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Plan of the talk

e |. Grenander’'s deformable templates and examples.

e |I. Geodesic motion. (Miller-Trouvé-Younes 2003)
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Central Framework: Grenander’s Deformable

Template
Main ingredients:
e Object set: O

e Group of transformations G

e Group action G x O — O

Oobs — 9Oref +

deformed template noise
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Examples—Landmarks

o O={x=(2)i1<i<n | 2; € R}

e Finite dimensional case: (G rotation group, scale and
translation group, affine group...

e Infinite dimensional case: G group of non rigid
transformation ¢ : R — R

Xobs = PXref + 11 Where ox = (90(%'))1<7;<N (2)
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Examples—Images

¢ DadomaininRY, O={IT:D—R}

e (5 group of diffeomorphisms on D

1

ol =1Top~
Ios = @l  +
deformed template noise
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Template Matching Problem

Bayesian or variational point of view

N . 2 2
g = argimin EZO(Oreﬁ goref)J _|“\00bs — gOref‘Q (4)
ged . ~N N
distance on object space noise intensity

ldea:  do((0ref, goref) should be depend on the amount of
deformation g linking o and gows. Build a model on g
and n instead of ogpe.
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Metric Transfer Through Group Action

e Differentiate the action g — go at Id.

CTldCTY — TOO

v — 00 = 0.0

e Define a metric ||v|||q for small g ~ Id 4+ v

e Transfer the metric on 7,0

[00llo = inf [[v]|i
do=vo
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Metric Transfer Through Group Action (cont)

@ inherits a Riemannian structure
For 0,0’ € O:

o O, ,: smooth paths ¢ — o; from o to 0".

1

. do

o dofo,d) = int [ |t
r'J0O

0,0

We get a Riemannian distance on O
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Associated Right Invariant Dist. on G

Choose O = GG, G acts onto itself: (g, 90) — 990
Apply metric transfer:

10g0llgo = , int [v]]14 -
90="v.90

But ¢ — ggg Is one to one. Hence v — vgg Is an isomorphism.

Consequence: T, G = { v.go | v € T}yG} and

lvgollg, = ||v]lia (Right invariance).
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Associated Right Invariant Dist. on G (Cont)

Geodesic distance on G: Take infimum on sufficiently smooth
paths from gg to g1

. d bodgr _
doton, ) = int. [ 1%t = it [ 1%
—91.Jo

go—9g1 dt
Right invariance property:

dG(QO) gl) — dG(goga glg)

Theorem: dn(o0,0") = inf{dg(ld, g) | go = ¢'}.
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Rigorous construction for non rigid
deformations
e D a d-dimensional domain, G subgroup of Hom(D), g — ¢

e Start from V be a Hilbert space of vector fields on D with
norm || ||y, (to be identified with Ti4G)

cont

e Assume V — C!(D,R) (admissibility)

dey v
For v € L?([0,1], V), ¢ solution of { ol _|§t P
Yo =

G={¢i|vel*01,V)}

: 1 v
da(ld, ) = inf{ || |lve]|vdt | o} = o}
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Rigorous construction (non-rigid deformation) (Cont)

Usual framework: |v¢| = [(Lv(z),v(z))dz with
L:D(L)CcV — H=L*D,R%

ex: L=(I—A)%.

cont

Theorem (T. 1995): Let V — C*(D,R) (admissibility)
* GG is a subgroup of homeomorphisms

* G is complete for the right invariant metric dg(, )

* Existence of geodesics

cpct

If V<~ CYD,R), G is a subgroup of diffeomorphisms (T.

1995, Dupuis et al. 1998)
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Template Matching ReV|S|ted
Energetic formulation: dg(ld, ¢)? = 1nf / v |3 dt

Template matching problem:

@ = argmin (do(Oref, Poref)” + [Oobs — POref|7 )
pelG
— argmin (dg(ld, 90)2 + |Oobs — gporefﬁ)
ped
becomes:

R . 1 ! v A v
0 = argmin (5/ g ||3-dt + |0obs — goloref§> , 0= (1
v€L?([0,1],V) 0

— Existence of solutions (T. 1995, Dupuis et al. 1998)
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Application to Landmark Matching

e O={x=(zi)i<i<n | i € R}

o gx = (g(x))1<i<n = vx = (v(x;))1<i<N-

’l/) argmln /”Ut”\/dt Z obs 91 ref)’

veL2([0,1],V)

Gives Large Deformation Extension of Bookstein Splines.

