Extracting cycles from spatiotemporal data and coherent sets across multiple dynamic regimes

Gary Froyland
School of Mathematics and Statistics
University of New South Wales, Sydney

Reconstructing Network Dynamics from Data:
Applications to Neuroscience and Beyond

IPAM, UCLA, 29 August – 2 September 2022
joint work with
D. Giannakis (Dartmouth), B. Lintner (Rutgers), M. Pike (Rutgers), J. Slawinska (Dartmouth), P. Koltai (FU Berlin)
I will discuss two recent techniques for discovering dynamics from data.

1. **Cycle extraction from spatiotemporal data:**
 - Extracting the periods and phase patterns in state space of long-lived cycles embedded in high-dimensional data.
 - Specific example will be extracting a canonical El-Niño Southern Oscillation (ENSO) pattern from sea-surface temperature data.

2. **Coherent set extraction across multiple dynamic regimes:**
 - In turbulent fluid flow, coherent parcels of fluid emerge, remain coherent for a while, and dissipate.
 - I'll describe a framework to identify the presence, location, and lifetimes of coherent parcels.
 - In the setting of time-evolving complex networks, one can think of semi-persistent clusters that emerge, exist for a while, and then break up. How to find them?
I will discuss two recent techniques for discovering dynamics from data.

1. **Cycle extraction from spatiotemporal data:**
 - Extracting the periods and phase patterns in state space of long-lived cycles embedded in high-dimensional data.
 - Specific example will be extracting a canonical El-Niño Southern Oscillation (ENSO) pattern from sea-surface temperature data.

2. **Coherent set extraction across multiple dynamic regimes:**
 - In turbulent fluid flow, coherent parcels of fluid emerge, remain coherent for a while, and dissipate.
 - I'll describe a framework to identify the presence, location, and lifetimes of coherent parcels.
 - In the setting of time-evolving complex networks, one can think of semi-persistent clusters that emerge, exist for a while, and then break up. How to find them?
I will discuss two recent techniques for discovering dynamics from data.

1 **Cycle extraction from spatiotemporal data:**
 - Extracting the periods and phase patterns in state space of long-lived cycles embedded in high-dimensional data.
 - Specific example will be extracting a canonical El-Niño Southern Oscillation (ENSO) pattern from sea-surface temperature data.

2 **Coherent set extraction across multiple dynamic regimes:**
 - In turbulent fluid flow, coherent parcels of fluid emerge, remain coherent for a while, and dissipate.
 - I’ll describe a framework to identify the presence, location, and lifetimes of coherent parcels.
 - In the setting of time-evolving complex networks, one can think of semi-persistent clusters that emerge, exist for a while, and then break up. How to find them?
I will discuss two recent techniques for discovering dynamics from data.

1. **Cycle extraction from spatiotemporal data:**
 - Extracting the periods and phase patterns in state space of long-lived cycles embedded in high-dimensional data.
 - Specific example will be extracting a canonical El-Niño Southern Oscillation (ENSO) pattern from sea-surface temperature data.

2. **Coherent set extraction across multiple dynamic regimes:**
 - In turbulent fluid flow, coherent parcels of fluid emerge, remain coherent for a while, and dissipate.
 - I’ll describe a framework to identify the presence, location, and lifetimes of coherent parcels.
 - In the setting of time-evolving complex networks, one can think of semi-persistent clusters that emerge, exist for a while, and then break up. How to find them?
I will discuss two recent techniques for discovering dynamics from data.

1. **Cycle extraction from spatiotemporal data:**
 - Extracting the periods and phase patterns in state space of long-lived cycles embedded in high-dimensional data.
 - Specific example will be extracting a canonical El-Niño Southern Oscillation (ENSO) pattern from sea-surface temperature data.

2. **Coherent set extraction across multiple dynamic regimes:**
 - In turbulent fluid flow, coherent parcels of fluid emerge, remain coherent for a while, and dissipate.
 - I’ll describe a framework to identify the presence, location, and lifetimes of coherent parcels.
 - In the setting of time-evolving complex networks, one can think of semi-persistent clusters that emerge, exist for a while, and then break up. How to find them?
I will discuss two recent techniques for discovering dynamics from data.

1. **Cycle extraction from spatiotemporal data:**
 - Extracting the periods and phase patterns in state space of long-lived cycles embedded in high-dimensional data.
 - Specific example will be extracting a canonical El-Niño Southern Oscillation (ENSO) pattern from sea-surface temperature data.

2. **Coherent set extraction across multiple dynamic regimes:**
 - In turbulent fluid flow, coherent parcels of fluid emerge, remain coherent for a while, and dissipate.
 - I’ll describe a framework to identify the presence, location, and lifetimes of coherent parcels.
 - In the setting of time-evolving complex networks, one can think of semi-persistent clusters that emerge, exist for a while, and then break up. How to find them?
I will discuss two recent techniques for discovering dynamics from data.

1. **Cycle extraction from spatiotemporal data:**
 - Extracting the periods and phase patterns in state space of long-lived cycles embedded in high-dimensional data.
 - Specific example will be extracting a canonical El-Niño Southern Oscillation (ENSO) pattern from sea-surface temperature data.

2. **Coherent set extraction across multiple dynamic regimes:**
 - In turbulent fluid flow, coherent parcels of fluid emerge, remain coherent for a while, and dissipate.
 - I’ll describe a framework to identify the presence, location, and lifetimes of coherent parcels.
 - In the setting of time-evolving complex networks, one can think of semi-persistent clusters that emerge, exist for a while, and then break up. How to find them?
PART I

CYCLE EXTRACTION FROM HIGH-DIMENSIONAL SPATIOTEMPORAL DATA
Global Sea Surface Temperature

SST on 1 September 2020.

Source: earth.nullschool.net
Global Sea Surface Temperature Anomaly

Difference from average sea surface temperature observations
24 August to 30 August 2020

Data: BOM SST
Climatology baseline: 1961 to 1990
© Commonwealth of Australia 2020, Australian Bureau of Meteorology
Weekly average: 30 August 2020
Created: 31/08/2020

Source: BoM

G. Froyland, UNSW, Sydney

Extracting cycles and coherent sets from complex data
El Niño and La Niña Extremes

December 1988

December 1997

Source: NOAA

G. Froyland, UNSW, Sydney

Extracting cycles and coherent sets from complex data
The Niño 3.4 Index

A standard way of assessing current El Niño strength is to average the sea-surface temperature over a well-chosen “Niño 3.4” box in the Indo-Pacific. This is called the Niño 3.4 Index and there is an approximate cycle with period around 4 years.

Source: BoM and NOAA

G. Froyland, UNSW, Sydney
Our goals

1. **Extract a canonical strong ENSO cycle** from observational data (sea-surface temperature fields).

2. "Rectify" the cycle so that dynamics proceeds at a constant rate around the cycle; this will reveal more detail on El-Niño formation.

3. Demonstrate **better self-consistency** (equivariance/cyclicity in time) when compared with the Niño 3.4 index.

4. Because of items 2 and 3, obtain an **improved characterisation of ENSO** with greater predictability.
Our goals

1. **Extract a canonical strong ENSO cycle** from observational data (sea-surface temperature fields).

2. **“Rectify” the cycle** so that dynamics proceeds at a constant rate around the cycle; this will reveal more detail on El-Niño formation.

3. Demonstrate **better self-consistency** (equivariance/cyclicity in time) when compared with the Niño 3.4 index.

4. Because of items 2 and 3, obtain an **improved characterisation of ENSO** with greater predictability.
Our goals

1. **Extract a canonical strong ENSO cycle** from observational data (sea-surface temperature fields).

2. **“Rectify” the cycle** so that dynamics proceeds at a constant rate around the cycle; this will reveal more detail on El-Niño formation.

3. Demonstrate **better self-consistency** (equivariance/cyclicity in time) when compared with the Niño 3.4 index.

4. Because of items 2 and 3, obtain an **improved characterisation of ENSO** with greater predictability.
Our goals

1. Extract a canonical strong ENSO cycle from observational data (sea-surface temperature fields).
2. “Rectify” the cycle so that dynamics proceeds at a constant rate around the cycle; this will reveal more detail on El-Niño formation.
3. Demonstrate better self-consistency (equivariance/cyclicity in time) when compared with the Niño 3.4 index.
4. Because of items 2 and 3, obtain an improved characterisation of ENSO with greater predictability.
Transfer operator spectrum reveals angular rotation

- Let \((\Omega, \mu)\) be a probability space (our phase space) and \(\Phi : \Omega \to \Omega\) be our discrete-time dynamics (assumed invertible and ergodic).

