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Principles of EDA
Exploratory Data Analysis Principal Component Analysis
Probabilistic Independent Component Analysis for FMRI From PCA to ICA
Independent Component Analysis

Review of the GLM

@ model each measured time-series as a linear combination of
signal and noise: x; = Y3; + n;

@ If the design matrix does not model all signal, we get wrong
inferences!
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Principles of EDA
Exploratory Data Analysis Principal Component Analysis
Probabilistic Independent Component Analysis for FMRI From PCA to ICA
Independent Component Analysis

Classical vs. Exploratory Data Analysis

Classical Data Analysis Exploratory Data Analysis
(e.g. GLM) (e.g. ICA)

@ "How well does the model @ "Is there anything
fit the data” interesting in the data”

@ Problem — Data — @ Problem — Data —
Model — Analysis — Analysis — Model —
Conclusions Conclusions

@ results depend on the model @ results depend on the data

@ test specific hypothesis @ can give 'surprising’ results
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Principles of EDA
Exploratory Data Analysis Principal Component Analysis
Probabilistic Independent Component Analysis for FMRI From PCA to ICA
Independent Component Analysis

Exploratory Data Analysis techniques

@ try to explain / represent the data

e by calculating quantities which summerise data
o by extracting underlying (hidden) variables that are
"interesting’

o differ in what is considered to be interesting

o signals which explain (co-)variances (PCA, FDA, FA)

e signals which have large (co-)variances with e.g. a design
matrix  (PLS, CVA)

o signals which are clustered in space/time (clustering)

e signals which are statistically independent / maximally
non-Gaussian  (ICA)
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Principles of EDA
Exploratory Data Analysis Principal Component Analysis
Probabilistic Independent Component Analysis for FMRI From PCA to ICA
Independent Component Analysis

Exploratory Data Analysis techniques

@ often are multivariate

@ often provide a multivariate linear decomposition

Scan #k )
spatial maps
FMRI data -

X=YFa, ob, +7

Data are represented as a 2D matrix and decomposed into factor
matrices A and B, representing the characteristics of R processes
in time and across space
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Exploratory Data Analysis

Principles of EDA

Principal Component Analysis
From PCA to ICA

Independent Component Analysis

Principal Component Analysis (PCA)

o finds new
variables which
are linear
combinations
of the observed
data along axis
of maximum
variation

w1 = arg max)w|—1 E{(w'x)*},

Wy = arg max||wj|=1 E{(wf(x — >« wfxw;))z}
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Principles of EDA
Exploratory Data Analysis Principal Component Analysis
Probabilistic Independent Component Analysis for FMRI From PCA to ICA

Independent Component Analysis

Principal Component Analysis for FMRI
o coleat the dat

covariance matrix

@ calculate the full set
of Eigenvectors

@ calculate the
Eigenimages by
projecting the data
onto the Eigenvectors

L
w 7
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Principles of EDA

Exploratory Data Analysis Principal Component Analysis
From PCA to ICA
Independent Component Analysis

Statistical independence and correlation

Plot x vs.y xy

@ de-correlated
signals can still
be dependent

- '1=0.000

sin(z)

@ higher-order
statistics s
(beyond mean o 45 00 as 1o 3 o @0 w0 w0
and variance) i e rtatons iy

can reveal
those
dependencies

@ Stone, Trends Cog. e :

Sci., 6(2):59-64 (2002) R P

= cos(z)*
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sin(2)?
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Exploratory Data Analysis

PCA versus ICA

@ Principal Component
Analysis (PCA) finds
directions of maximal
variance in Gaussian data
(uses second-order
statistics)

@ Independent Component
Analysis (ICA) finds
directions of maximal
independence in
non-Gaussian data
(higher-order statistics)
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Exploratory Data Analysis

PCA versus ICA

@ Principal Component
Analysis (PCA) finds
directions of maximal
variance in Gaussian data
(uses second-order
statistics)