* 2d example: (Joshi, Miller (00), Camion,Younes (00))

* Landmark on the sphere, (Glaunes,Vaillant (02)) &7
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Application to Image Matching

e O={I:D—-R}

e V satisfying admissibility conditions

o Action: oIl =Top!

o= argmin [ fulfdt+ ;[ 1) - 1) P
veL2([0,1],V)

Large deformation extension of Amit-Grenander-Piccioni model:

1
argmin ||v||3, + — / 1°°%(z) — I'™ (2 — v(z))|?dx
veV o
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Application To Submanifold Matching

e Point «
— 0, Dirac measure at x.

e VM k-dimensional submanifold
— 1 ps uniform probability measure on M

o M = U!_,;M; union of manifold with different dimensions
— M = i MM

e More general situations (noisy representations)
— arbitrary distributions

Glaunes et al. (CVPR 04)
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Action on measure

Action (¢, i) — @ given by the mass transport

/fd(w)=/fwdu

— Typeset by FoilTEX — IPAM MBI 2004

17



Action on measure

Action (¢, i) — @ given by the mass transport

/fdw /focpdu

e Points: go(zxeg z) = ers 590(93)
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Action on measure

Action (¢, i) — @ given by the mass transport

/fdw /fwdu

e Points: @(ers ) = ers Op(a)

e Abs. cont. distribution: o(gd\) = go o |dp~1|dA

— Typeset by FoilTEX — IPAM MBI 2004

17



Action on measure

Action (¢, i) — @ given by the mass transport

/fdw /fwdu

e Points: @(ers ) = ers Op(a)

e Abs. cont. distribution: o(gd\) = go o |dp~1|dA
supp () = p(suppp)
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Comparison between two distributions 1 and v

Principle: 1 is defined by its behavior on test functions:

) [ f dn

W Hilbert space of space functions:

’M_V‘W* — Sup |<:u7f> R <V7f>‘
[flw=1
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Complete Model for Submanifold Matching

e D a bounded domain in R%. The object space is O = W*
where W is a Hilbert space of functions on D.

o (pu, f)= (1, f o)

o= argmin [ olfydt + et — -
veL2([0,1],V)

Importantly, we have existence and consistancy results
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Existence Result

Let 1, v € My, and let for any v € L?(]0,1],V)

] 1.,
Tuae) = [ Byt + =t = vy

Theorem 1. [Existence] Under suitable regularity conditions
on V (admissibility condition), there exists a minimiser v, in
L?([0,1], V) of J,,, for any p, v in M.
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Existence Result

Let 1, v € My, and let for any v € L?(]0,1],V)

] 1.,
Tuae) = [ Byt + =t = vy

Theorem 1. [Existence] Under suitable regularity conditions
on V (admissibility condition), there exists a minimiser v, in
L?([0,1], V) of J,,, for any p, v in M.

For v, is a minimiser, ¢, is the associated diffeomorphism.
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Consistency Result

Theorem 2. [Consistency] Assume the regularity condition
of Thm 1. Let ;v and v be two probability distributions on R¢
and let x1,--- ,x,, and y1,--- , vy, be iid samples drawn from
distribution 1 and v. Let [i,, = %ZZ 0z, and Uy, = %Z] Oy,
be the associated empirical measures. Then if p.(m,n) is an
minimiser of J;,  ;,, almost surely, p.(m,n) tends uniformly
(up to the extraction of a subsequence) to .. minimiser of J,, ,,
when m,n — oQ.
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Rangarajan Test Data
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Figure 1: Rangarajan test set
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Matching heterogeneous manifolds
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Figure 2: Left Initial configuration, Right: Final matching
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0.5+

Consistency
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Figure 3: Various sampling
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Robustness
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Robustness against outliers
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3D examples

