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Why Is a Model of the 
Cortical Surface Useful?

Local functional organization of cortex is largely 2-
dimensional!

From (Sereno et al, 1995, Science).



Why Is Constructing a 
Model of The Cortical 

Surface Difficult?
The cortex is highly folded!

• Partial voluming.

• Subject motion.

• Susceptibility artifacts.

• Bias field.

• Tissue inhomogeneities.

Intensity of a tissue 
class varies as a 

function of spatial 
location



Sources of within-class 
intensity variation

• Partial voluming – a single voxel may contain more than one             
tissue type.

• Bias field                        – effective flip angle or sensitivity of receive coil 
may vary across space.

• Tissue inhomogeneities – even within tissue type (e.g. cortical gray      
matter), intrinsic properties such as T1, PD 
can vary (up to 20%).



T1 weighted MR volume

Assigning tissue classes to voxels can be difficult



Which Surface to 
Reconstruct?

Pial surface is ultimate goal, but pretty much impossible 
to directly generate a representation of from MRI images 
(many have tried!).

Alternative: construct an interim representation of the 
interface between gray matter and white matter, and use 
it to infer the location of the true cortical surface (Dale 
and Sereno, 1993).



Skull Stripping and building of 
Boundary Element Models



MRI Segmentation and Surface 
Reconstruction



Topology Correction

The true topology of the cortical ribbon is that of a 
sheet (Euler number=1). 

We would like the reconstructed gray/white boundary 
to have spherical topology (Euler number=2), but 
errors in the segmentation and non-cortical 
anatomical features of the white matter cause 
departures from spherical topology (“defects”).



Typical “Defects”
Cut Fornix

Fill Pallidum 
and Putamen

“spackle” 
hippocampus

Fill Ventricles 
and Caudate

Cortical 
Defects



Topological Defects



Standard method*: shrink wrapping

start with a surface S (e.g. sphere) of known topology find a mapping 
M:SaC of it to the cortex C that doesn’t change its topology (e.g. 

Davatzikos, 1996; Macdonald 2000)

*newer  volumetric work (Shattuck and Leahy, 2001; Han et al., 2002)



How to maintain geometric 
accuracy?

Problems: 

1. The initial surface S is typically much smoother than 
the target surface C. The energy functionals for 
finding M are therefore highly non-convex.

2. Local errors that would have given rise to inaccurate 
segmentation if the topology were not constrained, 
can cause large scale geometric inaccuracies in the 
surfaces.



What Surface Would a Shrink-
Wrapping Algorithm Result in?



Solution: Manifold Surgery.

Generate C’ and find a mapping M-1 from C’ to S that is 
invertible over as much of C as possible. Noninvertible 
regions contain defects!



Manifold Surgery: Equations
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Energy Functional:

Ri – jacobian at the ith face in tessellation

F – number of faces in tessellation

k – positive real constant



Detection of non-homeomorphic 
Regions



Detection of non-homeomorphic 
Regions



Detection of non-homeomorphic 
Regions



Detection of non-homeomorphic 
Regions



Manifold Surgery: 
Retessellation

1. Mark all triangles that have any edge overlapping any 
other edge in the tessellation.

2. Discard all faces and edges in marked triangles.

3. Sort all possible edges by image likelihood (they should 
go through MR values between gray and white).

4. Use a greedy retessellation algorithm: keep adding edges 
between all vertices in defects until no more can be added 
without causing an intersection with an existing edge on 
the sphere.

(Florent Ségonne currently working on using genetic algorithm to evaluate different 
potential retessellations, but the space is huge!)



Manifold Surgery: Results

BEFORE AFTER



Surface Inflation



White matter and pial surfaces

Gray-white boundary

Pial surface



superior temporal calcarine

central

sylvian

anterior
posterior

Surface Flattening – Whole 
Hemisphere

Inflated surface with cuts

Metrically optimal flat map



Borrowed from (Halgren et al., 1999)Borrowed from (Halgren et al., 1999)



Talairach Coordinates
Can mean many things, but most common is linear 
transform to align input image with a target image that is 
average of many individuals aligned with the atlas of 
Talairach and Tournoux (1988).

Not Good For Cortex!

1. Typical transform is too low dimensional to account for 
variability in cortical folds.

2. Landmarks are subcortical (and far from much of cortex).

3. Implicit assumption that 3D metric is appropriate one.



Talairach averaging

Average of 40

Single subject



How to align different cortical 
surfaces?



