} + \mathbf{n} \text{ where } \varphi \mathbf{x} \doteq (\varphi(x_i))_{1 \le i \le N}$$
 (2)

Examples-Images

- D a domain in \mathbb{R}^d , $\mathcal{O} = \{ I : D \to \mathbb{R} \}$
- G group of diffeomorphisms on D

Template Matching Problem

Bayesian or variational point of view

$$\hat{g} = \underset{g \in G}{\operatorname{argmin}} \left(\underbrace{\frac{d_{\mathcal{O}}(o_{\text{ref}}, go_{\text{ref}})^2}{d_{\text{obs}} - go_{\text{ref}}|_{n}^2}}_{\text{distance on object space}} + \underbrace{|o_{\text{obs}} - go_{\text{ref}}|_{n}^2}_{\text{noise intensity}} \right)$$
(4)

Idea: $d_{\mathcal{O}}((o_{\text{ref}}, go_{\text{ref}})$ should be depend on the amount of deformation g linking o_{ref} and go_{ref} . Build a model on \hat{g} and n instead of o_{obs} .

Metric Transfer Through Group Action

• Differentiate the action $g \rightarrow go$ at Id.

$$\begin{array}{cccc} T_{\mathsf{Id}}G & \longrightarrow & T_o\mathcal{O} \\ v & \to & \delta o \doteq v.o \end{array} \tag{5}$$

- Define a metric $\|v\|_{\mathrm{Id}}$ for small $g \simeq \mathrm{Id} + v$
- Transfer the metric on $T_o \mathcal{O}$

$$\|\delta o\|_o = \inf_{\delta o = vo} \|v\|_{\mathsf{Id}}$$

Metric Transfer Through Group Action (cont)

 \mathcal{O} inherits a Riemannian structure For $o, o' \in \mathcal{O}$:

• $\mathcal{O}_{o,o'}$: smooth paths $t \to o_t$ from o to o'.

•
$$d_{\mathcal{O}}(o, o') \doteq \inf_{\mathcal{O}_{o,o'}} \int_0^1 \|\frac{do}{dt}\|_{o_t} dt$$

We get a Riemannian distance on $\ensuremath{\mathcal{O}}$

Associated Right Invariant Dist. on G

Choose $\mathcal{O} = G$, G acts onto itself: $(g, g_0) \rightarrow gg_0$ Apply metric transfer:

$$\|\delta g_0\|_{g_0} = \inf_{\delta g_0 = v.g_0} \|v\|_{\mathsf{Id}} \,.$$

But $g \rightarrow gg_0$ is one to one. Hence $v \rightarrow vg_0$ is an isomorphism.

Consequence: $T_{g_0}G = \{ v.g_0 \mid v \in T_{\mathsf{Id}}G \}$ and

 $||vg_0||_{g_0} = ||v||_{\mathsf{Id}}$ (Right invariance).

Associated Right Invariant Dist. on G (Cont)

Geodesic distance on G: Take infimum on sufficiently smooth paths from g_0 to g_1

$$d_G(g_0, g_1) \doteq \inf_{g_0 \to g_1} \int_0^1 \|\frac{dg_t}{dt}\|_{g_t} dt = \inf_{g_0 \to g_1} \int_0^1 \|\frac{dg_t}{dt}g_t^{-1}\|_{\mathsf{Id}} dt$$

Right invariance property:

$$d_G(g_0, g_1) = d_G(g_0g, g_1g)$$

Theorem:
$$d_{\mathcal{O}}(o, o') = \inf\{d_G(\mathsf{Id}, g) \mid go = g'\}.$$

Rigorous construction for non rigid deformations

- D a d-dimensional domain, G subgroup of $\operatorname{Hom}(D)\text{, }g\to\varphi$
- Start from V be a Hilbert space of vector fields on D with norm $\| \|_V$ (to be identified with $T_{Id}G$)
- Assume $V \xrightarrow{\text{cont}} C^1(D, \mathbb{R})$ (admissibility) For $v \in L^2([0, 1], V)$, φ^v solution of $\begin{cases} \frac{d\varphi_t^v}{dt} = v_t \circ \varphi_t^v\\ \varphi_0^v = \text{Id} \end{cases}$

$$\begin{vmatrix} G \doteq \{ \varphi_1^v \mid v \in L^2([0,1],V) \} \\ d_G(\mathsf{Id},\varphi) = \inf\{\int_0^1 \|v_t\|_V dt \mid \varphi_1^v = \varphi\}$$