- The **transfer operator** \(\mathcal{P} : L^2(\Omega) \to L^2(\Omega)\) is given by \(\mathcal{P}f = f \circ \Phi^{-1}\), where \(f : \Omega \to \mathbb{C}\); note \(\mathcal{P}\) is a linear composition operator.

- The simplest possible dynamical system for our purposes is where \(\Omega = S^1\) is a circle of radius 1 and \(\Phi\) is rotation by angle \(\alpha\).

- For the circle rotation, \(\mathcal{P}\) has eigenvalues \(\Lambda_k = e^{ik\alpha}\) with corresponding eigenfunctions \(g_k(\theta) = e^{ik\theta}\) for \(k \in \mathbb{Z}\) and \(\theta \in S^1\).

- The leading nontrivial eigenvalue \(\Lambda_1 = e^{i\alpha}\) gives the rotation angle \(\alpha\).

- Further, the eigenfunction \(g_1 : S^1 \to \mathbb{C}\) given by \(g_1(\theta) = e^{i\theta}\) is an isometric conjugacy between the dynamical system \((S^1, \Phi)\) and rotation of the unit circle in \(\mathbb{C}\) by \(\alpha\).

\[
\begin{array}{ccc}
S^1 & \xrightarrow{\text{rotation by } \alpha} & S^1 \\
\downarrow g_1 & & \downarrow g_1 \\
\mathbb{C} & \xrightarrow{\text{rotation by } \alpha} & \mathbb{C}
\end{array}
\]
Transfer operator spectrum reveals angular rotation

- Let \((\Omega, \mu)\) be a probability space (our phase space) and \(\Phi : \Omega \rightarrow \Omega\) be our discrete-time dynamics (assumed invertible and ergodic).
- The **transfer operator** \(\mathcal{P} : L^2(\Omega) \rightarrow L^2(\Omega)\) is given by \(\mathcal{P}f = f \circ \Phi^{-1}\), where \(f : \Omega \rightarrow \mathbb{C}\); note \(\mathcal{P}\) is a linear composition operator.
- The simplest possible dynamical system for our purposes is where \(\Omega = S^1\) is a circle of radius 1 and \(\Phi\) is rotation by angle \(\alpha\).
- For the circle rotation, \(\mathcal{P}\) has eigenvalues \(\Lambda_k = e^{ik\alpha}\) with corresponding eigenfunctions \(g_k(\theta) = e^{ik\theta}\) for \(k \in \mathbb{Z}\) and \(\theta \in S^1\).
- The leading nontrivial eigenvalue \(\Lambda_1 = e^{i\alpha}\) gives the rotation angle \(\alpha\).
- Further, the eigenfunction \(g_1 : S^1 \rightarrow \mathbb{C}\) given by \(g_1(\theta) = e^{i\theta}\) is an isometric conjugacy between the dynamical system \((S^1, \Phi)\) and rotation of the unit circle in \(\mathbb{C}\) by \(\alpha\).
Transfer operator spectrum reveals angular rotation

- Let \((\Omega, \mu)\) be a probability space (our phase space) and \(\Phi : \Omega \circlearrowleft\) be our discrete-time dynamics (assumed invertible and ergodic).

- The **transfer operator** \(\mathcal{P} : L^2(\Omega) \rightarrow L^2(\Omega)\) is given by \(\mathcal{P} f = f \circ \Phi^{-1}\), where \(f : \Omega \rightarrow \mathbb{C}\); note \(\mathcal{P}\) is a linear composition operator.

- The simplest possible dynamical system for our purposes is where \(\Omega = S^1\) is a circle of radius 1 and \(\Phi\) is rotation by angle \(\alpha\).

- For the circle rotation, \(\mathcal{P}\) has eigenvalues \(\Lambda_k = e^{ik\alpha}\) with corresponding eigenfunctions \(g_k(\theta) = e^{ik\theta}\) for \(k \in \mathbb{Z}\) and \(\theta \in S^1\).

- The leading nontrivial eigenvalue \(\Lambda_1 = e^{i\alpha}\) gives the rotation angle \(\alpha\).

- Further, the eigenfunction \(g_1 : S^1 \rightarrow \mathbb{C}\) given by \(g_1(\theta) = e^{i\theta}\) is an isometric conjugacy between the dynamical system \((S^1, \Phi)\) and rotation of the unit circle in \(\mathbb{C}\) by \(\alpha\).

\[
\begin{array}{ccc}
S^1 & \xrightarrow{\text{rotation by } \alpha} & S^1 \\
\downarrow g_1 & & \downarrow g_1 \\
\mathbb{C} & \xrightarrow{\text{rotation by } \alpha} & \mathbb{C}
\end{array}
\]
Let (Ω, μ) be a probability space (our phase space) and $\Phi : \Omega \rightarrow \Omega$ be our discrete-time dynamics (assumed invertible and ergodic).

The **transfer operator** $P : L^2(\Omega) \rightarrow L^2(\Omega)$ is given by $Pf = f \circ \Phi^{-1}$, where $f : \Omega \rightarrow \mathbb{C}$; note P is a linear composition operator.

The simplest possible dynamical system for our purposes is where $\Omega = S^1$ is a circle of radius 1 and Φ is rotation by angle α.

For the circle rotation, P has eigenvalues $\Lambda_k = e^{ik\alpha}$ with corresponding eigenfunctions $g_k(\theta) = e^{ik\theta}$ for $k \in \mathbb{Z}$ and $\theta \in S^1$.

The leading nontrivial eigenvalue $\Lambda_1 = e^{i\alpha}$ gives the rotation angle α.

Further, the eigenfunction $g_1 : S^1 \rightarrow \mathbb{C}$ given by $g_1(\theta) = e^{i\theta}$ is an isometric conjugacy between the dynamical system (S^1, Φ) and rotation of the unit circle in \mathbb{C} by α.

\[S^1 \xrightarrow{\text{rotation by } \alpha} S^1 \]

\[\downarrow g_1 \quad \downarrow g_1 \]

\[\mathbb{C} \xrightarrow{\text{rotation by } \alpha} \mathbb{C} \]
Transfer operator spectrum reveals angular rotation

- Let \((\Omega, \mu)\) be a probability space (our phase space) and \(\Phi : \Omega \to \Omega\) be our discrete-time dynamics (assumed invertible and ergodic).
- The **transfer operator** \(P : L^2(\Omega) \to L^2(\Omega)\) is given by \(Pf = f \circ \Phi^{-1}\), where \(f : \Omega \to \mathbb{C}\); note \(P\) is a linear composition operator.
- The simplest possible dynamical system for our purposes is where \(\Omega = S^1\) is a circle of radius 1 and \(\Phi\) is rotation by angle \(\alpha\).
- For the circle rotation, \(P\) has eigenvalues \(\Lambda_k = e^{ik\alpha}\) with corresponding eigenfunctions \(g_k(\theta) = e^{ik\theta}\) for \(k \in \mathbb{Z}\) and \(\theta \in S^1\).
- The leading nontrivial eigenvalue \(\Lambda_1 = e^{i\alpha}\) gives the rotation angle \(\alpha\).
- Further, the eigenfunction \(g_1 : S^1 \to \mathbb{C}\) given by \(g_1(\theta) = e^{i\theta}\) is an isometric conjugacy between the dynamical system \((S^1, \Phi)\) and **rotation of the unit circle in \(\mathbb{C}\)** by \(\alpha\).
Let (Ω, μ) be a probability space (our phase space) and $\Phi : \Omega \to \Omega$ be our discrete-time dynamics (assumed invertible and ergodic).

The transfer operator $P : L^2(\Omega) \to L^2(\Omega)$ is given by $Pf = f \circ \Phi^{-1}$, where $f : \Omega \to \mathbb{C}$; note P is a linear composition operator.

The simplest possible dynamical system for our purposes is where $\Omega = S^1$ is a circle of radius 1 and Φ is rotation by angle α.