Figure 5: Left and Right Hippocampus (Surface tessellation
provided by CNRS Cognitive Neuroscience and Brain Imaging
Laboratory, La Salpetriere Hospital, Paris)
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Morphing Metrics on Object Space

Previous construction:
do(0,0") < +oo iff 0 and o' on same orbit

For images: dz(I,I') < 4o & T'op =1, p€ G

no apparition of new structure in one orbit
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e Assume the object space O = H Hilbert space.
let G={a=(9,h) |geG, he H}

e If the action 0 — gois linear, G is a group for the composition
law (g, h)(g’, h') = (g9g’, gh’ + h) (semi-direct product G x H)
and G acts (affinely) on O by (g, h)o = go + h.

But now: é’oref =0

o Let W =V x H be the tangent space at e of G equip with
the induced product metric: {((v,2), (v, 2')w = (v,v")y +
(z,2"yg. Consider the associated invariant metric on GG

do morph(0,0") = inf{ dz(eg, (9, h)) | (g,h)o=10"}.
Many extensions in Laurent’s talk yesterday.
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Plan of the talk

e |. Grenander’'s deformable templates and examples.

e |I. Geodesic motion.
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The central role of geodesic paths in G

¢ Inexact Matching

argn(l;in do (Oref, garef)2 + E(Oref, Oobs)
gc

g
e Exact Matching

A~ . 2 .
g = argmin do(Oref, §Oref)” subject to goyef = Oobs
ged

If (g¢) is a geodesic path in G from Id to g, then 0; = g0 is
a geodesic path in O from 0, tO §Oyef.

A key fact is that GG is always equip with a right invariant
metric.
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e Start with GG Lie group of matrices with right invariant metric

e Define L : T\yG — TiyG* (Inertial operator)

Lv i1s the Momentum

|vllia = (Lv, v)Tee*x 4G

Note that dg(go, g1)° is given by:

go = 9o and gi = g
min/(Lvt,vt)dt subject to: | where (LAP)

dgv — v

gt — Uty

This is exactly the least action principale for a Lagragian
reduced to the kinetic energy.
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The Euler-Poincaré equation for group of
matrices

Let g be an extremal curve for the kinetic energy and g; .
be a smooth deformation around ¢ = 0 with fixed end values
(90.e = 90, 91. = g1). Let vy and w;  such that

dg dg
i vg and — e

= wg .

Since % (%) — gt (gg) , we get %g%—vwg — %—Qfg + wug i.e.

@_8_@0_( _ )_8_w_ 8“’
de  of — L7

[v,w]
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Reminder: @ — (‘9_w —ad,w .

Oe ot

The curve wy  can vary freely in g, with boundary conditions
wo.e = wi, = 0. From % (f(v, v)edt)|ezo — 0, we get

L v ow ow
/0 <U7 E>g — /<U7 E — ade>g — /(LU, E — ade) =0

Introducing the adjoint operator ad®, we get (Lv,ad,w) =
(ad;,(Lwv),w) so that by integration by part, we have finally the
following Euler-Poincaré equation

OLv

W + ad:(L”U) =0. (6)
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Euler-Poincaré equation in the case of
diffeomorphisms

Let ¢; be an extremal curve for the kinetic energy and ¢, . be a
perturbation of ¢; with fixed end points (©¢0 = ©t, Yo.c = o
and 1 . = ¢ for any €). Let v and wy . such that

Jyp %

n = v o and — e =wo .

Since a_( ) = 8@(8_90)’ we get 2% o p + dyv(w o @) =
o ¥)

57 0 @+ dow(v and finally
ov  Ow ow
%= 5 —&dv(w){;}dw(v)l =5 ad, (w)
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As for the case of matrices, we have obtained

and reproducing exactly the same computation we get the Euler
Poincaré equation for the diffeomorphisms

OLv
— * e .
; +ad,(Lv) =0

or equivalently for any v € g and m; = Ly

0 0
a(mt, U)+(mt, advtu) — &(mta u)—l_(mt? dvt(u)—du(vt)) =0
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0
By integration by parts: E(mt,u) + (my, dve(u) — du(vy))
0

= (amt + div(m ® vy) + dvy (my), u).

