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Review of the GLM

model each measured time-series as a linear combination of
signal and noise: xi = Yβi + ηi

= βi +

If the design matrix does not model all signal, we get wrong
inferences!
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Classical vs. Exploratory Data Analysis

Classical Data Analysis
(e.g. GLM)

”How well does the model
fit the data”

Problem → Data →
Model → Analysis →
Conclusions

results depend on the model

test specific hypothesis

Exploratory Data Analysis
(e.g. ICA)

”Is there anything
interesting in the data”

Problem → Data →
Analysis → Model →
Conclusions

results depend on the data

can give ’surprising’ results
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Principles of EDA
Principal Component Analysis
From PCA to ICA
Independent Component Analysis

Exploratory Data Analysis techniques

try to explain / represent the data

by calculating quantities which summerise data
by extracting underlying (hidden) variables that are
’interesting’

differ in what is considered to be interesting

signals which explain (co-)variances (PCA, FDA, FA)
signals which have large (co-)variances with e.g. a design
matrix (PLS, CVA)
signals which are clustered in space/time (clustering)
signals which are statistically independent / maximally
non-Gaussian (ICA)
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Principles of EDA
Principal Component Analysis
From PCA to ICA
Independent Component Analysis

Exploratory Data Analysis techniques

often are multivariate

often provide a multivariate linear decomposition

space

# m
aps=

tim
e Scan #k 

FMRI data
spatial maps

tim
e

# mapsspace

X =
∑R

r ar ⊗ br + η

Data are represented as a 2D matrix and decomposed into factor
matrices A and B, representing the characteristics of R processes

in time and across space
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Principal Component Analysis (PCA)

finds new
variables which
are linear
combinations
of the observed
data along axis
of maximum
variation

Example

scan 2

sc
an

 1

w1 = arg max||w||=1 E{(wtx)2},

wk = arg max||w||=1 E{(wt(x−
∑

i<k wt
i xwi ))

2}
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Principal Component Analysis for FMRI

calculate the data
covariance matrix

calculate the full set
of Eigenvectors

calculate the
Eigenimages by
projecting the data
onto the Eigenvectors

Example
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Statistical independence and correlation

de-correlated
signals can still
be dependent

higher-order
statistics
(beyond mean
and variance)
can reveal
those
dependencies

Stone, Trends Cog.
Sci., 6(2):59–64 (2002)

Example
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Principles of EDA
Principal Component Analysis
From PCA to ICA
Independent Component Analysis

PCA versus ICA

Principal Component
Analysis (PCA) finds
directions of maximal
variance in Gaussian data
(uses second-order
statistics)

Independent Component
Analysis (ICA) finds
directions of maximal
independence in
non-Gaussian data
(higher-order statistics)

Gaussian data
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PCA versus ICA

Principal Component
Analysis (PCA) finds
directions of maximal
variance in Gaussian data
(uses second-order
statistics)

Independent Component
Analysis (ICA) finds
directions of maximal
independence in
non-Gaussian data
(higher-order statistics)

non-Gaussian data
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PCA versus ICA

Principal Component
Analysis (PCA) finds
directions of maximal
variance in Gaussian data
(uses second-order
statistics)

Independent Component
Analysis (ICA) finds
directions of maximal
independence in
non-Gaussian data
(higher-order statistics)

non-Gaussian data
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Principles of EDA
Principal Component Analysis
From PCA to ICA
Independent Component Analysis

Spatial ICA for FMRI

the data is represented as a 2D matrix and decomposed into a
set of spatially independent component maps and a set of
associated time-courses

space

# IC
s
=

tim
e Scan #k 

FMRI data
Components

tim
e

# ICsspace

impose spatial independence

Noise-free generative model

McKeown et.al., Human Brain Mapping, 6(5):368–372 (1998)
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Principles of EDA
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From PCA to ICA
Independent Component Analysis

The ’Overfitting Problem’

Example: visual stimulation, b/w reversing checkerboard (8Hz)

GLM results
(using FEAT)

caused by fitting a
noise free model to
noisy data

in the absence of a
noise model,
everything is
significant!

std. ICA results
(all maps with r > 0.3 temp. corr. between

time-course and design)
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Probabilistic ICA

statistical ’latent variables’ model: we observe linear mixtures
of hidden sources

xi = Asi + ηi

If ηi ∼ N [0, σ2Σi ] we can use voxel-wise pre-whitening (e.g.
Woolrich et.al, NeuroImage, 14(6):1370–1386 (2001))