@ Independent Component
Analysis (ICA) finds
directions of maximal
independence in
non-Gaussian data
(higher-order statistics)
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Principles of EDA

Exploratory Data Analysis Principal Component Analysis
From PCA to ICA
Independent Component Analysis

PCA versus ICA

o Principal Component

Analysis (PCA) finds S —
directions of maximal .
variance in Gaussian data
(uses second-order
statistics)

@ Independent Component o
Analysis (ICA) finds
directions of maximal
independence in
non-Gaussian data
(higher-order statistics)
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Principles of EDA
Exploratory Data Analysis Principal Component Analysis
Probabilistic Independent Component Analysis for FMRI From PCA to ICA

Independent Component Analysis

Spatial ICA for FMRI

@ the data is represented as a 2D matrix and decomposed into a
set of spatially independent component maps and a set of
associated time-courses

space

Components

LB

impose spatial independence

FMRI data

Noise-free generative model
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Principles of EDA
Exploratory Data Analysis Principal Component Analysis
Probabilistic Independent Component Analysis for FMRI From PCA to ICA
Independent Component Analysis

The 'Overfitting Problem’

Example: visual stimulation,

GLM results
(using FEAT)

@ caused by fitting a
noise free model to
noisy data

@ in the absence of a
noise model,
everything is
significant!

std. ICA results

(all maps with r > 0.3 temp. corr. between
time-course and design)
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Estimating the model order
Exploratory Data Analysis Estimating Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

Probabilistic ICA

@ statistical 'latent variables’ model: we observe linear mixtures
of hidden sources

xj = As; +n;
o If n; ~ N[0,0°X;] we can use voxel-wise pre-whitening (e.g.
E )
o If n; ~ N[0,0°l] then Rx — AA! 4 o2l as N — oo, i.e. for
isotropic Gaussian noise the eigenspectrum is raised by o
@ we can estimate the model order from the Eigenspectrum of
the data covariance matrix Ry

o but Ry = Ryq for any Q with QQ* =1, i.e. Ry is rotational
invariant
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Estimating the model order
Exploratory Data Analysis Estimating Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

Rotational invariance: the geometry of PCA and ICA

A

-08 -0.4 0 04 08 -08 -0.4 0 04 08
2 independent, uniformly linear mixtures of sources with
distributed sources s; and s principal directions
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Estimating the model order
Exploratory Data Analysis Estimating Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

Rotational invariance: the geometry of PCA and ICA

-08 04 0 04 038 08 04 0 04 08
PCA solution (projection on to ICA solution (rotation of PCA
PC; and PG,) solution)
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Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps

Full PICA model

Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Variance-normalisation

Example: FMRI resting state data

Voxel-wise standard deviation

@ need to normalise by the
voxel-wise variance

@ this amounts to modelling
the spatial covariance matrix
as as diagonal:

v2 = diag(o1,...,0n)

Estimated voxel-wise noise
standard deviation (log-scale)

Modelling with Independent Components
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Estimating the model order
Exploratory Data Analysis Estimating Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps

Probabilistic ICA (1)

original
data

I prior

' .
infor-

temporally variance— mation

Xi whitened normalised

data data

re-
estimate

noise spatially PPCA

. + | whitened
estimate data

estimate
model order

unmixing

IC
maps
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Estimating the model order
Exploratory Data Analysis Estimating Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

Incorporating prior information

o use regularised PCA (or FDA) to regularise time courses

(> )

@ signal+4-noise sub-space is determined from data cov. matrix:
Rx = Y wilxi— (x)(xi— (x))" (typically w; = %)
i
x Z WiM/ij(xf - Xj)(x,' — Xj)t

ij
+ Z wiwj(1 — my)(xi — x;)(x; — x;)°,
ij

@ the matrix M = (mj;); mj; € [0, 1] defines a weighted graph of
N nodes: can be used to spatially regularise PPCA
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ng the model order
ng Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

Model order selection (Probabilistic PCA)