For the circle rotation, P has eigenvalues $\Lambda_k = e^{ik\alpha}$ with corresponding eigenfunctions $g_k(\theta) = e^{ik\theta}$ for $k \in \mathbb{Z}$ and $\theta \in S^1$.

The leading nontrivial eigenvalue $\Lambda_1 = e^{i\alpha}$ gives the rotation angle α.

Further, the eigenfunction $g_1 : S^1 \to \mathbb{C}$ given by $g_1(\theta) = e^{i\theta}$ is an isometric conjugacy between the dynamical system (S^1, Φ) and rotation of the unit circle in \mathbb{C} by α.

\[
\begin{align*}
S^1 & \xrightarrow{\text{rotation by } \alpha} S^1 \\
\downarrow g_1 & \quad \quad \quad \downarrow g_1 \\
\mathbb{C} & \xrightarrow{\text{rotation by } \alpha} \mathbb{C}
\end{align*}
\]
Transfer operator spectrum reveals angular rotation

In the previous example, g_1 simply maps a geometric unit circle to the unit circle in the complex plane, but this idea generalises...

I have two nontrivial examples: (i) Ω is the Lorenz attractor and Φ is a time-t map of the Lorenz flow; (ii) Ω is the collection of climate configurations and Φ is a monthly evolution of the climate.

For dynamics (Ω, Φ), an eigenfunction $g : \Omega \to \mathbb{C}$ of P with eigenvalue $\Lambda (|\Lambda| = 1)$ will project (semi-conjugate) [Halmos–von Neumann] the dynamics (Ω, Φ) with a rigid rotation on the unit circle in \mathbb{C} by an amount $\arg(\Lambda)$; the latter represents a particular cycle in the Φ-system.

For $|\Lambda| = 1$ let $M_\Lambda : \mathbb{C} \to \mathbb{C}$ be the multiplication-by-Λ dynamics in the complex plane: $M_\Lambda z = \Lambda z = e^{i \arg(\Lambda)} z$; a rotation by $\arg(\Lambda)$.

The semi-conjugacy diagram is:

$\Omega \xrightarrow{\Phi} \Omega$

$\downarrow g$

$\downarrow g$

$\mathbb{C} \xrightarrow{M_\Lambda} \mathbb{C}$
Transfer operator spectrum reveals angular rotation

- In the previous example, g_1 simply maps a geometric unit circle to the unit circle in the complex plane, but this idea generalises...

- I have two nontrivial examples: (i) Ω is the Lorenz attractor and Φ is a time-t map of the Lorenz flow; (ii) Ω is the collection of climate configurations and Φ is a monthly evolution of the climate.

- For dynamics (Ω, Φ), an eigenfunction $g : \Omega \to \mathbb{C}$ of \mathcal{P} with eigenvalue $\Lambda (|\Lambda| = 1)$ will **project (semi-conjugate)** [Halmos–von Neumann] the dynamics (Ω, Φ) with a rigid rotation on the unit circle in \mathbb{C} by an amount $\text{arg}(\Lambda)$; the latter represents a particular cycle in the Φ-system.

- For $|\Lambda| = 1$ let $M_\Lambda : \mathbb{C} \to \mathbb{C}$ be the multiplication-by-Λ dynamics in the complex plane: $M_\Lambda z = \Lambda z = e^{i \text{arg}(\Lambda)} z$; a rotation by $\text{arg}(\Lambda)$.

- The semi-conjugacy diagram is:

\[
\begin{array}{c}
\Omega \\
g \downarrow \\
\mathbb{C} \\
M_\Lambda \\
\end{array} \quad \Phi \quad \begin{array}{c}
\Omega \\
g \\
\mathbb{C} \\
\end{array}
\]
Transfer operator spectrum reveals angular rotation

- In the previous example, \(g_1 \) simply maps a geometric unit circle to the unit circle in the complex plane, but this idea generalises...

- I have two nontrivial examples: (i) \(\Omega \) is the Lorenz attractor and \(\Phi \) is a time-\(t \) map of the Lorenz flow; (ii) \(\Omega \) is the collection of climate configurations and \(\Phi \) is a monthly evolution of the climate.

- For dynamics \((\Omega, \Phi)\), an eigenfunction \(g : \Omega \to \mathbb{C} \) of \(\mathcal{P} \) with eigenvalue \(\Lambda (|\Lambda| = 1) \) will **project (semi-conjugate)** [Halmos–von Neumann] the dynamics \((\Omega, \Phi)\) with a rigid rotation on the unit circle in \(\mathbb{C} \) by an amount \(\arg(\Lambda) \); the latter represents a particular cycle in the \(\Phi \)-system.

- For \(|\Lambda| = 1 \) let \(M_\Lambda : \mathbb{C} \to \mathbb{C} \) be the multiplication-by-\(\Lambda \) dynamics in the complex plane: \(M_\Lambda z = \Lambda z = e^{i \arg(\Lambda)} z \); a rotation by \(\arg(\Lambda) \).

- The semi-conjugacy diagram is:

\[
\begin{array}{ccc}
\Omega & \xrightarrow{\Phi} & \Omega \\
\downarrow{g} & & \downarrow{g} \\
\mathbb{C} & \xrightarrow{M_\Lambda} & \mathbb{C}
\end{array}
\]
In the previous example, \(g_1 \) simply maps a geometric unit circle to the unit circle in the complex plane, but this idea generalises...

I have two nontrivial examples: (i) \(\Omega \) is the Lorenz attractor and \(\Phi \) is a time-\(t \) map of the Lorenz flow; (ii) \(\Omega \) is the collection of climate configurations and \(\Phi \) is a monthly evolution of the climate.

For dynamics \((\Omega, \Phi)\), an eigenfunction \(g : \Omega \rightarrow \mathbb{C} \) of \(\mathcal{P} \) with eigenvalue \(\Lambda (|\Lambda| = 1) \) will project (semi-conjugate) [Halmos–von Neumann] the dynamics \((\Omega, \Phi)\) with a rigid rotation on the unit circle in \(\mathbb{C} \) by an amount \(\arg(\Lambda) \); the latter represents a particular cycle in the \(\Phi \)-system.

For \(|\Lambda| = 1 \) let \(M_\Lambda : \mathbb{C} \rightarrow \mathbb{C} \) be the multiplication-by-\(\Lambda \) dynamics in the complex plane: \(M_\Lambda z = \Lambda z = e^{i \arg(\Lambda)} z \); a rotation by \(\arg(\Lambda) \).

The semi-conjugacy diagram is:

\[
\begin{array}{ccc}
\Omega & \xrightarrow{\Phi} & \Omega \\
\downarrow g & & \downarrow g \\
\mathbb{C} & \xrightarrow{M_\Lambda} & \mathbb{C}
\end{array}
\]
Transfer operator spectrum reveals angular rotation

- In the previous example, g_1 simply maps a geometric unit circle to the unit circle in the complex plane, but this idea generalises...

- I have two nontrivial examples: (i) Ω is the Lorenz attractor and Φ is a time-t map of the Lorenz flow; (ii) Ω is the collection of climate configurations and Φ is a monthly evolution of the climate.

- For dynamics (Ω, Φ), an eigenfunction $g : \Omega \to \mathbb{C}$ of \mathcal{P} with eigenvalue $\Lambda (|\Lambda| = 1)$ will **project (semi-conjugate)** [Halmos–von Neumann] the dynamics (Ω, Φ) with a rigid rotation on the unit circle in \mathbb{C} by an amount $\text{arg}(\Lambda)$; the latter represents a **particular cycle** in the Φ-system.

- For $|\Lambda| = 1$ let $M_\Lambda : \mathbb{C} \to \mathbb{C}$ be the multiplication-by-Λ dynamics in the complex plane: $M_\Lambda z = \Lambda z = e^{i \text{arg}(\Lambda)} z$; a rotation by $\text{arg}(\Lambda)$.

- The semi-conjugacy diagram is:

\[
\begin{array}{ccc}
\Omega & \xrightarrow{\Phi} & \Omega \\
\downarrow g & & \downarrow g \\
\mathbb{C} & \xrightarrow{M_\Lambda} & \mathbb{C}
\end{array}
\]
We use a simple Gaussian collocation approach to estimate \mathcal{P}.

To sketch this, suppose we have a data trajectory $x_i \in \Omega, i = 1, \ldots, N$.