Surface-Based Coordinate System

• Establish a 2-D coordinate system on cortical surface
- Every point in cortex should have a (unique) coordinate
- Every coordinate should refer to a point in cortex

• Inter-subject alignment of cortical folding patterns

• Improve alignment of functional areas



A Surface-Based Coordinate System



Inflated Surface

Maximally Isometric Spherical Mapping

Transformed Surface



Spherical Morphing: Equations

Energy Functional: Jc+λdJd+λTJT

Jc:   Correlation error (aligns folding patterns)

Jd:   Metric distortion (constrains allowable shape differences)

JT:   Topology term (forces mapping to be invertible)



Spherical Morphing: Equations

),(1),(
1

θϕθϕ ∑
=

=
N

i
iC

N
CAverage Folding Pattern:

2)),(),(
1
(

1
1),(2 θϕθϕθϕσ C

N

i
C

N i −∑
=−

=Variance of Folding

2

1

)
))(),((

)))(),(((*(
2
1 ∑

=

−
=

V

v

v
c vv

vvCCG
V

J
θφσ

θφαMaximum Likelihood Term:

ddTTc JJJJ λλ ++=Complete Energy Functional:



Inter-Subject Morphing

Individual Subject

Average (Target)



Surface-Based Averaging

Average surface created from 30 subjects



Applications
• Increased statistical power for inter-subject averaging

• Automatic functional/anatomical labeling

• Inter-subject averaging of morphometric properties

• Statistical analysis of morphometric properties
– aging
– neurodegenerative diseases
– longitudinal studies of structural changes
– hemispheric asymmetry
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Inter-Subject Averaging of 
Activations

Talairach Average Spherical Average
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Cortical Parcellation: Manual vs. Automated 

Automatic ParcellationManual Parcellation

Thanks to Christophe Destrieux for this slide.
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Selective  Regional Thinning in AD 
Aging AD

Prefrontal Cortex

Entorhinal Cortex

Parietal Cortex

Central Sulcus/
Precentral Gyrus

Parietal Cortex

Posterior Parahippocampal

Lateral

Medial

Ventral

Dorsal

Courtesy of Drs. Randy Buckner and David Salat
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Whole-Brain Segmentation

Goal: Segment T1-weighted MRI into anatomically and 
semantically meaningful structures (e.g. caudate, 
putamen, etc…).

Requirements:
• Insensitive to pathology.
• Insensitive to varying pulse sequences.

Prerequisite: registration with anatomically meaningful 
space (e.g. Talairach)



Why Segmentation is Hard!
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Inter-subject Registration

Goal: align functionally homologous points across subjects
(e.g. hippocampus with hippocampus, amygdala with 
amygdala, etc…).

Problem: this information is in general unavailable

Typical solution: align image intensities and hope this results
in alignment of function/structure as well.



What does Mean-Squared Error
Estimation mean from a 

Probabilistic Perspective?
Find f that minimizes 
(T is target image, I is input image, r is spatial coordinate)
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f is the maximum likelihood solution assuming the image 
noise can be modeled  as a set of IID random variables with 
means T(r) and equal (unit) variances.



Mean-squared Error Registration: 
Low Quality Data

I(r)                          T(r)                        I(Lr)



Mean-squared Error Registration

Anatomy is variable, particularly in cases of pathology* 

A given spatial location may contain a different 
tissue class in different types of subjects!

* Thanks to Marilyn Albert and Ron Killiany for providing this data.



Segmentation-based 
Registration

Find the transformation that maximizes the probability 
that each point in the individual is drawn from one of the 
tissue classes in the template.

Find the L that maximizes the probability of observing 
image I given the segmentation C:

),|(maxarg CLIpL =

How do we find the segmentation C?



Segmentation-based 
Registration

Problem of finding L is highly overdetermined (many, 
many more data points than parameters to solve for).

Can assume C in certain atlas locations (a few thousand) 
where prior probabilities are high, and use them to find L 
using a global search (local minima/maxima not a 
problem).



Atlas Points After Registration



Segmentation-based Registration: 
Results

Normal

AD



Segmentation Results: CMA 
Labeling



Tissue Segmentation
Given a transform f into an atlas space, C can be estimated 
using a Maximum a Posteriori (MAP) approach: what is the 
most likely tissue classification C given the observed 
image I , the transformation f, and prior information  about 
C?
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C
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What prior information p(C) can we use to constrain the 
allowable segmentations? 



Tissue Segmentation
The probability distribution of each voxel is modeled 
as an independent nonstationary Gaussian (because it 
is a function of r):
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imaging into forward model (more later)



Gibbs Priors: Motivation 

What is the probability that cortical gray 
matter occurs inferior to hippocampus?



Markov Random Fields

Modeling the segmentation as a Markov Random Field (MRF) 
means:
p(C(r)|the rest of the labels) = p(C(r)|labels in a neighborhood around r)



Segmentation: MRF

Problem: the segmentation is fractured because no 
spatial smoothness constraints are encoded in model.

Solution: incorporate prior probability of one tissue 
class being the neighbor of another into model:
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Segmentation: MRF
p(C(ri)|C(r), I, r,ri) encodes the probability that tissue class 
C(ri) occurs at spatial location ri when tissue class C(r) 
occurred at r. The segmentation is thus modeled as an 
anisotropic nonstationary MRF.