If ηi ∼ N [0, σ2I] then RX → AAt + σ2I as N →∞, i.e. for
isotropic Gaussian noise the eigenspectrum is raised by σ2

we can estimate the model order from the Eigenspectrum of
the data covariance matrix RX

but RX = RXQ for any Q with QQt = I, i.e. RX is rotational
invariant
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Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Rotational invariance: the geometry of PCA and ICA

s
1

s
2

−0.8 −0.4 0 0.4 0.8

−0.8

−0.4

0

0.4

0.8

2 independent, uniformly
distributed sources s1 and s2

s
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s
2

PC
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linear mixtures of sources with
principal directions
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Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Rotational invariance: the geometry of PCA and ICA
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Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Variance-normalisation

need to normalise by the
voxel-wise variance

this amounts to modelling
the spatial covariance matrix
as as diagonal:

V−1/2 = diag(σ1, . . . , σN)

Example: FMRI resting state data

3.5

4

4.5

5

5.5

Voxel−wise standard deviation

Estimated voxel-wise noise
standard deviation (log-scale)
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Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Probabilistic ICA (I)1.5 Illustration 34

PICA
map

standard
deviation

of η̂

IC
maps

prob.
maps

noise
estimate

spatially
whitened

data

temporally
whitened

data

variance–
normalised

data

original
data

prior
infor–
mation

+

Σi

Rx

!

"

!

"
#

$

!

"

#

#

!

Mixture Model

PPCA

unmixing

re-
estimate

estimate
model order

Figure 1.7: Schematic illustration of the analysis steps involved in estimating the PICA model.

dependency on the form of Σ and preliminary results suggest that it is sufficient

to only compensate for voxel-wise mean and variance (variance-normalisation) in-

stead of estimating the voxel-wise noise covariance for autocorrelated noise. From

the spatially whitened observations, the individual component maps are estimated

using the fixed point iteration scheme (equation 1.12). These maps are separately

transformed to Z scores using the estimated standard deviation of the noise. In

contrast to raw IC estimates, the Z score maps depend on the amount of variab-
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Incorporating prior information

use regularised PCA (or FDA) to regularise time courses
( Ramsay & Silverman, Functional Data Analysis (1997))

signal+noise sub-space is determined from data cov. matrix:

Rx =
∑

i

wi (xi − 〈x〉)(xi − 〈x〉)t (typically wi = 1
N )

∝
∑
ij

wiwjmij(xi − xj)(xi − xj)
t

+
∑
ij

wiwj(1−mij)(xi − xj)(xi − xj)
t ,

the matrix M = (mij);mij ∈ [0, 1] defines a weighted graph of
N nodes: can be used to spatially regularise PPCA
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Model order selection (Probabilistic PCA)

the sample
covariance matrix
has a Wishart
distribution and
we can calculate
the empirical
distribution
function for the
eigenvalues

Everson & Roberts, IEEE
TSP, 48(7):2083–2091 (2000)

Example: 2 signals in noise
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Model order selection (Probabilistic PCA)

use a probabilistic
PCA model and
calculate
(approximate) the
Bayesian evidence
for the model
order

Minka, TR 514 MIT Media
Lab (2000)

Example: 2 signals in noise
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

different Bayesian
estimators at
different points in
the processing
chain

different
estimators give
similar results

Laplace
approximation of
the Bayesian
evidence is most
robust

Example: 10 signals in Gaussian noise3.6 Discussion 98

Key: ( ) Eigenspectrum ( ) Lap ( ) BIC ( ) MDL ( ) AIC

original data

variance-normalised data

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180

0 20 40 60 80 100 120 140 160 180

variance-normalised data after adjusting the eigenspectrum

(i) AR(0) (ii) AR(4) (iii) AR(16) (iv) ’null’ data

Figure 3.4: Estimation of the intrinsic dimensionality for 10 sources with non-Gaussian distribution em-
bedded in a 180 dimensional space with different noise characteristics (see section 4.1) at different stages
of the estimation process: (i) Gaussian white noise, (ii) AR(4) noise, (iii) AR(16) noise, (iv) resting state
FMRI noise; estimates from the original data (top), after voxel-wise variance normalisation (middle) and
after additionally adjusting the Eigenspectrum using the predictive cumulative distribution G-1 (ν) (bottom).
Every plot shows the Eigenspectrum of the data covariance matrix (black) and 4 different estimates of the
intrinsic dimensionality: Laplace approximation to the model evidence, BIC, MDL and AIC. Note that the
estimation for all techniques depends only on the relative size of eigenvalues.