Rigorous construction (non-rigid deformation) (Cont)

Usual framework: $||v_t||_V^2 = \int \langle Lv(x), v(x) \rangle dx$ with $L: D(L) \subset V \to H = L^2(D, \mathbb{R}^d)$

ex: $L = (I - \Delta)^s$.

Theorem (T. 1995): Let $V \xrightarrow{\text{cont}} C^1(D, \mathbb{R})$ (admissibility) * G is a subgroup of homeomorphisms * G is complete for the right invariant metric $d_G(,)$ * Existence of geodesics

If $V \stackrel{\text{cpct}}{\hookrightarrow} C^1(D, \mathbb{R})$, G is a subgroup of diffeomorphisms (T. 1995, Dupuis et al. 1998)

[–] Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ – IPAM MBI 2004

Template Matching Revisited

Energetic formulation: $d_G(\mathsf{Id}, \varphi)^2 = \inf_{\varphi_1^v = \varphi} \int_0^1 \|v_t\|_V^2 dt$

Template matching problem:

$$\hat{\varphi} = \operatorname*{argmin}_{\varphi \in G} \left(d_{\mathcal{O}}(o_{\mathsf{ref}}, \varphi o_{\mathsf{ref}})^2 + |o_{\mathsf{obs}} - \varphi o_{\mathsf{ref}}|_{\mathsf{n}}^2 \right) \\ = \operatorname*{argmin}_{\varphi \in G} \left(d_G(\mathsf{Id}, \varphi)^2 + |o_{\mathsf{obs}} - \varphi o_{\mathsf{ref}}|_{\mathsf{n}}^2 \right)$$

becomes:

$$\hat{v} = \operatorname*{argmin}_{v \in L^2([0,1],V)} \left(\frac{1}{2} \int_0^1 \|v_t\|_V^2 dt + |o_{\mathsf{obs}} - \varphi_1^v o_{\mathsf{ref}}|_{\mathsf{n}}^2 \right), \ \hat{\varphi} \doteq \varphi_1^{\hat{v}}$$

 \rightarrow Existence of solutions (T. 1995, Dupuis et al. 1998)

Application to Landmark Matching

- $\mathcal{O} = \{ \mathbf{x} = (x_i)_{1 \le i \le N} \mid x_i \in \mathbb{R}^d \}$
- $g\mathbf{x} \doteq (g(x_i))_{1 \le i \le N} \Rightarrow v\mathbf{x} = (v(x_i))_{1 \le i \le N}.$

$$\hat{v} = \operatorname*{argmin}_{v \in L^2([0,1],V)} \int \|v_t\|_V^2 dt + \frac{1}{\sigma^2} \sum_{i=1}^N |\mathbf{x}^{\mathsf{obs}} - g_1^v(x_i^{\mathsf{ref}})|^2$$

Gives Large Deformation Extension of Bookstein Splines.

- * 2d example: (Joshi, Miller (00), Camion, Younes (00))
- * Landmark on the sphere, (Glaunes, Vaillant (02))

Application to Image Matching

- $\mathcal{O} = \{ I : D \to \mathbb{R} \}$
- $\bullet~V$ satisfying admissibility conditions

• Action :
$$\varphi I = I \circ \varphi^{-1}$$

$$\hat{v} = \operatorname*{argmin}_{v \in L^2([0,1],V)} \int \|v_t\|_V^2 dt + \frac{1}{\sigma^2} \int |I^{\mathsf{obs}}(x) - I^{\mathsf{ref}}(\varphi_1^v(x))|^2 dx$$

Large deformation extension of Amit-Grenander-Piccioni model:

$$\underset{v \in V}{\operatorname{argmin}} \|v\|_{V}^{2} + \frac{1}{\sigma^{2}} \int |I^{\mathsf{obs}}(x) - I^{\mathsf{ref}}(x - v(x))|^{2} dx$$