We form Gaussian kernels $k_\epsilon(x_i, y) = \exp(-\|x_i - y\|^2/\epsilon^2)$, centered on each data point x_i, for bandwidth parameter ϵ.

We estimate the transfer operator \mathcal{P} using the $N \times N$ stochastic matrix

$$P_{ij} = \frac{k_\epsilon(x_i, x_{j+1})}{\sum_{j'} k_\epsilon(x_{i'}, x_{j+1})}.$$

Because the matrix P is nonnegative with all columns summing to 1, the eigenvalues of P are constrained to lie in the unit circle in \mathbb{C} and for small ϵ, we expect many eigenvalues very near to the unit circle.

The nontrivial eigenvalues of P of greatest magnitude will automatically identify the rotation angle α.

Related ideas in [Dellnitz/Junge’99] (Λ a root of unity), and [F/González-Tokman/Quas’14, Eisner et al.’15, F/Koltai’17].

G. Froyland, UNSW, Sydney

Extracting cycles and coherent sets from complex data
We use a simple Gaussian collocation approach to estimate \mathcal{P}.

To sketch this, suppose we have a data trajectory $x_i \in \Omega, i = 1, \ldots, N$.

We form Gaussian kernels $k_\epsilon(x_i, y) = \exp(-\|x_i - y\|^2/\epsilon^2)$, centered on each data point x_i, for bandwidth parameter ϵ.

We estimate the transfer operator \mathcal{P} using the $N \times N$ stochastic matrix

$$P_{ij} = \frac{k_\epsilon(x_i, x_{j+1})}{\sum_{ij'} k_\epsilon(x_{ij'}, x_{j+1})}.$$

Because the matrix P is nonnegative with all columns summing to 1, the eigenvalues of P are constrained to lie in the unit circle in \mathbb{C} and for small ϵ, we expect many eigenvalues very near to the unit circle.

The nontrivial eigenvalues of P of greatest magnitude will automatically identify the rotation angle α.

Related ideas in [Dellnitz/Junge'99] (Λ a root of unity), and [F/González-Tokman/Quas'14, Eisner et al.'15, F/Koltai'17].
Numerics in brief

- We use a simple Gaussian collocation approach to estimate \(P \).
- To sketch this, suppose we have a data trajectory \(x_i \in \Omega, i = 1, \ldots, N \).
- We form Gaussian kernels \(k_\epsilon(x_i, y) = \exp(-\|x_i - y\|^2/\epsilon^2) \), centered on each data point \(x_i \), for bandwidth parameter \(\epsilon \).
- We estimate the transfer operator \(P \) using the \(N \times N \) stochastic matrix
 \[
P_{ij} = \frac{k_\epsilon(x_i, x_{j+1})}{\sum_{i'} k_\epsilon(x_{i'}, x_{j+1})}.
 \]
- Because the matrix \(P \) is nonnegative with all columns summing to 1, the eigenvalues of \(P \) are constrained to lie in the unit circle in \(\mathbb{C} \) and for small \(\epsilon \), we expect many eigenvalues very near to the unit circle.
- The nontrivial eigenvalues of \(P \) of greatest magnitude will automatically identify the rotation angle \(\alpha \).
- Related ideas in [Dellnitz/Junge'99] (\(\Lambda \) a root of unity), and [F/González-Tokman/Quas'14, Eisner et al.'15, F/Koltai'17].

G. Froyland, UNSW, Sydney

Extracting cycles and coherent sets from complex data
We use a simple Gaussian collocation approach to estimate \mathcal{P}.

To sketch this, suppose we have a data trajectory $x_i \in \Omega, i = 1, \ldots, N$.

We form Gaussian kernels $k_\epsilon(x_i, y) = \exp(-\|x_i - y\|^2/\epsilon^2)$, centered on each data point x_i, for bandwidth parameter ϵ.

We estimate the transfer operator \mathcal{P} using the $N \times N$ stochastic matrix

$$P_{ij} = \frac{k_\epsilon(x_i, x_{j+1})}{\sum_{i'} k_\epsilon(x_{i'}, x_{j+1})}.$$

Because the matrix P is nonnegative with all columns summing to 1, the eigenvalues of P are constrained to lie in the unit circle in \mathbb{C} and for small ϵ, we expect many eigenvalues very near to the unit circle.

The nontrivial eigenvalues of P of greatest magnitude will automatically identify the rotation angle α.

Related ideas in [Dellnitz/Junge'99] (Λ a root of unity), and [F/González-Tokman/Quas'14, Eisner et al.'15, F/Koltai'17].
We use a simple Gaussian collocation approach to estimate \mathcal{P}.

To sketch this, suppose we have a data trajectory $x_i \in \Omega$, $i = 1, \ldots, N$.

We form Gaussian kernels $k_\epsilon(x_i, y) = \exp(-\|x_i - y\|^2/\epsilon^2)$, centered on each data point x_i, for bandwidth parameter ϵ.

We estimate the transfer operator \mathcal{P} using the $N \times N$ stochastic matrix

$$P_{ij} = \frac{k_\epsilon(x_i, x_{j+1})}{\sum_{i'} k_\epsilon(x_{i'}, x_{j+1})}.$$

Because the matrix P is nonnegative with all columns summing to 1, the eigenvalues of P are constrained to lie in the unit circle in \mathbb{C} and for small ϵ, we expect many eigenvalues very near to the unit circle.

The nontrivial eigenvalues of P of greatest magnitude will automatically identify the rotation angle α.

Related ideas in [Dellnitz/Junge'99] (Λ a root of unity), and [F/González-Tokman/Quas'14, Eisner et al.'15, F/Koltai'17].
We use a simple Gaussian collocation approach to estimate \mathcal{P}.

To sketch this, suppose we have a data trajectory $x_i \in \Omega, i = 1, \ldots, N$.

We form Gaussian kernels $k_\epsilon(x_i, y) = \exp(-\|x_i - y\|^2/\epsilon^2)$, centered on each data point x_i, for bandwidth parameter ϵ.

We estimate the transfer operator \mathcal{P} using the $N \times N$ stochastic matrix

$$P_{ij} = \frac{k_\epsilon(x_i, x_{j+1})}{\sum_{i'} k_\epsilon(x_{i'}, x_{j+1})}.$$

Because the matrix P is nonnegative with all columns summing to 1, the eigenvalues of P are constrained to lie in the unit circle in \mathbb{C} and for small ϵ, we expect many eigenvalues very near to the unit circle.

The nontrivial eigenvalues of P of greatest magnitude will automatically identify the rotation angle α.

Related ideas in [Dellnitz/Junge'99] (Λ a root of unity), and [F/González-Tokman/Quas'14, Eisner et al.'15, F/Koltai'17].
We use a simple Gaussian collocation approach to estimate \mathcal{P}.

To sketch this, suppose we have a data trajectory $x_i \in \Omega, i = 1, \ldots, N$.

We form Gaussian kernels $k_\epsilon(x_i, y) = \exp(-\|x_i - y\|^2/\epsilon^2)$, centered on each data point x_i, for bandwidth parameter ϵ.

We estimate the transfer operator \mathcal{P} using the $N \times N$ stochastic matrix

$$P_{ij} = \frac{k_\epsilon(x_i, x_{j+1})}{\sum_{i'} k_\epsilon(x_{i'}, x_{j+1})}.$$

Because the matrix P is nonnegative with all columns summing to 1, the eigenvalues of P are constrained to lie in the unit circle in \mathbb{C} and for small ϵ, we expect many eigenvalues very near to the unit circle.

The nontrivial eigenvalues of P of **greatest magnitude** will **automatically identify the rotation angle** α.

Related ideas in [Dellnitz/Junge’99] (Λ a root of unity), and [F/González-Tokman/Quas’14, Eisner et al.’15, F/Koltai’17].
Illustration with Lorenz

- We made a transfer operator approximation P from a Lorenz trajectory of length 160, sampled every 0.01 time units and $\epsilon = 0.5$.
- The largest-magnitude nontrivial eigenvalue $\Lambda_1 \approx 0.9961e^{0.013 \cdot (2\pi i)}$, corresponding to a rotation period of $1/0.013 \approx 77$ time steps of 0.01, or 0.77 time units.
- Below (left): The corresponding complex eigenvector (projection onto dominant cycle) g_1 plotted along the data trajectory.
- Below (right): Same as above, but now the argument of the complex eigenvector (projection) g_1 is given by colour, is plotted on the attractor, rather than along the data trajectory.