0 20 40 60 80 100 120 140 160 180

after variance-
normalisation and
adjustment of the
eigenspectrum

original
data

after
variance-
normalisation
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Component estimation

estimate an ’unmixing matrix’ W = A† such that the
statistical dependency between the estimated sources
ŝi = Wxi is minimised

use (i) a contrast function and (ii) an optimisation technique:

kurtosis or cumulants & gradient descent (Jade)

maximum entropy & gradient descent (Infomax)

neg-entropy & fixed-point iteration (FastICA)
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

non-Gaussianity is interesting

original sounds

mixing

mixtures
are

more
Gaus-
sian

mixtures
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Component estimation

random mixing results in more Gaussian shaped pdfs (Central
Limit Theorem)

if an ’unmixing matrix’ produces non Gaussian signals, this is
unlikely to be a random result

use neg-entropy as a measure of non-Gaussianity:
J (s) = H(sgauss)−H(s)

allows for the identification of exactly those source processes
which violate standard GLM assumptions

can use fast approximations:
J (s) '

∑p
i κi (E{gi (s)} − E{gi (sgauss)})

Hyvärinen & Oja, Neural Computation, 9(7):1483–1492 (1997)
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Probabilistic ICA (II)

1.5 Illustration 34

PICA
map

standard
deviation

of η̂

IC
maps

Z stat.
map

prob.
maps

noise
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spatially
whitened

data

temporally
whitened

data

variance–
normalised

data

original
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prior
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mation
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Σi
!
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!

#

unmixing

Figure 1.7: Schematic illustration of the analysis steps involved in estimating the PICA model.

dependency on the form of Σ and preliminary results suggest that it is sufficient

to only compensate for voxel-wise mean and variance (variance-normalisation) in-

stead of estimating the voxel-wise noise covariance for autocorrelated noise. From

the spatially whitened observations, the individual component maps are estimated

using the fixed point iteration scheme (equation 1.12). These maps are separately

transformed to Z scores using the estimated standard deviation of the noise. In

contrast to raw IC estimates, the Z score maps depend on the amount of variab-

form voxel-wise Z -statistics using the estimated standard deviation
of the noise

c© C.F. Beckmann - IPAM: Mathematics in Brain Imaging 2004 Modelling with Independent Components



Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Thresholding IC maps

estimated maps
have been
optimised to
violate the noise
model

null-hypothesis
test is invalid

thresholding based
on Z -transforming
across the spatial
domain gives
wrong
false-positives rate

example histogram and fit to single Gaussian

−2 −1 0 1 2 3 4 5 6 7

1 2 3 4 5 6

right tail

−2.5−2−1.5−1

left tail
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Thresholding IC maps

under the model:

ŜML = Â†X = Â†AS + Â†E,

i.e. the estimated spatial maps contain a linear projection of
the noise

the distribution of the estimated spatial maps is a mixture
distribution

use Gaussian / Gamma mixture model for each spatial map sr :

p(sr |θ) = πr ,1N [sr ;µr ,1, σ
2
r ,1]

+ πr ,2G+[sr − µr ,1;µr ,2, σr ,2]

+ πr ,3G−[−sr + µr ,1;µr ,3, σr ,3]
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Thresholding IC maps

fit using
Expectation
Maximisation
(EM)

different ways of
thresholding:
posterior
probabilities,
NHT, FDR

no multiple-
comparison
problem

Example
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Thresholding IC maps

fit using
Expectation
Maximisation
(EM)

different ways of
thresholding:
posterior
probabilities,
NHT, FDR

no multiple-
comparison
problem

Example
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Why Gaussian/Gamma mixtures?

Example: Gaussian MM fit (2,3 mixtures)

Gaussian densities for ’non-background’ classes are
suboptimal: ’non-background’ densities are typically not
symmetric.
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Why Gaussian/Gamma mixtures?

Exampe: Gaussian/Gamma MM fit (2,3 mixtures)

Gaussian/Gamma MM is more robust wrt specification of the
right number of mixtures
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

The effect of variance-normalisation

IC histogram (without variance-norm.)

IC histogram (with variance-norm.)
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1.5 Illustration 34
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Figure 1.7: Schematic illustration of the analysis steps involved in estimating the PICA model.

dependency on the form of Σ and preliminary results suggest that it is sufficient

to only compensate for voxel-wise mean and variance (variance-normalisation) in-

stead of estimating the voxel-wise noise covariance for autocorrelated noise. From

the spatially whitened observations, the individual component maps are estimated

using the fixed point iteration scheme (equation 1.12). These maps are separately

transformed to Z scores using the estimated standard deviation of the noise. In

contrast to raw IC estimates, the Z score maps depend on the amount of variab-

full PICA model

implemented as
Melodic, part of
FMRIB’s Software
Library (FSL)