Example: 2 signals in noise

@ the sample

. . AR 0 noise + signal AR 4 noise + signal
covariance matrix 25 ) 5
i r 0.;
has a Wishart o Ao |
distribution and 15 o 10 E) N o w

we can calculate
the empirical

. . . 0 30 60 90 120 150 0 30 60 90 120 150
distribution
. AR 16 noise + signal 'null’ data + signal
function for the o a
1.4 0.8
g 5 12 8s 06
eigenvalues o | of| © \
4 06 25 o4
3 50 100 150 60 90 120 150
@ Everson & Roberts, IEEE 2
TSP, 48(7):2083-2091 (2000) 1
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ng the model order
ng Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

Model order selection (Probabilistic PCA)

Example: 2 signals in noise

AR 0 noise + signal AR 4 noise + signal
@ use a probabilistic ) .
PCA model and 0 ! A\ 0s '
CaICU|ate 08 0950123456 08 2% 15 20 25 30|
(approximate) the o7 o7
B . d 0.6 0.6
ayeSIan eVI ence 0 30 60 90 120 150 0 30 60 90 120 150
for the mOdel AR 16 noise + signal ‘null’ data + signal
order
1 1
1 1
e ANWANEE AT
[ Minka, TR 514 MIT Media o . o oo
Lab (2000) 15 20 25 30| 0 100
0.7 0.7
0.6 0.6
0 30 60 90 120 150 0 30 60 90 120 150
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Estimating the model order
Estimating Independent Components

Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

Example: 10 signals in Gaussian noise

[Key: (—) Figenspectrum  (—)Lap _ (-—) BIC _ (-=) MDL () AIC |

o different Bayesian
estimators at
different points in
the processing
chain

o different

estimators give
similar results

o Laplace
approximation of
the Bayesian
evidence is most .
robust oo

after variance-
normalisation and
adjustment of the
eigenspectrum
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Estimating the model order
Exploratory Data Analysis Estimating Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

Component estimation

@ estimate an 'unmixing matrix’ W = AT such that the
statistical dependency between the estimated sources
s; = WXx; is minimised

@ use (i) a contrast function and (ii) an optimisation technique:

o kurtosis or cumulants & gradient descent (Jade)
e maximum entropy & gradient descent (Infomax)

o neg-entropy & fixed-point iteration (FastICA)
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Esti ng the model order

Estimating Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps

Full PICA model

non-Gaussianity is interesting

riginal sounds ‘

e
H o i mixtures

are
more

e L s
e |
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Estimating the model order
Exploratory Data Analysis Estimating Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

Component estimation

@ random mixing results in more Gaussian shaped pdfs (Central
Limit Theorem)

@ if an 'unmixing matrix’ produces non Gaussian signals, this is
unlikely to be a random result

@ use neg-entropy as a measure of non-Gaussianity:
T (s) = H(Sgus:) — H(s)
@ allows for the identification of exactly those source processes
which violate standard GLM assumptions

@ can use fast approximations:
JI(s) = 377 ri(E{gi(s)} — E{gi(Seuss)})
[
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Estimating the model order
Exploratory Data Analysis Estimating Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps

Probabilistic ICA (I1)

noise spatially
. + whitened
estimate data

unmixing

IC
maps

standard
deviation
of i

form voxel-wise Z-statistics using the estimated standard deviation
of the noise
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Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

Thresholding IC maps

@ estimated maps
have been

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps

Full PICA model

example histogram and fit to single Gaussian

optimised to
violate the noise
model

@ null-hypothesis
test is invalid

@ thresholding based
on Z-transforming J
across the spatial '
domain gives ,
wrong o

right tail

false-positives rate
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Estimating the model order
Exploratory Data Analysis Estimating Independent Components

Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

Thresholding IC maps

@ under the model:
SwL = ATX = ATAS + ATE,

i.e. the estimated spatial maps contain a linear projection of
the noise

@ the distribution of the estimated spatial maps is a mixture
distribution

@ use Gaussian / Gamma mixture model for each spatial map s,:

p(srl8) = moaNTsri s, 024]
7rr,2g+[sr — Mr,1: Hr2, Jr,2]
7rr,3g_[_sr + r1; fr3, Ur,3]