Application To Submanifold Matching

- Point x
 - $\rightarrow \delta_x$ Dirac measure at x.
- M k-dimensional submanifold $\rightarrow \mu_M$ uniform probability measure on M
- $M = \bigcup_{i=1}^{r} M_i$ union of manifold with different dimensions $\rightarrow \mu_M = \sum_{i=1}^{r} \mu_{M_i}$
- More general situations (noisy representations) \rightarrow arbitrary distributions

Glaunes et al. (CVPR 04)

Action $(\varphi, \mu) \rightarrow \varphi \mu$ given by the mass transport

$$\int f \ d(\varphi \mu) = \int f \circ \varphi \ d\mu$$

Action $(\varphi, \mu) \rightarrow \varphi \mu$ given by the mass transport

$$\int f \ d(\varphi \mu) = \int f \circ \varphi \ d\mu$$

• Points: $\varphi(\sum_{x \in S} \delta_x) = \sum_{x \in S} \delta_{\varphi(x)}$

Action $(\varphi, \mu) \rightarrow \varphi \mu$ given by the mass transport

$$\int f \ d(\varphi \mu) = \int f \circ \varphi \ d\mu$$

• Points:
$$\varphi(\sum_{x \in S} \delta_x) = \sum_{x \in S} \delta_{\varphi(x)}$$

• Abs. cont. distribution: $\varphi(gd\lambda) = g \circ \varphi^{-1} | d\varphi^{-1} | d\lambda$

Action $(\varphi, \mu) \rightarrow \varphi \mu$ given by the mass transport

$$\int f \ d(\varphi \mu) = \int f \circ \varphi \ d\mu$$

• Points:
$$\varphi(\sum_{x \in S} \delta_x) = \sum_{x \in S} \delta_{\varphi(x)}$$

• Abs. cont. distribution: $\varphi(gd\lambda) = g \circ \varphi^{-1} | d\varphi^{-1} | d\lambda$

$$\operatorname{supp}(\varphi\mu) = \varphi(\operatorname{supp}\mu)$$

Comparison between two distributions μ and ν

Principle: μ is defined by its behavior on test functions:

$$\langle \mu, f \rangle \stackrel{\rm def}{=} \int f \ d\mu$$

W Hilbert space of space functions:

$$|\mu - \nu|_{W^*} = \sup_{|f|_W = 1} |\langle \mu, f \rangle - \langle \nu, f \rangle$$

Complete Model for Submanifold Matching

• D a bounded domain in \mathbb{R}^d . The object space is $\mathcal{O} = W^*$ where W is a Hilbert space of functions on D.

•
$$(\varphi\mu, f) \doteq (\mu, f \circ \varphi)$$

$$\hat{v} = \operatorname*{argmin}_{v \in L^2([0,1],V)} \int \|v_t\|_V^2 dt + \frac{1}{\sigma^2} |\varphi_1^v \mu_0 - \mu_1|_{W^*}^2$$

Importantly, we have existence and consistancy results

Existence Result

Let μ , $\nu \in \mathcal{M}_s$, and let for any $v \in L^2([0,1],V)$

$$J_{\mu,\nu}(v) \doteq \int \|v_t\|_V^2 dt + \frac{1}{\sigma^2} |\varphi_1^v \mu - \nu|_{W^*}^2$$

Theorem 1. [Existence] Under suitable regularity conditions on V (admissibility condition), there exists a minimiser v_* in $L^2([0,1],V)$ of $J_{\mu,\nu}$ for any μ , ν in \mathcal{M}_s .

Existence Result

Let μ , $\nu \in \mathcal{M}_s$, and let for any $v \in L^2([0,1],V)$

$$J_{\mu,\nu}(v) \doteq \int \|v_t\|_V^2 dt + \frac{1}{\sigma^2} |\varphi_1^v \mu - \nu|_{W^*}^2$$

Theorem 1. [Existence] Under suitable regularity conditions on V (admissibility condition), there exists a minimiser v_* in $L^2([0,1],V)$ of $J_{\mu,\nu}$ for any μ, ν in \mathcal{M}_s .