Beckmann & Smith, IEEE
TMI, 23(2):137–152 (2004)
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Receiver-Operator Characteristics

simulated FMRI
data

PICA vs. GLM at
different
‘activation‘ levels
and different
thresholds

plot of
true-positives rate
vs. false-positives
rate

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5%
0 0.02 0.04 0.06 0.08 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1%

0 0.02 0.04 0.06 0.08 0.1
0.7

0.8

0.9

1

3%
0 0.02 0.04 0.06 0.08 0.1

0.7

0.8

0.9

1

5%

4.2 Results 110

0.5% 1% 3% 5%
vis. 0.33± 0.03 0.62± 0.01 0.9± 0.00 0.95± 0.00

aud. 0.29± 0.01 0.5± 0.01 0.87± 0.00 0.94± 0.00

Table 4.1: Temporal accuracy at different activation levels: correlation between the extracted time
courses from PICA and the true signal time courses over 150 runs.

Key: ( ) PICA ( ) GLM × visual act. cluster ◦ aud. act. cluster
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Figure 4.5: Spatial accuracy at different activation levels: ROC curves for PICA (solid lines - mean
over 150 runs) vs. ROC curves for Z statistical maps thresholded using Gaussian Random Field
theory (dashed lines) at different Z and p levels (false-positive rate on the x−axis vs. true-positive
rate ont he y−axis). Markers indicate typical threshold levels: 0.33, 0.5 and 0.66 (PICA alternative
hypothesis test); Z > 1.6, 2.3 and 3.1, p = 0.01 (GLM null-hypothesis test).

is combined with a significance level for cluster heights or size. In the present

case, we evaluated different GRF threshold levels with Z ranging from 1.1 to 7.0

and p ranging from 0.0005 to 0.1. For fixed Z or fixed p, a monotonically increas-

ing ROC curve can be plotted but for reasons of simplicity, we ordered all results

by increasing false positive rate and in the case of multiple true positive outcomes

only used the best one. In almost all cases, the PICA estimates show an improved

ROC compared to the GLM results despite the fact that GLM analysis was carried

out under the ideal condition of perfect knowledge of the regressors of interest. The

superior performance is due to the fact that a standard GLM analysis is adversely

affected by the presence of unmodelled structured noise in this data. The PICA

decomposition, on the other hand, estimates sufficiently strong structured noise as

separate components (artefacts) resulting in increased spatial accuracy for the activ-

Cluster-based thresholding appears to be generally accepted as the method of choice in the case of
reasonably-sized and well-localised activation patterns like the ones used in this example.
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Exploratory Data Analysis
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Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Example: visual stimulation, b/w reversing checkerboard (8Hz)

0 20 40 60 80 100 120 140 160 180

GLM results dim.-est. PICA results (constrained)

standard ICA (unconstrained)
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Example: visual stimulation, b/w reversing checkerboard (8Hz)

PICA maps show primary visual cortex and V3 (MT)
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Can we still estimate spatially correlated signals?

spatial correlation between 2 sources s1 and s2:

ρ(s1, s2) =
st
1s2

N
√

Var(s1)
√

Var(s2)

in the presence of noise:

ρ(s1 + η1, s2 + η2) =
st
1s2

N
√

Var(s1) + σ2
1

√
Var(s2) + σ2

2

,

i.e. for sparse signals in noise, imposing orthogonality
(de-correlating estimated signals) is not necessarily restrictive
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Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps
Full PICA model

Example: 2 correlated sources

original
sources

ρ = 0.5

sources with
noise

ρ < 0.1

de-correlated
sources

ρ = 0

thresholded
sources

ρ ≈ 0.5
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

Investigating the temporal characteristics of the BOLD response

pain study: 14 short bursts of painful heat

estimated (top) and
expected (bottom)
temporal response
to stimulation

GLM result using
canonical model

GLM result using es-
timated model

Wise & Tracey, 2000
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

Detecting artefacts in FMRI data

FMRI data contain a variety of source processes

Artefactual sources typically have unknown spatial and
temporal extent and cannot easily be modelled accurately

exploratory techniques do not require a priori knowledge of
time-courses and/or spatial maps
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

slice-dropout (scanner instability)
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

EPI ghost (phantom)
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

EPI ghost (in human subject with head motion)
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

high-frequency noise (mainly in ventricles)
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

head motion
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

B0 field inhomogeneity
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

eye-related artefacts (eyeblink, eyball motion ?)
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

wrap-around in FOV due to interaction with the EPI ghost

Wrap 

around
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

Data from McGonigle et.al., NeuroImage, 11:708–734 (2000)

33 sessions under visual stimulation - some data was discarded

stimulus-correlated motion

GLM motion estimates FE PICA
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

Example: ’Scanning for the scanner’

utilise the effective fluctuation of the EPI sequence noise to scan for

residual auditory responses in patients Bartsch et.al., HBM (2004)