+ +

Modelling with Independent Components
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Estimating the model order

Estimating Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps

Full PICA model

Thresholding IC maps

o fit using

Expectation ot s
Maximisation A = oty smesisisl

2 — Q.82 0.04263 0.005126
(EM) fo

o different ways of -
thresholding: | |
posterior / \
probabilities,

NHT, FDR / \

@ no multiple- \‘h

comparison = 0 : C g
problem
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Thresholding IC maps

Exploratory Data Analysis

Probabilistic Independent Component Analysis for FMRI

Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps

Full PICA model

o fit using
Expectation
Maximisation
(EM)

different ways of
thresholding:
posterior
probabilities,
NHT, FDR

no multiple-
comparison
problem
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ng the model order
ng Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

Why Gaussian/Gamma mixtures?

Example: Gaussian MM fit mixtures)

Gaussian MM (2 mixtures) Gaussian MM (3 mixtures)
j " made: -0.100d i j " made: -0.0463

o Gaussian densities for 'non-background’ classes are
suboptimal: 'non-background’ densities are typically not
symmetric.
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Estimating the model order
Estimating Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps

Full PICA model

Why Gaussian/Gamma mixtures?

Exampe: Gaussian/Gamma MM fit (2,3 mixtures)

Gaussian/Gamma MM (2 mixtures) Gaussian/Gamma MM (3 mixtures)
mode: -0 099 mode: -0 095

05

| SR S L A ——

-4 2 ] 2 4 [ B

o Gaussian/Gamma MM is more robust wrt specification of the
right number of mixtures
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Estimating the model order

Estimating Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps

Full PICA model

The effect of variance-normalisation

IC histogram (without variance-norm.)

without variance normalisation

with variance normalisation
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Estimating the model order
Estimating Independent Components
Statistical Inference on IC maps

Full PICA model

Exploratory Data Analysis
Probabilistic Independent Component Analysis for FMRI

original
data

[ prior
N infor-
variance— mation
whitened normalised

- data data
Te-
estimate

noise | o | spatially | PPCA . T
estimate data | il e implemented as

unmixing_| Melodic, part of

Ic o ' FMRIB's Software

s Library (FSL)

Mixture Model B
standard
deviation .

temporally

of )
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Estimating the model order
Exploratory Data Analysis Estimating Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

Receiver-Operator Characteristics

@ simulated FMRI
data

PICA vs. GLM at
different
‘activation’ levels
and different
thresholds

plot of
true-positives rate
vs. false-positives
rate

Key: (—) PICA (--) GLM x visual act. cluster o aud. act. cluster
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Estimating the model order
Exploratory Data Analysis Estimating Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

Example: visual stimulation, b/w reversing checkerboard (8Hz)

& 100 1% 1w 180 I

GLM results dim.-est. PICA results (constrained)

standard ICA (unconstrained)
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Estimating the model order
Exploratory Data Analysis Estimating Independent Components

ic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

@ PICA maps show primary visual cortex and V3 (MT)
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Estimating the model order
Exploratory Data Analysis Estimating Independent Components
Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

Can we still estimate spatially correlated signals?

@ spatial correlation between 2 sources s; and sp:

t

N+/Var(s1)/Var(sy)

p(s1,92) =

@ in the presence of noise:

sis

N\/Var(sl) + o2 \/V&I'(SQ) - ag’

p(s1 + 1,9 +m2) =

i.e. for sparse signals in noise, imposing orthogonality
(de-correlating estimated signals) is not necessarily restrictive
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Estimating the model order
Exploratory Data Analysis Estimating Independent Components

Probabilistic Independent Component Analysis for FMRI Statistical Inference on IC maps
Full PICA model

original sources with de-correlated thresholded
sources noise sources sources

p<0.1
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Investigating the BOLD response
Artefact detection