C(r)

C(r1)
C(r2)

C(r3)

C(r4)

C(r6)

C(r5)



Segmentation: MRF

Final Segmentation

Preliminary Segmentation



Segmentation with
MRF: Fly Through



Volume Differences Predictive of AD
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Data courtesy of Drs Marilyn Albert Ron Killiany



Optimizing CNR for 
Segmentation

Problem: CNR varies over brain because of 
intrinsic tissue property inhomogeneities, 
bias fields, etc…. 

Global CNR dramatically underestimates true 
CNR. Need a local measure that reflects the 
true difficulty of the segmentation problem.

Solution: Use atlas to compute local 
segmentation ambiguity and integrate 
across brain.



Estimated T1 values

Estimation of Intrinsic Tissue Parameters
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Pulse Sequence Independent 
Segmentation

Test-retest structure volumes measured from three separate datasets (dark, 
medium and light bars) acquired on the same subject. Each dataset had 

different acquisition parameters (LV=lateral ventricle, HP=hippocampus, 
TH=thalamus, CA=caudate, PU=putamen, PA=pallidum, AM=amygdala).



Sequence Optimization
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Where Ji is the Jacobian of S(Mi,β), and  A+ and AT

are the pseudoinverse and transpose of A respectively.



Predicting Means and 
Covariances

Itraining
Ipredicted

S-1(β,Mtraining)
S(β,Mpredicted)Tissue 

Parameters β 
(Τ1/Τ2∗/PD)

),(,()(ˆ trainingpredicted cc MMSM µβµ =
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cc λ+Σ=Σ ++ T

predictedtrainingtrainingpredicted )()(ˆ

Where Mi are the MR pulse parameters used in acquisition i.



Ambiguity for 2 flip angles
(2 flash scans, TR=20ms, TE=3ms, 18 subjects)



Multi-Echo Flash
(Andre van der Kouwe and Anders Dale)

TR=20 msec, 2ms esp, flip angle=5o, BW=651 Hz/voxel

TR=20 msec, flip angle=30o, BW=651 Hz/voxel



T2* decay at 50 (left) and 300 (right)
50 300

FLASH Simulation, TR=20ms, TE=3ms
GM T2*≈75 ms (dotted), WM T2*≈55 ms (solid)



T2* Decay with Echo Time 
(5o left, 30o right, 65ms echo train)
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Sources of Variance in MRI

1. Slice positioning

2. Subject motion

3. MRI distortions
- Gradient Nonlinearities
- Bias fields
- Susceptibility effects

4. Hardware/Software changes.



Longitudinal Analysis (baseline)



Longitudinal Analysis (600 days)



Auto Slice Registration:
prescribing where slices should be placed without 

human intervention
5 scans separate localizer scans, pre-registration

Low-resolution localizers, post-registration Dale / Van der Kouwe / Schmitt
MGH / Cortechs / Siemens



Real-Time Motion Correction with 
Cloverleaf Navigators

Average
No motion correction

Average (equal weight)
Real-time motion corr.

Average (MSE weighted)
Real-time motion corr.

Thanks to Andre van der Kouwe for this slide.



Gradient Distortions: Between Scanner Variance
Without Correction (Scanner A)

Brain Morphometry BIRN: MGH, BWH, Duke, UCSD, UCI, UCLA,JHU



Gradient Distortions: Between Scanner Variance
Without Correction (Scanner B)

Brain Morphometry BIRN: MGH, BWH, Duke, UCSD, UCI, UCLA,JHU



Spatial Distortion due to Magnetic Susceptibility (B0) 
Pulse-Sequence Dependence (S/I readout direction)



Spatial Distortion due to Magnetic Susceptibility (B0) 
Pulse-Sequence Dependence (I/S readout direction)
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Histology in Alzheimer’s 
disease

CONTROL                                 AD

thioflavin S 
(neurofibrillary tangles 
and neuritic plaques)

Nissl Stain

Thanks to Brad Hyman and Jean Augustinack for this slide.



100µm isotropic MR, 7T, TR=20msec, TE=7.8msec, α=23o (synthesized)

Temporal Lobe Fly-Through

1mm

S
M    L   

I



Entorhinal Islands with MRI!

1mm



Areal border detection

c.f. (Schleicher et al, 1999)



Towards MR Histology  and 
Stereology

MRI                     Block Face                 Nissl Stain

Joint work with Jean Augustinack, Larry Wald, Matt Frosch, Megan Blackwell, Chris 
Wiggins, David Salat and Andre van der Kouwe



Probabilistic Atlas of 
Cytoarchitectonic Boundaries (EC)

me
spherical mapping



Using In-vivo Functional Data to 
Look for Histological Boundaries

Predicted FFA border
FFA probability map

Joint work with Mona Spiridon, Nancy Kanwisher, Jean Augustinack, Becca
Schwarzlose, Megan Blackwell and Brian T. Quinn.
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