10th ANNUAL MEETING OF THE OHBM                 HBM2004: POSTER TU 196 / SESSION 2B 
SCANNING FOR THE SCANNER: 

EVOKING MODULATIONS OF THE BOLD SIGNAL IN THE AUDITORY CORTEX 
BY WITHHOLDING READ-OUTS (R/OS) FROM ECHO PLANAR IMAGES (EPI) 

 
 

Andreas J. Bartsch1, Karsten Specht2, Georg Homola1, Christian F. Beckmann3, Stefan Thesen4 
1Division of Neuroradiology, Bavarian Julius Maximilians-University of Würzburg; 2Institute of Medicine, Research Center Jülich; Federal Republic of Germany 

3Oxford University Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford; United Kingdom 
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INTRODUCTION 
 
Echo Planar Imaging (EPI) generates considerable acoustic noise by steep gradient pulses at unrestricted 
bandwidths. In functional neuroimaging, unshielded EPI-sounds inevitably activate the auditory system and 
potentially interfere with the detection of concomitant or successive stimulations. Instead of vanishing the 
scanners global noise transmission [e.g., 1], our goal was to utilize it for the functional neuroimaging of audition. 
Previously, this has been achieved by either introducing aberrant gradient switches [2-4], amplitudes or 
durations for sound generation [5] or by sampling physiologically delayed hemodynamic BOLD-responses to the 
MR-scanner’s persistent or intermittently delayed but otherwise unmodified gradient noise [6]. Here, we 
describe the evocation and hypothesis- as well as data-driven detection of modulations in the BOLD signal of the 
auditory cortex induced by withholding read-outs (R/Os) from the gradient-train of an EPI pulse sequence. 

  
 

 

METHODS & MATERIAL 
 

 
 
 
 

EXPERIMENTAL DESIGN, DATA ACQUISITION, AND SUBJECTS EXAMINED: 
Between two regular, i.e. loud EPIs read out (= [I]; red bars) subsequently increasing numbers of 1-8 read-outs 
(R/Os) were omitted to suppress the ambient EPI gradient noise at those TR bins where no scans were read 
out (= [0]). The corresponding gradient-train followed the scheme [I0I00I000I-...-I00000000I] which was 
repeated 10 times. Thereby, 90 scans were read out within about 5 minutes and effective fluctuations (41-96dB) 
of the EPI pulse sequence noise were induced at the level of the auricles. However, foam as well as muffle 
pads and, for normal hearing subjects, earplugs were used for fixation purposes and to avoid startle motions. 
The paradigm was tested on two 1.5 T scanners (Siemens Symphony vs. SymphonyVision) at bw=1860Hz/Px, 
TR/TE/echo spacing=700 / 45 / 0.63ms, FA=65°, resolution=3*3*5mm³ casewise in 30 healthy, normal hearing 
volunteers (age 18-60 years). 7 vs. 8 prospectively motion-corrected slices (PACE-technique; gap=25%) were 
axially angulated along the lateral fissure based upon coronal and sagittal T2-w(eighted) TRUFI-localizers. 
Subjects were not instructed by any specific task except for just laying passively and quiet in the scanner. 
Additionally, 10 patients (age 23-58 years) with impaired hearing were examined and cases of three different 
pathologies are presented here: a right postoperative deafness secondary to a vestibular schwannoma, a 
bilateral surditas (up to ~ 85 dB) due to a large-vestibular-aqueduct-syndrome, and a residuum of a herpes-
simplex-encephalitis with subjective hardness of hearing. 

DATA PREPROCESSING, HYPOTHESIS- AND DATA-DRIVEN ANALYSIS: 
Data preprocessing was carried out by appropriate FSL tools (www.fmrib.ox.ac.uk/fsl) and consisted of slice-
timing and motion correction, spatial smoothing (10mm FWHM), and adequate high-pass filtering (1.5 times the 
cycle time of 9 TRs). For hypothesis-driven modelling, each scan with a R/O [I] was specified as a stimulus of 
interest and convolved with a synthetic, double-gamma hemodynamic response function (HRF; [7]). The scans 
without R/Os [0] had to be discarded from the modelled time-series but kept the overall signal in a steady-state. 
The expected response vector was supplied into a customized one-entry-per-volume type of FEAT-design 
(version 5.1 / part of FSL) with no further convolution and without its temporal or a dispersion derivative. For 
data-driven probabilistic independent component analysis (PICA), MELODIC (version 2.0 / part of FSL) was used. 