Estimating ’difficult’ activation pattern
Investigation into resting-state networks

Application of (P)ICA to FMRI data
Tensor-PICA
Summary

Investigating the temporal characteristics of the BOLD response

@ pain study: 14 short bursts of painful heat

@ estimated (top) and

expected (bottom) ” h ” ” ﬂ h n h rl n p h
temporal response ; : . . .
to stimulation

o GLM result using
canonical model

@ GLM result using es-
timated model
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Investigating the BOLD response
Artefact detection

Estimating ’difficult’ activation pattern
Investigation into resting-state networks

Application of (P)ICA to FMRI data
Tensor-PICA
Summary

Detecting artefacts in FMRI data

o FMRI data contain a variety of source processes

@ Artefactual sources typically have unknown spatial and
temporal extent and cannot easily be modelled accurately

@ exploratory techniques do not require a priori knowledge of
time-courses and/or spatial maps
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Investigating the BOLD response
Artefact detection

Estimating ’difficult’ activation pattern
Investigation into resting-state networks

Application of (P)ICA to FMRI data
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Application of (P)ICA to FMRI data

o resting-state networks
EPI ghost (phantom)

m

il '“wl'””th“uﬂ W"M |||"|J|‘MM||

|||||\| ||||| |||||'||1|‘|||'|' |
|'“\'l'“¥"| VI'M'!V'HWHW "'V”' I '\"W'Vn I

Yy | V¥ | =¥
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Investigating the BOLD response
Artefact detection

Estimating ’difficult’ activation pattern
Investigation into resting-state networks

Application of (P)ICA to FMRI data
Tensor-PICA
Summary

ey .
1-.-_ o _-'
-*..-. _'.'
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Investigating the BOLD response
Artefact detection

Estimating ’difficult’ activation pattern
Investigation into resting-state networks

Application of (P)ICA to FMRI data
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Investigating the BOLD response
Artefact detection

Estimating ’difficult’ activation pattern
Investigation into resting-state networks

Application of (P)ICA to FMRI data

© C.F. Beckmann - IPAM: Mathematics in Brain Imaging 2004 odelling with Independent Components



Investigating the BOLD response
Artefact detection

Estimating ’difficult’ activation pattern
Investigation into resting-state networks

Application of (P)ICA to FMRI data
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Application of (P)ICA to FMRI data Artefact detection

eye-related artefacts (eyeblink, eyball motion ?)
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Application of (P)ICA to FMRI data Artefact detection

wrap-around in FOV due to interaction with the EP| ghost
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Investigating the BOLD response
Artefact detection

Estimating 'difficult’ activation pattern
Investigation into resting-state networks

Application of (P)ICA to FMRI data

o Data from @ McGonigle et.al., Neurolmage, 11:708-734 (2000)

@ 33 sessions under visual stimulation - some data was discarded

stimulus-correlated motion

GLM motion estimates

standard ICA (7 sources with significant temp correlation)

[ W\WHWWHWHWHW\
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Application of (P)ICA to FMRI data Investigating the BOLD response

Tensor-PICA Artefact detection

Estimating 'difficult’ activation pattern
Summary

Investigation into resting-state networks

utilise the effective fluctuation of the EPI sequence noise to scan for
residual auditory responses in patients [

MOoDIFIED EPI GRADIENT-TRAIN WITH READ-OUT OMISSIONS & EXPECTED AUDITORY BOLD SIGNAL MODULATIONS:

read-outs (red bars; TR=700ms) convolved with synthetic HRF

—
_ oss LIME [scan-bins| eee -
i - fa——

regressor modelled and J: - o
g =
extracted at read-outs

Herpes-simplex-encephalitis

postoperative deafness
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Investigating the BOLD response
Artefact detection

Estimating ’difficult’ activation pattern
Investigation into resting-state networks