Hence the Euler Poincaré equation (EPDiff equation) is

0 .
Pl + div(my ® vy) + dvy (my) =0

Vs = L_lmt

(Mumford-Vishik (98), Holm-Marsden-Ratiu (98), Miller-
Trouvé-Younes (02), Holm-Trouvé-Younes (04)...).

For Lu = u — o Au: Camassa-Holm Equation (93)
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Momentum Map

The Euler Poincaré equation is a conservation equation: Indeed,
(check for matrices): If Ady(u) = gug™"' = (deL,~1deRy(u)),

then
d

] E(Adgt(u)) — advt(Adgt(u)) :

o, (9mt

—(Ad (o) w) = (S

and

7Ad9t(u)) + (mtv advt(Adgt(u)) =0

My — Ad;t_l (mO)

or equivalently
(me, u) = (Mo, Adgt—l(u))
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Momentum Map for EPDiff

o (my,u) = (Mo, g; “uge) translates to

(M, w) = (mo, (dipy) w0 @y)
o Let mg = V fo o (uo signed measure) ie

(mo,) = [ (T fo,u)dpo

Then we get m; = V fi s with

p— d p—
Jt Pt Jo ana [t Ptlo,

action on fonctions action on measures
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Normal Momentum Motion

Let ¢t — I; be a geodesic path in image space between [ to I;.

We know
ItZSOt]o:IOOSOt_l

with t — ; geodesic path in G

Assume that mg = VIydug (Normality Constraint).

Then
™My — VIt d,ut

with gy = p1o 0 ;.

The momentum stays normal to level sets of I;
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Normality Constraint

Image case:

9
ot
Let Vo ={ we V| (Viy(x),v(z)) =0, YV }. We have

(@edo) =0 = —(V1p, vo)

<V[0,Uo> — <VI(),U0 + w), w e Vg

This leads to the constraint vg € V.

However, if mg = Lvg = oV Iy then

(vo, W)y = (Mg, w) = /oz(VIO,w>dx =0, wel.

— Typeset by FoilTEX — IPAM MBI 2004

41



Normal Momentum Constraint in Valid for
Template Matching

v = argmin J(v /Hthvdt—F—/HObs—Iref () Pdr
veL2([0,1],V)

I; = @I is a geodesic path from I to @I in image space.

The gradient of J in L%([0,1], V) (Beg et al. 2002) satisfies

2
L(VJ): = 2u; + ;\dgpt,ﬂ(lg’bs — IHwre

where Ds. = Py O 903_1' ]gef — SOo,tlref’ Iz)bs — @t,lIObs
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Euler-Lagrange Equation VJ = 0 gives at ¢ = 0

(mg, u) =/<Vlref, uyodx
D

with o = =5 |der |(p11°% — I™)

Selected geodesics from I, satisfy
Normal Momentum Constraint
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Geodesic Motion Equation in Image Space

If ay = |d; g oy, and I, = Lefo ) ', then we get

)
aa% + div(azvy) = 0
Vp = L_l(othItda;) and ¢
8[,5
\ at <VIt7Ut> =0

Geodesic shooting build the Exponential Map
Exp;, : 77,0 — O

The complete geodesic coded by «ay.
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Direct vs Inverse Exponential Mapping
Minimal Path vs Geodesic Shooting for macaque brain

Irefi()é() Hfl

Given I (Template)

e Coding Process: From any Iy, compute (Beg's Algorithm)
o

e Decoding Process: From any «g, compute I; (Geodesic
Shooting)
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Extension in the case of metamorphosis
Semi-directe product case

If [} = IO gpt_l, then we get for the geodesic evolution

equation:

§
% + div(z:v¢) =0
UV = —L_l(ZtVItdCC) and <
0l

L 8_7: + <VItavt> — 022t
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Geodesic shooting for metamorphosis
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Generatif model with
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Towards New Tools For Shape Analysis ?

e Natural interplay between photometry and geometry

e Good framework the learning generative models (statistical
models on «aq or zy + geodesic shooting
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