For v_* is a minimiser, φ_* is the associated diffeomorphism.

Consistency Result

Theorem 2. [Consistency] Assume the regularity condition of Thm 1. Let μ and ν be two probability distributions on \mathbb{R}^d and let x_1, \dots, x_m and y_1, \dots, y_n be iid samples drawn from distribution μ and ν . Let $\hat{\mu}_m = \frac{1}{m} \sum_i \delta_{x_i}$ and $\hat{\nu}_n = \frac{1}{n} \sum_j \delta_{y_j}$ be the associated empirical measures. Then if $\varphi_*(m, n)$ is an minimiser of $J_{\hat{\mu}_m, \hat{\nu}_n}$, almost surely, $\varphi_*(m, n)$ tends uniformly (up to the extraction of a subsequence) to φ_* minimiser of $J_{\mu,\nu}$ when $m, n \to \infty$.

Rangarajan Test Data

Figure 1: Rangarajan test set

Matching heterogeneous manifolds

Figure 2: Left Initial configuration, Right: Final matching

Consistency

Figure 3: Various sampling rate of the same manifolds

Robustness against noise

Figure 4: Various noise levels

Robustness against outliers

– Typeset by FoilT $_{\rm FX}$ – IPAM MBI 2004

3D examples

Figure 5: Left and Right Hippocampus (Surface tessellation provided by CNRS Cognitive Neuroscience and Brain Imaging Laboratory, La Salpetriere Hospital, Paris)

Morphing Metrics on Object Space

Previous construction:

 $d_{\mathcal{O}}(o, o') < +\infty$ iff o and o' on same orbit

For images: $d_{\mathcal{I}}(I, I') < +\infty \Leftrightarrow I' \circ \varphi = I, \ \varphi \in G$

no apparition of new structure in one orbit

• Assume the object space $\mathcal{O} = H$ Hilbert space. Let $\tilde{G} = \{ a = (g, h) \mid g \in G, h \in H \}$

• If the action $o \to go$ is linear, \tilde{G} is a group for the composition law (g,h)(g',h') = (gg',gh'+h) (semi-direct product $G \ltimes H$) and \tilde{G} acts (affinely) on \mathcal{O} by (g,h)o = go + h.

But now: $\tilde{G}o_{ref} = \mathcal{O}$

• Let $W = V \times H$ be the tangent space at $e_{\tilde{G}}$ of \tilde{G} equip with the induced product metric: $\langle (v, z), (v', z') \rangle_W = \langle v, v' \rangle_V + \langle z, z' \rangle_H$. Consider the associated invariant metric on \tilde{G}

 $d_{\mathcal{O}, \mathsf{morph}}(o, o') = \inf\{ d_{\tilde{G}}(e_{\tilde{G}}, (g, h)) \mid (g, h)o = o' \}.$

Many extensions in Laurent's talk yesterday.

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ – IPAM MBI 2004

Plan of the talk

- I. Grenander's deformable templates and examples.
- II. Geodesic motion.

The central role of geodesic paths in G

• Inexact Matching

$$\hat{g} = \operatorname*{argmin}_{g \in G} d_O(o_{\mathsf{ref}}, go_{\mathsf{ref}})^2 + E(o_{\mathsf{ref}}, o_{\mathsf{obs}})$$

• Exact Matching

 $\hat{g} = \operatorname*{argmin}_{g \in G} d_O(o_{\mathsf{ref}}, go_{\mathsf{ref}})^2$ subject to $go_{\mathsf{ref}} = o_{\mathsf{obs}}$

If (g_t) is a geodesic path in G from Id to \hat{g} , then $o_t = g_t o_{ref}$ is a geodesic path in \mathcal{O} from o_{ref} to $\hat{g}o_{ref}$.

A key fact is that G is always equip with a right invariant metric.