From [F/Giannakis/Lintner/Pike/Slawinska, Nature Comm.'21]

G. Froyland, UNSW, Sydney Extracting cycles and coherent sets from complex data
Evolving the complex eigenfunction (argument displayed)
For observational data, we use monthly averaged, 2° SST fields from the Extended Reconstructed Sea Surface Temperature Version 4 (ERSSTv4) reanalysis product [Huang et al.'14] from 1970 to 2020.

The number of pixels in the SST image is $d = 4868$, and we use denote by $y_t \in \mathbb{R}^d$ the d-vector of the Indo-Pacific SST values at the t-th month, for $t = 1, \ldots, T$ in months, where $T = 600$ (50 years).

To improve state estimation from the observations y_t, we create a Takens delay vector $x_t = [y_{t-12}, y_t]$ with a single delay of 12 months (approximately one-quarter the cycle period).

Using Gaussian kernels, we estimate P (stepping one month ahead) and compute leading eigenvalues $\Lambda \in \mathbb{C}$ of P, obtaining a cycle length of ~ 47 months.
For observational data, we use monthly averaged, 2° SST fields from the Extended Reconstructed Sea Surface Temperature Version 4 (ERSSTv4) reanalysis product [Huang et al.’14] from 1970 to 2020.

The number of pixels in the SST image is \(d = 4868 \), and we use denote by \(y_t \in \mathbb{R}^d \) the \(d \)-vector of the Indo-Pacific SST values at the \(t \)-th month, for \(t = 1, \ldots, T \) in months, where \(T = 600 \) (50 years).

To improve state estimation from the observations \(y_t \), we create a Takens delay vector \(x_t = [y_{t-12}, y_t] \) with a single delay of 12 months (approximately one-quarter the cycle period).

Using Gaussian kernels, we estimate \(P \) (stepping one month ahead) and compute leading eigenvalues \(\Lambda \in \mathbb{C} \) of \(P \), obtaining a cycle length of \(\sim 47 \) months.
For observational data, we use monthly averaged, 2° SST fields from the Extended Reconstructed Sea Surface Temperature Version 4 (ERSSTv4) reanalysis product [Huang et al.’14] from 1970 to 2020.

The number of pixels in the SST image is $d = 4868$, and we use denote by $y_t \in \mathbb{R}^d$ the d-vector of the Indo-Pacific SST values at the t-th month, for $t = 1, \ldots, T$ in months, where $T = 600$ (50 years).

To improve state estimation from the observations y_t, we create a Takens delay vector $x_t = [y_{t-12}, y_t]$ with a single delay of 12 months (approximately one-quarter the cycle period).

Using Gaussian kernels, we estimate \mathcal{P} (stepping one month ahead) and compute leading eigenvalues $\Lambda \in \mathbb{C}$ of \mathcal{P}, obtaining a cycle length of ~ 47 months.
For observational data, we use monthly averaged, 2° SST fields from the Extended Reconstructed Sea Surface Temperature Version 4 (ERSSTv4) reanalysis product [Huang et al.’14] from 1970 to 2020. The number of pixels in the SST image is $d = 4868$, and we use denote by $y_t \in \mathbb{R}^d$ the d-vector of the Indo-Pacific SST values at the t-th month, for $t = 1, \ldots, T$ in months, where $T = 600$ (50 years).

To improve state estimation from the observations y_t, we create a Takens delay vector $x_t = [y_{t-12}, y_t]$ with a single delay of 12 months (approximately one-quarter the cycle period).

Using Gaussian kernels, we estimate P (stepping one month ahead) and compute leading eigenvalues $\Lambda \in \mathbb{C}$ of P, obtaining a cycle length of ~ 47 months.
The phases in the upper row (lagged Niño 3.4 index) almost randomly evolve.

The phases in the lower row (our eigenfunction-based phases) neatly cycle from one phase to the next.
El Niño—La Niña oscillation as a complex eigenfunction

Extracting cycles and coherent sets from complex data

G. Froyland, UNSW, Sydney
Summary – Part 1

- Developed a *general-purpose methodology to identify persistent cycles in high-dimensional spatio-temporal data* (or low-dimensional, like Lorenz).
- We applied this framework to *extract a canonical ENSO cycle from SST observations*.
- Our ENSO phases *much more cyclic* than those based on the standard Niño 3.4 Index; this suggests that ENSO is *more predictable than previously thought*.
- Because of our “rectification” of the cycle, we obtain *greater resolution in the transition from La Niña to El Niño*, which is difficult characterise and predict.
- Our ENSO phases also capture independent weather/climate measurements such as wind speed/direction, surface air temperature, and precipitation. These independent measurements also match well with what is expected from ENSO events.
- For these reasons, we argue that our phases are a superior, canonical way of characterising the ENSO cycle.
- See [F/Giannakis/Lintner/Pike/Slawinska, Nature Comm.'21].
Developed a general-purpose methodology to identify persistent cycles in high-dimensional spatio-temporal data (or low-dimensional, like Lorenz).

We applied this framework to extract a canonical ENSO cycle from SST observations.

Our ENSO phases much more cyclic than those based on the standard Niño 3.4 Index; this suggests that ENSO is more predictable than previously thought.

Because of our “rectification” of the cycle, we obtain greater resolution in the transition from La Niña to El Niño, which is difficult characterise and predict.

Our ENSO phases also capture independent weather/climate measurements such as wind speed/direction, surface air temperature, and precipitation. These independent measurements also match well with what is expected from ENSO events.

For these reasons, we argue that our phases are a superior, canonical way of characterising the ENSO cycle.

See [F/Giannakis/Lintner/Pike/Slawinska, Nature Comm.'21].
Developed a general-purpose methodology to identify persistent cycles in high-dimensional spatio-temporal data (or low-dimensional, like Lorenz). We applied this framework to extract a canonical ENSO cycle from SST observations. Our ENSO phases much more cyclic than those based on the standard Niño 3.4 Index; this suggests that ENSO is more predictable than previously thought. Because of our “rectification” of the cycle, we obtain greater resolution in the transition from La Niña to El Niño, which is difficult characterise and predict. Our ENSO phases also capture independent weather/climate measurements such as wind speed/direction, surface air temperature, and precipitation. These independent measurements also match well with what is expected from ENSO events. For these reasons, we argue that our phases are a superior, canonical way of characterising the ENSO cycle. See [F/Giannakis/Lintner/Pike/Slawinska, Nature Comm.'21].
Developed a general-purpose methodology to identify persistent cycles in high-dimensional spatio-temporal data (or low-dimensional, like Lorenz).

We applied this framework to extract a canonical ENSO cycle from SST observations.

Our ENSO phases much more cyclic than those based on the standard Niño 3.4 Index; this suggests that ENSO is more predictable than previously thought.

Because of our “rectification” of the cycle, we obtain greater resolution in the transition from La Niña to El Niño, which is difficult characterise and predict.

Our ENSO phases also capture independent weather/climate measurements such as wind speed/direction, surface air temperature, and precipitation. These independent measurements also match well with what is expected from ENSO events.

For these reasons, we argue that our phases are a superior, canonical way of characterising the ENSO cycle.

See [F/Giannakis/Lintner/Pike/Slawinska, Nature Comm.'21].
Developed a *general-purpose methodology to identify persistent cycles in high-dimensional spatio-temporal data* (or low-dimensional, like Lorenz).

We applied this framework to **extract a canonical ENSO cycle from SST observations.**

Our ENSO phases **much more cyclic** than those based on the standard Niño 3.4 Index; this suggests that ENSO is **more predictable than previously thought.**

Because of our “rectification” of the cycle, we obtain **greater resolution in the transition from La Niña to El Niño**, which is difficult characterise and predict.

Our ENSO phases **also capture independent weather/climate measurements** such as wind speed/direction, surface air temperature, and precipitation. These **independent measurements also match well with what is expected from ENSO events.**

For these reasons, we argue that our phases are a **superior, canonical way of characterising the ENSO cycle.**

See [F/Giannakis/Lintner/Pike/Slawinska, *Nature Comm.*'21].
Developed a general-purpose methodology to identify persistent cycles in high-dimensional spatio-temporal data (or low-dimensional, like Lorenz).