MODIFIED EPI GRADIENT-TRAIN WITH READ-OUT OMISSIONS & EXPECTED AUDITORY BOLD SIGNAL MODULATIONS: 
 

!"#$%&'()* *+&,-&.-"$*/0(1*)2,(1"(0+*345!"#$%&'"()% *+, -(=700

... ... time [scan-bins] 

 
 

IMPOSING PRIOR TEMPORAL CONTRAINTS TO DATA-DRIVEN PROBABILISTIC INDEPENDENT COMPONENT ANALYSIS 
(‘REGULARIZED’ MELODIC): 

Within the PICA framework, estimation of maximally non-Gaussian sources is based on an Eigenvalue 
decomposition of the data-covariance-matrix (RX). For FMRI data in general and for this study in particular, the 
signal of interest is assumed to vary rather slowly over time. Thus, high-frequencies yield rather non-pausible 
spatial maps and time-courses, and their estimation is dispensable. To favour ‘smooth’ time-courses, MELODIC 
was regularized by incorporating principles of functional data analysis (FDA, [8]): Identification of initial 
Eigenvectors was temporally constraint by a suitably chosen set of regularly spaced (TR/5) cubic B-spline basis 
functions. Thereby, resulting ICA time-courses - estimated as linear combinations of the Eigenvectors - were 
restricted to contain primarily lower frequencies. Final PICA maps generated by ‘ordinary’ as well as regularized 
MELODIC were thresholded using an alternative hypothesis test based on Gaussian/Gamma mixture models [9].                              

FIGURE 1: 
Significant auditory BOLD modulations evoked by read-out omissions 

from EPI of a healthy, normal hearing subject 
(FEAT: cluster-corrected p<0.05, MELODIC: p>0.50) 
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FIGURE 4: 

Auditory signal as expected vs. extracted by regularized MELODIC 
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RESULTS & DISCUSSION 
 
 
 
 

The modified EPI gradient-train with R/O omissions evoked appropriate significant modulations of the BOLD-
signal in the auditory cortex which were detected in 27 of the 30 healthy subjects (90%) by both, FEAT as well as 
ordinary MELODIC. Their extracted time-courses were appropriately directed and highly correlated. Figures 1 & 2 
exemplify the spatial and temporal correspondence of their results for one representative subject. 
By encoding the heuristic prior that the signal of interest is presumed to vary slowly, regularized MELODIC 
extracted ‘smoother’ time-courses (Figure 3). Their correlation with the synthetic regressor model generated by 
a double-gamma HRF were highly significant and above 0.74 (Figure 4). Thus, MELODIC temporally constrained 
by FDA principles is suited to optimize the model of the HRF while protecting against 'overfitting' a too complex 
model via appropriate model-order selection [9]. 

Hypothesis-driven model fitting may improve by including a temporal derivative. Due to the nature of the 
paradigm with varying degrees of autocorrelation between successive R/Os and unknown characteristics of 
individual HRFs, however, data-driven analysis by regularized MELODIC seems preferable. Even when hearing 
was impaired (e.g. due to vestibular schwannomas or consecutive postoperative deafness, large-vestibular-
aqueduct-syndrome, or herpes-simplex-encephalitis; Figures 4 – 6), regularized MELODIC was sensitive 
enough to demonstrate and reliably predict audition (up to 90 dB, approximately, compared to standard 
audiometric assessment). Thus, omitting R/Os from EPI is suited to assess audition in clinical settings within 
about 5 minutes and without specific task compliance. No sophisticated equipment other than the MR-scanner, 
a modified EPI pulse sequence, and fully automated, user-independent data-driven analysis is required. 
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INTRODUCTION 
 
Echo Planar Imaging (EPI) generates considerable acoustic noise by steep gradient pulses at unrestricted 
bandwidths. In functional neuroimaging, unshielded EPI-sounds inevitably activate the auditory system and 
potentially interfere with the detection of concomitant or successive stimulations. Instead of vanishing the 
scanners global noise transmission [e.g., 1], our goal was to utilize it for the functional neuroimaging of audition. 
Previously, this has been achieved by either introducing aberrant gradient switches [2-4], amplitudes or 
durations for sound generation [5] or by sampling physiologically delayed hemodynamic BOLD-responses to the 
MR-scanner’s persistent or intermittently delayed but otherwise unmodified gradient noise [6]. Here, we 
describe the evocation and hypothesis- as well as data-driven detection of modulations in the BOLD signal of the 
auditory cortex induced by withholding read-outs (R/Os) from the gradient-train of an EPI pulse sequence. 