[–] Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ – IPAM MBI 2004

- Start with G Lie group of matrices with right invariant metric
- Define $L: T_{\mathsf{Id}}G \to T_{\mathsf{Id}}G^*$ (Inertial operator)

Lv is the Momentum

 $\|v\|_{\mathsf{Id}}^2 \doteq (Lv, v)_{T_{\mathsf{Id}}G^* \times T_{\mathsf{Id}}G}$

Note that $d_G(g_0, g_1)^2$ is given by:

$$\min \int (Lv_t, v_t) dt \text{ subject to:} \quad \begin{vmatrix} g_0^v = g_0 \text{ and } g_1^v = g_1 \\ \text{where} \\ \frac{dg^v}{gt} = v_t g_t^v \end{vmatrix}$$
(LAP)

This is exactly the least action principale for a Lagragian reduced to the kinetic energy.

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ – IPAM MBI 2004

The Euler-Poincaré equation for group of matrices

Let g_t be an extremal curve for the kinetic energy and $g_{t,\epsilon}$ be a smooth deformation around $\epsilon = 0$ with fixed end values $(g_{0,\epsilon} = g_0, g_{1,\epsilon} = g_1)$. Let $v_{t,\epsilon}$ and $w_{t,\epsilon}$ such that

$$\frac{\partial g}{\partial t} = vg \text{ and } \frac{\partial g}{\partial \epsilon} = wg$$
.

Since $\frac{\partial}{\partial \epsilon} \left(\frac{\partial g}{\partial t} \right) = \frac{\partial}{\partial t} \left(\frac{\partial g}{\partial \epsilon} \right)$, we get $\frac{\partial v}{\partial \epsilon} g + vwg = \frac{\partial w}{\partial t}g + wvg$ i.e.

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ – IPAM MBI 2004

Reminder:
$$\frac{\partial v}{\partial \epsilon} = \frac{\partial w}{\partial t} - \operatorname{ad}_v w$$
.

The curve $w_{t,\epsilon}$ can vary freely in \mathfrak{g} , with boundary conditions $w_{0,\epsilon} = w_{1,\epsilon} = 0$. From $\frac{d}{d\epsilon} \left(\int \langle v, v \rangle_e dt \right)_{|\epsilon=0} = 0$, we get

$$\int_0^1 \langle v, \frac{\partial v}{\partial \epsilon} \rangle_{\mathfrak{g}} = \int \langle v, \frac{\partial w}{\partial t} - \mathsf{ad}_v w \rangle_{\mathfrak{g}} = \int (Lv, \frac{\partial w}{\partial t} - \mathsf{ad}_v w) = 0$$

Introducing the adjoint operator ad^* , we get $(Lv, \operatorname{ad}_v w) = (\operatorname{ad}_v^*(Lv), w)$ so that by integration by part, we have finally the following Euler-Poincaré equation

$$\frac{\partial Lv}{\partial t} + \operatorname{ad}_{v}^{*}(Lv) = 0.$$
(6)

Euler-Poincaré equation in the case of diffeomorphisms

Let φ_t be an extremal curve for the kinetic energy and $\varphi_{t,\epsilon}$ be a perturbation of φ_t with fixed end points ($\varphi_{t,0} = \varphi_t$, $\varphi_{0,\epsilon} = \varphi_0$ and $\varphi_{1,\epsilon} = \varphi_1$ for any ϵ). Let $v_{t,\epsilon}$ and $w_{t,\epsilon}$ such that

$$\frac{\partial \varphi}{\partial t} = v \circ \varphi \text{ and } \frac{\partial \varphi}{\partial \epsilon} = w \circ \varphi \,.$$

Since $\frac{\partial}{\partial \epsilon} \left(\frac{\partial \varphi}{\partial t} \right) = \frac{\partial}{\partial t} \left(\frac{\partial \varphi}{\partial \epsilon} \right)$, we get $\frac{\partial v}{\partial \epsilon} \circ \varphi + d_{\varphi} v(w \circ \varphi) = \frac{\partial w}{\partial t} \circ \varphi + d_{\varphi} w(v \circ \varphi)$ and finally

$$\frac{\partial v}{\partial \epsilon} = \frac{\partial w}{\partial t} - \underbrace{\left(\frac{dv(w) - dw(v)}{[v,w]}\right)}_{[v,w]} = \frac{\partial w}{\partial t} - \operatorname{ad}_{v}(w)$$