We applied this framework to extract a canonical ENSO cycle from SST observations.

Our ENSO phases much more cyclic than those based on the standard Niño 3.4 Index; this suggests that ENSO is more predictable than previously thought.

Because of our “rectification” of the cycle, we obtain greater resolution in the transition from La Niña to El Niño, which is difficult characterise and predict.

Our ENSO phases also capture independent weather/climate measurements such as wind speed/direction, surface air temperature, and precipitation. These independent measurements also match well with what is expected from ENSO events.

For these reasons, we argue that our phases are a superior, canonical way of characterising the ENSO cycle.

See [F/Giannakis/Lintner/Pike/Slawinska, Nature Comm.'21].
Developed a general-purpose methodology to identify persistent cycles in high-dimensional spatio-temporal data (or low-dimensional, like Lorenz).

We applied this framework to extract a canonical ENSO cycle from SST observations.

Our ENSO phases much more cyclic than those based on the standard Niño 3.4 Index; this suggests that ENSO is more predictable than previously thought.

Because of our “rectification” of the cycle, we obtain greater resolution in the transition from La Niña to El Niño, which is difficult characterise and predict.

Our ENSO phases also capture independent weather/climate measurements such as wind speed/direction, surface air temperature, and precipitation. These independent measurements also match well with what is expected from ENSO events.

For these reasons, we argue that our phases are a superior, canonical way of characterising the ENSO cycle.

See [F/Giannakis/Lintner/Pike/Slawinska, Nature Comm.’21].
PART II

THE BIRTH AND DEATH OF FINITE-TIME COHERENT SETS
Finite-time coherent sets have been successful at describing the **predictable backbone** of nonautonomous dynamical systems. If coherent sets **last throughout** a flow duration from time 0 to time τ, then all standard transfer operator [F’13] and dynamic Laplacian [F15,F/Junge’18] approaches to computing coherent sets will output a family of sets $\{A_t\}_{t=0}^\tau \subset M$ representing the location of a particular coherent set at time t.

Later in the talk we will discuss the situation where there are coherent sets that exist for only **part of** the duration $[0, \tau]$.

G. Froyland, UNSW, Sydney
Extracting cycles and coherent sets from complex data
Let \(v : [0, \tau] \times \mathbb{R}^d \rightarrow \mathbb{R}^d \) denote a time-dependent velocity field, over a finite time duration \([0, \tau]\).

For simplicity we assume that \(v(t, \cdot) \) is divergence free for all \(t \in [0, \tau] \).

Denote by \(M \subset \mathbb{R}^d \) a full-dimensional, connected, compact submanifold of \(\mathbb{R}^d \), representing the phase space at time \(t = 0 \).

Let \(\phi_t : M \rightarrow \phi_t(M) \) be the flow map generated by \(v \) from time \(0 \) to time \(t \), \(t \in [0, \tau] \).
How to find these coherent sets?

- In classical isoperimetric theory [Chavel’84] it is known that **leading eigenfunctions** of the Laplace-Beltrami operator **encode geometric information** about a manifold and tend to “localise” (e.g. [Grebenkov/Nguyen’13]) on “poorly connected” regions, or regions from which heat slowly escapes under heat flow on the manifold.

- This idea and static isoperimetric theory can be extended to the situation of a manifold **evolving under general nonlinear dynamics**, using a **dynamic** Laplace operator [F’15,F/Kwok’20].

- The eigenfunctions of the dynamic Laplace operator will identify sets that have **small evolving boundary** relative to enclosed volume.
The dynamic Laplacian \(\Delta^D \) on \(L^2(M) \) has the form [F’15]:

\[
\Delta^D = \frac{1}{\tau} \int_0^\tau \phi_t \circ \Delta_{\phi_t(M)} \circ \phi_t^{-1} \, dt = \frac{1}{\tau} \int_0^\tau \Delta_{\phi_t^*e} \, dt = \frac{1}{\tau} \int_0^\tau \Delta g_t \, dt,
\]

where \(g_t := \phi_t^*e \) denotes the pullback of the Euclidean metric \(e \) from the manifold \(\phi_t(M) \) to the manifold \(M \).

The local coordinate representation of \(g_t(x) \) is the \(d \times d \) matrix \(D\phi_t(x)^\top D\phi_t(x) \).

Thus \(\Delta^D \) is an average of Laplace–Beltrami operators for the Riemannian manifolds \((M, g_t), t \in [0, \tau] \).

The dominant coherent sets are encoded in the leading eigenfunctions of \(\Delta^D \).
The dynamic Laplacian Δ^D on $L^2(M)$ has the form [F’15]:

$$\Delta^D = \frac{1}{\tau} \int_0^\tau \phi_t \circ \Delta_{\phi_t(M)} \circ \phi_{-t} \, dt = \frac{1}{\tau} \int_0^\tau \Delta_{\phi_t^* e} \, dt = \frac{1}{\tau} \int_0^\tau \Delta_{g_t} \, dt,$$

where $g_t := \phi_t^* e$ denotes the pullback of the Euclidean metric e from the manifold $\phi_t(M)$ to the manifold M.

The local coordinate representation of $g_t(x)$ is the $d \times d$ matrix $D\phi_t(x)^T D\phi_t(x)$.

Thus Δ^D is an average of Laplace–Beltrami operators for the Riemannian manifolds (M, g_t), $t \in [0, \tau]$.

The dominant coherent sets are encoded in the leading eigenfunctions of Δ^D.

G. Froyland, UNSW, Sydney
The dynamic Laplacian \(\Delta^D \) on \(L^2(M) \) has the form [F’15]:

\[
\Delta^D = \frac{1}{\tau} \int_{0}^{\tau} \phi_t \circ \Delta_{\phi_t(M)} \circ \phi_{-t} \, dt = \frac{1}{\tau} \int_{0}^{\tau} \Delta_{\phi_t^*e} \, dt = \frac{1}{\tau} \int_{0}^{\tau} \Delta_{g_t} \, dt,
\]

where \(g_t := \phi_t^*e \) denotes the pullback of the Euclidean metric \(e \) from the manifold \(\phi_t(M) \) to the manifold \(M \).

The local coordinate representation of \(g_t(x) \) is the \(d \times d \) matrix \(D\phi_t(x)^\top D\phi_t(x) \).

Thus \(\Delta^D \) is an **average of Laplace–Beltrami operators** for the Riemannian manifolds \((M, g_t), t \in [0, \tau] \).

The dominant coherent sets are encoded in the leading eigenfunctions of \(\Delta^D \).
The dynamic Laplacian Δ^D on $L^2(M)$ has the form [F’15]:

$$\Delta^D = \frac{1}{\tau} \int_0^\tau \phi_t \circ \Delta\phi_t(M) \circ \phi_{-t} \, dt = \frac{1}{\tau} \int_0^\tau \Delta\phi_t^* e \, dt = \frac{1}{\tau} \int_0^\tau \Delta g_t \, dt,$$

where $g_t := \phi_t^* e$ denotes the pullback of the Euclidean metric e from the manifold $\phi_t(M)$ to the manifold M.

The local coordinate representation of $g_t(x)$ is the $d \times d$ matrix $D\phi_t(x)^\top D\phi_t(x)$.

Thus Δ^D is an **average of Laplace–Beltrami operators** for the Riemannian manifolds (M, g_t), $t \in [0, \tau]$.

The dominant coherent sets are encoded in the leading eigenfunctions of Δ^D.
Domain aspect ratio is 16:16:1.
Nominal temperature range $0 \leq T \leq 1$, with the domain floor held at $T = 1$ (hot) and the domain ceiling held at $T = 0$ (cold).

We seek to identify the turbulent superstructures as finite-time coherent sets and to this end compute trajectories of 40000 tracers.

We use a time duration of $\tau := 10.5 t_f$, where t_f is the free-fall time; thus particles undergo approximately 5 vertical loops.
A large spectral gap between the 17th and 18th eigenvalues suggests using 17 eigenfunctions. [Klüner/Schneider/F/Schumacher/Padberg-Gehle’20].

Remaining issue: the 17 coherent sets are “mixed” in the 17-dimensional eigenspace.
Let \(u_1, \ldots, u_r \in \mathbb{R}^p \) be some leading eigen-(or singular) vectors of a Markov (or Laplace) operator/matrix (usually \(r \ll p \)).