  
 

 

METHODS & MATERIAL 
 

 
 
 
 

EXPERIMENTAL DESIGN, DATA ACQUISITION, AND SUBJECTS EXAMINED: 
Between two regular, i.e. loud EPIs read out (= [I]; red bars) subsequently increasing numbers of 1-8 read-outs 
(R/Os) were omitted to suppress the ambient EPI gradient noise at those TR bins where no scans were read 
out (= [0]). The corresponding gradient-train followed the scheme [I0I00I000I-...-I00000000I] which was 
repeated 10 times. Thereby, 90 scans were read out within about 5 minutes and effective fluctuations (41-96dB) 
of the EPI pulse sequence noise were induced at the level of the auricles. However, foam as well as muffle 
pads and, for normal hearing subjects, earplugs were used for fixation purposes and to avoid startle motions. 
The paradigm was tested on two 1.5 T scanners (Siemens Symphony vs. SymphonyVision) at bw=1860Hz/Px, 
TR/TE/echo spacing=700 / 45 / 0.63ms, FA=65°, resolution=3*3*5mm³ casewise in 30 healthy, normal hearing 
volunteers (age 18-60 years). 7 vs. 8 prospectively motion-corrected slices (PACE-technique; gap=25%) were 
axially angulated along the lateral fissure based upon coronal and sagittal T2-w(eighted) TRUFI-localizers. 
Subjects were not instructed by any specific task except for just laying passively and quiet in the scanner. 
Additionally, 10 patients (age 23-58 years) with impaired hearing were examined and cases of three different 
pathologies are presented here: a right postoperative deafness secondary to a vestibular schwannoma, a 
bilateral surditas (up to ~ 85 dB) due to a large-vestibular-aqueduct-syndrome, and a residuum of a herpes-
simplex-encephalitis with subjective hardness of hearing. 

DATA PREPROCESSING, HYPOTHESIS- AND DATA-DRIVEN ANALYSIS: 
Data preprocessing was carried out by appropriate FSL tools (www.fmrib.ox.ac.uk/fsl) and consisted of slice-
timing and motion correction, spatial smoothing (10mm FWHM), and adequate high-pass filtering (1.5 times the 
cycle time of 9 TRs). For hypothesis-driven modelling, each scan with a R/O [I] was specified as a stimulus of 
interest and convolved with a synthetic, double-gamma hemodynamic response function (HRF; [7]). The scans 
without R/Os [0] had to be discarded from the modelled time-series but kept the overall signal in a steady-state. 
The expected response vector was supplied into a customized one-entry-per-volume type of FEAT-design 
(version 5.1 / part of FSL) with no further convolution and without its temporal or a dispersion derivative. For 
data-driven probabilistic independent component analysis (PICA), MELODIC (version 2.0 / part of FSL) was used. 

MODIFIED EPI GRADIENT-TRAIN WITH READ-OUT OMISSIONS & EXPECTED AUDITORY BOLD SIGNAL MODULATIONS: 
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IMPOSING PRIOR TEMPORAL CONTRAINTS TO DATA-DRIVEN PROBABILISTIC INDEPENDENT COMPONENT ANALYSIS 
(‘REGULARIZED’ MELODIC): 

Within the PICA framework, estimation of maximally non-Gaussian sources is based on an Eigenvalue 
decomposition of the data-covariance-matrix (RX). For FMRI data in general and for this study in particular, the 
signal of interest is assumed to vary rather slowly over time. Thus, high-frequencies yield rather non-pausible 
spatial maps and time-courses, and their estimation is dispensable. To favour ‘smooth’ time-courses, MELODIC 
was regularized by incorporating principles of functional data analysis (FDA, [8]): Identification of initial 
Eigenvectors was temporally constraint by a suitably chosen set of regularly spaced (TR/5) cubic B-spline basis 
functions. Thereby, resulting ICA time-courses - estimated as linear combinations of the Eigenvectors - were 
restricted to contain primarily lower frequencies. Final PICA maps generated by ‘ordinary’ as well as regularized 
MELODIC were thresholded using an alternative hypothesis test based on Gaussian/Gamma mixture models [9].                              
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Auditory signal as expected vs. extracted by regularized MELODIC 
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The modified EPI gradient-train with R/O omissions evoked appropriate significant modulations of the BOLD-
signal in the auditory cortex which were detected in 27 of the 30 healthy subjects (90%) by both, FEAT as well as 
ordinary MELODIC. Their extracted time-courses were appropriately directed and highly correlated. Figures 1 & 2 
exemplify the spatial and temporal correspondence of their results for one representative subject. 
By encoding the heuristic prior that the signal of interest is presumed to vary slowly, regularized MELODIC 
extracted ‘smoother’ time-courses (Figure 3). Their correlation with the synthetic regressor model generated by 
a double-gamma HRF were highly significant and above 0.74 (Figure 4). Thus, MELODIC temporally constrained 
by FDA principles is suited to optimize the model of the HRF while protecting against 'overfitting' a too complex 
model via appropriate model-order selection [9]. 