Application of (P)ICA to FMRI data
Tensor-PICA
Summary

PICA on resting data

Example: 1 subject, 3 sessions

@ perform ICA on null
data and compare
spatial maps between
subjects/scans

@ ICA maps depict
spatially localised and
temporally coherent
signal changes that
are confounding
effects for the GLM
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Investigating the BOLD response
Artefact detection

Estimating 'difficult’ activation pattern
Investigation into resting-state networks

Application of (P)ICA to FMRI data
Tensor-PICA
Summary

RSN classification (7 normals): 4 consistent maps
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Investigating the BOLD response
Artefact detection

Estimating ’difficult’ activation pattern
Investigation into resting-state networks

Application of (P)ICA to FMRI data

Simultaneous EEG/FMRI

@ record single bipolar EEG channel recording during FMRI

@ estimate subject specific alpha power und use for GLM

@ Goldman & Cohen, HBM (2003)
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Investigating the BOLD response
Artefact detection

Estimating 'difficult’ activation pattern
Investigation into resting-state networks

Application of (P)ICA to FMRI data
Tensor-PICA
Summary

Simultaneous EEG/FMRI

s

ERP data FMRI data

temporal ICA spatial ICA and project maps to
O Q R /\‘ scalp (need forward model only)
& @
I b
et i e o MVP o

match ERP and FMRI sources using the
scalp spatial maps
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Application of (P)ICA to FMRI data Generative model

PARAFAC
Tensor-PICA Tensor-PICA estimation
Summary

Example

Tensor-PICA: multi-way generalisation of PICA

X
o
(o\)

# maps space
—

spatial maps
FMRI data

R
Xijk = D, @ir X bjp X €hr + M

Data are represented as a 3D array and decomposed into factor
matrices A, B and C.
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Generative model
PARAFAC

Tensor-PICA estimation
Example

Application of (P)ICA to FMRI data
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PARAFAC

@ as a symmetric least-square problem this is known as
PARAFAC (Parallel Factor Analysis) and can be solved using
Alternating Least Squares (ALS), i.e. by iterating
least-squares solutions for

X, = Bdiag(a,-)Ct + E.. Vi
X.j, = Cdiag(bj)At T E.j, Vj
X“k = Adiag(ck)Bt =+ E”k Vk

@ requires system variation (no co-linearity in A, B or C)

@ treats all modes the same
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Tensor-PICA: estimation

@ rewrite:

Xikxy) = (C’@‘A)Bt +E

@ can be treated as a 2-stage estimation problem:

@ PICA estimation of B from Xk« by estimating M as
the mixing matrix

@ rank-1 Eigen-decomposition of each column M),
reshaped into a /| X K matrix, in order to find the
underlying factor matrices such that M = (C|®|A)

@ Jointly estimates R modes which describe signal
characteristics in the temporal, spatial and subject/session
domain.
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Example

10 sessions under motor paradigm
(right index finger tapping)
[

Group-level mixed-effects results

associated time course

| \/\[\Mﬂf\/
20 40 60 8

0

«
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Tensor PICA: primary activation

assoclated time course

20 40 60 80

normalised response over sessions

2 4 6 8 10

contra-lateral primary motor/sensory;
SMA,; bi-lateral secondary

somatosensory; anterior lobe of ~
cerebellum
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Tensor PICA: primary 'de-activation’

associated time course

20 40 60 80

normalised response over sessions

2 4 6 8 10
ipsi-lateral primary
motor/somatosensory
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PARAFAC
Tensor-PICA estimation

Summary Example

Tensor-PICA

Tensor PIC efacts

assoclated time course

20 40 60 80

normalised response over sessions

~

N
=

)

2 4 6 8 10
stimulus-correlated motion
(strong in 2 sessions)
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Conclusions

@ exploring your data is important in order to get a better
understanding

@ don’t just look at post-thresholded stats images!
@ model-free analysis is complementary to GLM - make use of it

@ PCA/ICA techniques are easy to use - results are often less
easy to interpret, though

@ probabilistic ICA can produce plausible activation maps and
associated time-courses
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