Main idea: Rotate the \(r \)-dimensional subspace \(\text{sp}\{u_1, \ldots, u_r\} \subset \mathbb{R}^p \) to create a sparse basis \(\text{sp}\{s_1, \ldots, s_r\} \subset \mathbb{R}^p \). Each vector in this sparse basis represents a single feature.

Create a tall, thin \(p \times r \) data matrix \(U = [u_1 | u_2 | \cdots | u_r] \).

Solve an optimisation problem for the sparse data array \(S = [s_1 | \cdots | s_r] \):

\[
\arg \min_{S} \left(\| U - SR \|_F^2 + \mu \| S \|_{1,1} \right),
\]

where \(\| \cdot \|_F \) is the Frobenius norm and \(\| \cdot \|_{1,1} \) is the matrix \(\ell_{1,1} \) norm.

- An exact local optimum can be found by alternately applying soft thresholding and compact SVD (very fast as \(r \ll p \)).
- The resulting algorithm is a **Sparse EigenBasis Approximation (SEBA)** of the original data subspace. [F/Rock/Sakellariou’19].
- Improves and specialises [Journ´ee et al.’10, Hu et al.’16].
Let \(u_1, \ldots, u_r \in \mathbb{R}^p \) be some leading eigen-(or singular) vectors of a Markov (or Laplace) operator/matrix (usually \(r \ll p \)).

Main idea: Rotate the \(r \)-dimensional subspace \(\text{sp}\{u_1, \ldots, u_r\} \subset \mathbb{R}^p \) to create a sparse basis \(\text{sp}\{s_1, \ldots, s_r\} \subset \mathbb{R}^p \). Each vector in this sparse basis represents a single feature.

Create a tall, thin \(p \times r \) data matrix \(U = [u_1|u_2|\cdots|u_r] \).
Solve an optimisation problem for the sparse data array \(S = [s_1|\cdots|s_r] \):

\[
\arg\min_S \left(\|U - SR\|_F^2 + \mu \|S\|_{1,1} \right),
\]

where \(\| \cdot \|_F \) is the Frobenius norm and \(\| \cdot \|_{1,1} \) is the matrix \(\ell_{1,1} \) norm.

- An exact local optimum can be found by alternately applying soft thresholding and compact SVD (very fast as \(r \ll p \)).
- The resulting algorithm is a **Sparse EigenBasis Approximation (SEBA)** of the original data subspace. [F/Rock/Sakellariou’19].
- Improves and specialises [Journée et al.’10, Hu et al.’16].
SEBA: Multiple feature extraction from data

Let $u_1, \ldots, u_r \in \mathbb{R}^p$ be some leading eigen-(or singular) vectors of a Markov (or Laplace) operator/matrix (usually $r \ll p$).

Main idea: Rotate the r-dimensional subspace $\text{sp}\{u_1, \ldots, u_r\} \subset \mathbb{R}^p$ to create a sparse basis $\text{sp}\{s_1, \ldots, s_r\} \subset \mathbb{R}^p$. Each vector in this sparse basis represents a single feature.

Create a tall, thin $p \times r$ data matrix $U = [u_1 | u_2 | \cdots | u_r]$.

Solve an optimisation problem for the sparse data array $S = [s_1 | \cdots | s_r]$:

$$\arg\min_S \left(\|U - SR\|_F^2 + \mu \|S\|_{1,1} \right),$$

where $\| \cdot \|_F$ is the Frobenius norm and $\| \cdot \|_{1,1}$ is the matrix $\ell_{1,1}$ norm.

- An exact local optimum can be found by alternately applying soft thresholding and compact SVD (very fast as $r \ll p$).
- The resulting algorithm is a **Sparse EigenBasis Approximation (SEBA)** of the original data subspace. [F/Rock/Sakellariou’19].
- Improves and specialises [Journéee et al.’10, Hu et al.’16].
We apply Sparse EigenBasis Approximation (SEBA) to find a sparse 17-dimensional basis for the 17-dimensional eigenspace. Each SEBA vector contains exactly one feature – one coherent set. General SEBA code in Julia and Matlab is on my webpage, also github.com/gfroyland/SEBA.
Plot of maximum value of the 17 SEBA vectors, interpretable as membership likelihood for each coherent set.
Nothing lasts forever

- It is the nature of coherent sets to form, exist for some time, and then eventually decay and die.

- For example, ocean eddies have lifetimes ranging from less than a month to over three years, with shorter lifetimes more frequent; superstructures in turbulent fluid eventually break down and reform.

- Apart from expensive trial and error on many different time windows, how can one determine the timing of the birth and death of multiple coherent sets?

- Attempts so far: brute force search of position and duration of window [Andrade-Canto/Karrasch/Beron-Vera’20, El Aouni’21]; fixed-length windows at different positions [Schneider/Viewig/Schumacher/Padberg-Gehle’22].

- Our approach is to use a single wide time window \([0, \tau]\), within which we expect coherent sets to be born, live, and die.
Nothing lasts forever

It is the nature of coherent sets to form, exist for some time, and then eventually decay and die.

For example, ocean eddies have lifetimes ranging from less than a month to over three years, with shorter lifetimes more frequent; superstructures in turbulent fluid eventually break down and reform.

Apart from expensive trial and error on many different time windows, how can one determine the timing of the birth and death of multiple coherent sets?

Attempts so far: brute force search of position and duration of window [Andrade-Canto/Karrasch/Beron-Vera’20, El Aouni’21]; fixed-length windows at different positions [Schneider/Viewig/Schumacher/Padberg-Gehle’22].

Our approach is to use a single wide time window $[0, \tau]$, within which we expect coherent sets to be born, live, and die.
It is the nature of coherent sets to form, exist for some time, and then eventually decay and die.

For example, ocean eddies have lifetimes ranging from less than a month to over three years, with shorter lifetimes more frequent; superstructures in turbulent fluid eventually break down and reform.

Apart from expensive trial and error on many different time windows, how can one determine the timing of the birth and death of multiple coherent sets?

Attempts so far: brute force search of position and duration of window [Andrade-Canto/Karrasch/Beron-Vera’20, El Aouni’21]; fixed-length windows at different positions [Schneider/Viewig/Schumacher/Padberg-Gehle’22].

Our approach is to use a single wide time window \([0, \tau]\), within which we expect coherent sets to be born, live, and die.
Nothing lasts forever

- *It is the nature of coherent sets to form, exist for some time, and then eventually decay and die.*

- For example, ocean eddies have lifetimes ranging from less than a month to over three years, with shorter lifetimes more frequent; superstructures in turbulent fluid eventually break down and reform.

- Apart from expensive trial and error on many different time windows, *how can one determine the timing of the birth and death of multiple coherent sets?*

- Attempts so far: brute force search of position and duration of window [Andrade-Canto/Karrasch/Beron-Vera’20, El Aouni’21]; fixed-length windows at different positions [Schneider/Viewig/Schumacher/Padberg-Gehle’22].

- Our approach is to use a single wide time window \([0, \tau]\), within which we expect coherent sets to be born, live, and die.
Nothing lasts forever

- *It is the nature of coherent sets to form, exist for some time, and then eventually decay and die.*

- For example, ocean eddies have lifetimes ranging from less than a month to over three years, with shorter lifetimes more frequent; superstructures in turbulent fluid eventually break down and reform.

- Apart from expensive trial and error on many different time windows, **how can one determine the timing of the birth and death of multiple coherent sets?**

- Attempts so far: brute force search of position and duration of window [Andrade-Canto/Karrasch/Beron-Vera’20, El Aouni’21]; fixed-length windows at different positions [Schneider/Viewig/Schumacher/Padberg-Gehle’22].