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ – IPAM MBI 2004

As for the case of matrices, we have obtained

$$\frac{\partial v}{\partial \epsilon} = \frac{\partial w}{\partial t} - \operatorname{ad}_v w \,.$$

and reproducing exactly the same computation we get the Euler Poincaré equation for the diffeomorphisms

$$rac{\partial L v}{\partial t} + \operatorname{ad}_v^*(L v) = 0$$
 .

or equivalently for any $u \in \mathfrak{g}$ and $m_t = Lv_t$

$$\frac{\partial}{\partial t}(m_t, u) + (m_t, \mathsf{ad}_{v_t} u) = \frac{\partial}{\partial t}(m_t, u) + (m_t, dv_t(u) - du(v_t)) = 0$$

By integration by parts: $\frac{\partial}{\partial t}(m_t, u) + (m_t, dv_t(u) - du(v_t))$ = $(\frac{\partial}{\partial t}m_t + \operatorname{div}(m_t \otimes v_t) + dv_t^*(m_t), u).$

Hence the Euler Poincaré equation (EPDiff equation) is

$$\begin{cases} \frac{\partial}{\partial t}m_t + \operatorname{div}(m_t \otimes v_t) + dv_t^*(m_t) = 0\\ v_t = L^{-1}m_t \end{cases}$$

(Mumford-Vishik (98), Holm-Marsden-Ratiu (98), Miller-Trouvé-Younes (02), Holm-Trouvé-Younes (04)...).

For $Lu = u - \alpha^2 \Delta u$: Camassa-Holm Equation (93)

Momentum Map

The Euler Poincaré equation is a conservation equation: Indeed, (check for matrices): If $Ad_g(u) \doteq gug^{-1} = (d_e L_{g^{-1}} d_e R_g(u))$, then

$$\frac{d}{dt}(\mathsf{Ad}_{g_t}(u)) = \mathsf{ad}_{v_t}(\mathsf{Ad}_{g_t}(u)) \,.$$

Hence

$$\frac{\partial}{\partial t}(\mathsf{Ad}_{g_t}^*(m_t), u) = (\frac{\partial m_t}{\partial t}, \mathsf{Ad}_{g_t}(u)) + (m_t, \mathsf{ad}_{v_t}(\mathsf{Ad}_{g_t}(u)) = 0$$

and

$$m_t = \operatorname{Ad}_{g_t^{-1}}^*(m_0)$$

or equivalently

$$(m_t, u) = (m_0, \operatorname{Ad}_{g_t^{-1}}(u))$$

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ – IPAM MBI 2004

Momentum Map for EPDiff

• $(m_t, u) = (m_0, g_t^{-1} u g_t)$ translates to

 $(m_t, u) = (m_0, (d\varphi_t)^{-1}u \circ \varphi_t)$

• Let $m_0 \doteq \nabla f_0 \mu_0$ (μ_0 signed measure) ie

$$(m_0, u) = \int_D \langle \nabla f_0, u \rangle d\mu_0$$

Then we get $m_t =
abla f_t \mu_t$ with

Normal Momentum Motion

Let $t \to I_t$ be a geodesic path in image space between I_0 to I_1 . We know

$$I_t = \varphi_t I_0 = I_0 \circ \varphi_t^{-1}$$

with $t\to \varphi_t$ geodesic path in G

Assume that $m_0 = \nabla I_0 d\mu_0$ (Normality Constraint). Then

$$m_t = \nabla I_t \, d\mu_t$$

with $\mu_t = \mu_0 \circ \varphi_t^{-1}$.

The momentum stays normal to level sets of I_t

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ – IPAM MBI 2004

Normality Constraint

Image case:

$$\frac{\partial}{\partial t}(\varphi_t I_0)_{|t=0} = -\langle \nabla I_0, v_0 \rangle$$

Let $V_0 = \{ w \in V \mid \langle \nabla I_0(x), v(x) \rangle = 0, \forall x \}$. We have

$$\langle \nabla I_0, v_0 \rangle = \langle \nabla I_0, v_0 + w \rangle, \ w \in V_0$$

This leads to the constraint $v_0 \in V_0^{\perp}$.