Hypothesis-driven model fitting may improve by including a temporal derivative. Due to the nature of the 
paradigm with varying degrees of autocorrelation between successive R/Os and unknown characteristics of 
individual HRFs, however, data-driven analysis by regularized MELODIC seems preferable. Even when hearing 
was impaired (e.g. due to vestibular schwannomas or consecutive postoperative deafness, large-vestibular-
aqueduct-syndrome, or herpes-simplex-encephalitis; Figures 4 – 6), regularized MELODIC was sensitive 
enough to demonstrate and reliably predict audition (up to 90 dB, approximately, compared to standard 
audiometric assessment). Thus, omitting R/Os from EPI is suited to assess audition in clinical settings within 
about 5 minutes and without specific task compliance. No sophisticated equipment other than the MR-scanner, 
a modified EPI pulse sequence, and fully automated, user-independent data-driven analysis is required. 
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

PICA on resting data

perform ICA on null
data and compare
spatial maps between
subjects/scans

ICA maps depict
spatially localised and
temporally coherent
signal changes that
are confounding
effects for the GLM

Example: 1 subject, 3 sessions
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

RSN classification (7 normals): 4 consistent maps

visual cortex
medial occipital

visual, lateral 
occipital, medial 

parietal 

primary and secondary
sensory, anterior 

insula, pain

posterior parietal,
prefrontal: attention, 

working memory 

DeLuca et.al., ISMRM (2004)
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

Simultaneous EEG/FMRI

record single bipolar EEG channel recording during FMRI

estimate subject specific alpha power und use for GLM

PICA vs. GLM

0.8

2.0

3.0

4.0

-1.1

-2.0

-3.0

-4.0

-1.7

Goldman & Cohen, HBM (2003)
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Investigating the BOLD response
Artefact detection
Estimating ’difficult’ activation pattern
Investigation into resting-state networks

Simultaneous EEG/FMRI

task

ERP data

temporal ICA

FMRI data

spatial ICA and project maps to
scalp (need forward model only)

match ERP and FMRI sources using the
scalp spatial maps

Loftus et.al., HBM (2003)
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Generative model
PARAFAC
Tensor-PICA estimation
Example

Tensor-PICA: multi-way generalisation of PICA

space

# m
aps=

tim
e Scan #k 

FMRI data
spatial maps

tim
e

# maps

space

su
bje
ct

su
bje
ct

⊗

xijk =
∑R

r air × bjr × ckr + ηijk

Data are represented as a 3D array and decomposed into factor
matrices A, B and C.
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Generative model
PARAFAC
Tensor-PICA estimation
Example

PARAFAC

as a symmetric least-square problem this is known as
PARAFAC (Parallel Factor Analysis) and can be solved using
Alternating Least Squares (ALS), i.e. by iterating
least-squares solutions for

Xi .. = Bdiag(ai )C
t + Ei .. ∀i

X.j . = Cdiag(bj)A
t + E.j . ∀j

X..k = Adiag(ck)Bt + E..k ∀k

requires system variation (no co-linearity in A,B or C)

treats all modes the same
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Application of (P)ICA to FMRI data
Tensor-PICA

Summary

Generative model
PARAFAC
Tensor-PICA estimation
Example

Tensor-PICA: estimation

rewrite:
XIK×J = (C|⊗|A)Bt + E

can be treated as a 2-stage estimation problem:

1 PICA estimation of B from XIK×J by estimating M as
the mixing matrix

2 rank-1 Eigen-decomposition of each column M(r),
reshaped into a I × K matrix, in order to find the
underlying factor matrices such that M = (C|⊗|A)

Jointly estimates R modes which describe signal
characteristics in the temporal, spatial and subject/session
domain.
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Example

10 sessions under motor paradigm
(right index finger tapping)

McGonigle et.al, NeuroImage 11:708–735,

2000

Group-level mixed-effects results
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associated time course
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Tensor PICA: primary activation
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contra-lateral primary motor/sensory;
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Tensor PICA: primary ’de-activation’
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Tensor PICA: artefacts
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stimulus-correlated motion
(strong in 2 sessions)

Tensor-PICA

group level GLM

lower-level GLM (session 9)
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Conclusions

exploring your data is important in order to get a better
understanding

don’t just look at post-thresholded stats images!

model-free analysis is complementary to GLM - make use of it

PCA/ICA techniques are easy to use - results are often less
easy to interpret, though

probabilistic ICA can produce plausible activation maps and
associated time-courses
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