However, if $m_0 = Lv_0 = \alpha \nabla I_0 \lambda$ then

$$\langle v_0, w \rangle_V = (m_0, w) = \int \alpha \langle \nabla I_0, w \rangle dx = 0, \ w \in V_0.$$

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ – IPAM MBI 2004

Normal Momentum Constraint in Valid for Template Matching

$$\hat{v} = \operatorname*{argmin}_{v \in L^2([0,1],V)} J(v) : \int \|v_t\|_V^2 dt + \frac{1}{\sigma^2} \int |I^{\mathsf{obs}} - I^{\mathsf{ref}} \circ (\varphi_1^v)^{-1}|^2 dx$$

$$\begin{split} I_t \doteq \varphi_t^{\hat{v}} I^{\text{ref}} \text{ is a geodesic path from } I^{\text{ref}} \text{ to } \varphi_1^{\hat{v}} I^{\text{ref}} \text{ in image space.} \\ \text{The gradient of } J \text{ in } L^2([0,1],V) \text{ (Beg et al. 2002) satisfies} \\ L(\nabla J)_t = 2v_t + \frac{2}{\sigma^2} |d\varphi_{t,1}| (I_t^{\text{obs}} - I_t^{\text{ref}}) \nabla I_t^{\text{ref}} \end{split}$$

where $\varphi_{s,u} = \varphi_u \circ \varphi_s^{-1}$, $I_t^{\text{ref}} = \varphi_{0,t} I^{\text{ref}}$, $I_t^{\text{obs}} = \varphi_{t,1} I^{\text{obs}}$

Euler-Lagrange Equation $\nabla J = 0$ gives at t = 0

$$(m_0, u) = \int_D \langle \nabla I^{\mathsf{ref}}, u \rangle \alpha dx$$

with $\alpha = \frac{1}{\sigma^2} |d\varphi_1| (\varphi_1 I^{\text{obs}} - I^{\text{ref}})$

Selected geodesics from I_{ref} satisfy Normal Momentum Constraint

Geodesic Motion Equation in Image Space

f
$$\alpha_t = |d\varphi_t^{-1}| \alpha_0 \circ \varphi_t^{-1}$$
, and $I_t = I_{ref} \circ \varphi_t^{-1}$, then we get
 $v_t = L^{-1}(\alpha_t \nabla I_t dx)$ and
$$\begin{cases} \frac{\partial \alpha_t}{\partial t} + \operatorname{div}(\alpha_t v_t) = 0\\ \frac{\partial I_t}{\partial t} + \langle \nabla I_t, v_t \rangle = 0 \end{cases}$$

Geodesic shooting build the Exponential Map

$$\mathsf{Exp}_{I_0}: T_{I_0}\mathcal{O} \to \mathcal{O}$$

The complete geodesic coded by α_0 .

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ – IPAM MBI 2004

Direct vs Inverse Exponential Mapping Minimal Path vs Geodesic Shooting for macaque brain

$$I^{\mathsf{ref}}: \alpha_0 \leftrightarrow I_1$$

Given I^{ref} (Template)

- Coding Process: From any I_1 , compute (Beg's Algorithm) α_0
- Decoding Process: From any α_0 , compute I_1 (Geodesic Shooting)

Extension in the case of metamorphosis

Semi-directe product case

If $I_t = I_{ref} \circ \varphi_t^{-1}$, then we get for the geodesic evolution equation:

$$v_t = -L^{-1}(z_t \nabla I_t dx) \text{ and } \begin{cases} \frac{\partial z_t}{\partial t} + \operatorname{div}(z_t v_t) = 0\\\\ \frac{\partial I_t}{\partial t} + \langle \nabla I_t, v_t \rangle = \sigma^2 z_t \end{cases}$$

Geodesic shooting for metamorphosis

 I_{ref}

 z_0

Generatif model with normal coordinates

– Typeset by Foil $\mathrm{T}_{\!E}\!\mathrm{X}$ – IPAM MBI 2004

Towards New Tools For Shape Analysis ?

- Natural interplay between photometry and geometry
- Good framework the learning generative models (statistical models on α_0 or z_0 + geodesic shooting