- Our approach is to use a **single wide time window** $[0, \tau]$, within which we expect coherent sets to be born, live, and die.
To begin the process of relaxing materiality, we **time-expand the phase space**, giving each Riemannian manifold \((M, g_t)\) its own \(t\)-fibre. Topologically, this time-expanded domain is simply

\[
\mathcal{M}_0 := \bigcup_{t \in [0, \tau]} \{t\} \times M = [0, \tau] \times M.
\]

In \(\mathcal{M}_0\), a curve corresponding to the trajectory initialised at \(x_0\):

\[
\{\phi_t(x_0) : 0 \leq t \leq \tau\} \subset M
\]

is simply the “horizontal” line

\[
\{(t, x_0) : 0 \leq t \leq \tau\} \subset \mathcal{M}_0.
\]

We define the “co-evolved” spacetime manifold by

\[
\mathcal{M}_1 := \bigcup_{t \in [0, \tau]} \{t\} \times \phi_t(M);
\]

in \(\mathcal{M}_1\) the trajectory of \(x_0\) is

\[
\{(t, \phi_t(x_0)) : 0 \leq t \leq \tau\} \subset \mathcal{M}_1.
\]

The canonical mapping from \(\mathcal{M}_0\) to the trajectory manifold \(\mathcal{M}_1\), associating initial conditions with trajectories, is

\[
\Phi : \mathcal{M}_0 \to \mathcal{M}_1, \quad (t, x) \mapsto (t, \phi_t(x)).
\]
To begin the process of relaxing materiality, we \textit{time-expand the phase space}, giving each Riemannian manifold \((M, g_t)\) its own \(t\)-fibre.

Topologically, this time-expanded domain is simply

\[
\mathcal{M}_0 := \bigcup_{t \in [0, \tau]} \{t\} \times M = [0, \tau] \times M.
\]

In \(\mathcal{M}_0\), a curve corresponding to the trajectory initialised at \(x_0\):
\[
\{\phi_t(x_0) : 0 \leq t \leq \tau\} \subset M
\]
is simply the “horizontal” line
\[
\{(t, x_0) : 0 \leq t \leq \tau\} \subset \mathcal{M}_0.
\]

We define the “co-evolved” spacetime manifold by

\[
\mathcal{M}_1 := \bigcup_{t \in [0, \tau]} \{t\} \times \phi_t(M);
\]

in \(\mathcal{M}_1\) the trajectory of \(x_0\) is
\[
\{(t, \phi_t(x_0)) : 0 \leq t \leq \tau\} \subset \mathcal{M}_1.
\]

The canonical mapping from \(\mathcal{M}_0\) to the trajectory manifold \(\mathcal{M}_1\), associating initial conditions with trajectories, is

\[
\Phi : \mathcal{M}_0 \rightarrow \mathcal{M}_1, \quad (t, x) \mapsto (t, \phi_t(x)).
\]
To begin the process of relaxing materiality, we \textit{time-expand the phase space}, giving each Riemannian manifold \((M, g_t)\) its own \(t\)-fibre.

Topologically, this time-expanded domain is simply

\[
\mathcal{M}_0 := \bigcup_{t \in [0, \tau]} \{t\} \times M = [0, \tau] \times M.
\]

In \(\mathcal{M}_0\), a curve corresponding to the trajectory initialised at \(x_0\):
\[
\{\phi_t(x_0) : 0 \leq t \leq \tau\} \subset M
\]
is simply the "horizontal" line
\[
\{(t, x_0) : 0 \leq t \leq \tau\} \subset \mathcal{M}_0.
\]

We define the "co-evolved" spacetime manifold by

\[
\mathcal{M}_1 := \bigcup_{t \in [0, \tau]} \{t\} \times \phi_t(M);
\]

in \(\mathcal{M}_1\) the trajectory of \(x_0\) is
\[
\{(t, \phi_t(x_0)) : 0 \leq t \leq \tau\} \subset \mathcal{M}_1.
\]

The canonical mapping from \(\mathcal{M}_0\) to the trajectory manifold \(\mathcal{M}_1\), associating initial conditions with trajectories, is

\[
\Phi : \mathcal{M}_0 \rightarrow \mathcal{M}_1, \quad (t, x) \mapsto (t, \phi_t(x)).
\]
The time-expanded constructions on \mathbb{M}_0 and \mathbb{M}_1

Coherence throughout $[0, \tau]$

Coherence on $[\tau_1, \tau_2] \subset [0, \tau]$

G. Froyland, UNSW, Sydney

Extracting cycles and coherent sets from complex data
Recall that Δ^D is an operator on M.

We now time expand M and create an operator on $\mathbb{M}_0 := [0, \tau] \times M$.

The obvious thing to do is to apply Δ_{g_t} to the t^{th} copy of M, i.e. to \{t\} \times M \subset \mathbb{M}_0$, for each $t = [0, \tau]$.

Finally, we apply diffusion in the temporal direction to **dynamically connect the distinct t-fibres**; this diffusion will control how much we relax materiality.

In summary, we define a Laplace–Beltrami operator $\Delta_{G_a} : L^2(\mathbb{M}_0, G_a) \rightarrow L^2(\mathbb{M}_0, G_a)$, where the metric G_a is Euclidean in the time direction and g_t on the t-fibre:

$$\Delta_{G_a} F(t, \cdot) = a^2 \partial_{tt} F(t, \cdot) + \Delta_{g_t} F(t, \cdot).$$

which we call the **inflated dynamic Laplace operator**.
Recall that Δ^D is an operator on M.

We now time expand M and create an operator on $\mathbb{M}_0 := [0, \tau] \times M$.

The obvious thing to do is to apply Δ_{g_t} to the t-th copy of M, i.e. to $\{t\} \times M \subset \mathbb{M}_0$, for each $t = [0, \tau]$.

Finally, we apply diffusion in the temporal direction to dynamically connect the distinct t-fibres; this diffusion will control how much we relax materiality.

In summary, we define a Laplace–Beltrami operator $\Delta_{G_a} : L^2(\mathbb{M}_0, G_a) \to L^2(\mathbb{M}_0, G_a)$, where the metric G_a is Euclidean in the time direction and g_t on the t-fibre:

$$\Delta_{G_a} F(t, \cdot) = a^2 \partial_{tt} F(t, \cdot) + \Delta_{g_t} F(t, \cdot).$$

which we call the inflated dynamic Laplace operator.
Recall that Δ^D is an operator on M.

We now time expand M and create an operator on $\mathbb{M}_0 := [0, \tau] \times M$.

The obvious thing to do is to apply Δ_{g_t} to the t^{th} copy of M, i.e. to $\{t\} \times M \subset \mathbb{M}_0$, for each $t = [0, \tau]$.

Finally, we apply diffusion in the temporal direction to dynamically connect the distinct t-fibres; this diffusion will control how much we relax materiality.

In summary, we define a Laplace–Beltrami operator $\Delta_{G_a} : L^2(\mathbb{M}_0, G_a) \to L^2(\mathbb{M}_0, G_a)$, where the metric G_a is Euclidean in the time direction and g_t on the t-fibre:

$$\Delta_{G_a} F(t, \cdot) = a^2 \partial_{tt} F(t, \cdot) + \Delta_{g_t} F(t, \cdot).$$

which we call the inflated dynamic Laplace operator.
The spectrum of the inflated dynamic Laplacian

Let the spectrum of the dynamic Laplacian Δ^D be $0 \geq \lambda_1^D > \lambda_2^D > \cdots$ and the spectrum of the inflated dynamic Laplacian Δ_{G_a} be $0 \geq \Lambda_{1,a} > \Lambda_{2,a} > \cdots$. Let’s compare:

Theorem [F/Koltai, *Comm. Pure Appl. Math.*’22]

1. For each $k \geq 1$ and $a > 0$ one has $\lambda_k^D \leq \Lambda_{k,a}$.
 (For any $a > 0$ the dynamic Laplacian eigenfunctions always experience more mixing than the eigenfunctions of the inflated dynamic Laplacian).

2. For each $k \geq 1$, $\Lambda_{k,a}$ are nonincreasing in $a \geq 0$.
 (Increasing the parameter a leads to more mixing...because greater temporal connectivity inhibits spatial adaptation of an eigenfunction).

3. For each $k \geq 1$, $\lim_{a \to \infty} \Lambda_{k,a} = \lambda_k^D$.
 (Convergence of inflated dynamic Laplacian eigenvalues to the eigenvalues of the dynamic Laplacian as $a \to \infty$). Thus, a is a tuning parameter interpolating between completely non-material ($a = 0$) and fully material ($a = \infty$) coherent sets.
The spectrum of the inflated dynamic Laplacian

Let the spectrum of the dynamic Laplacian Δ^D be $0 \geq \lambda_1^D > \lambda_2^D > \cdots$ and the spectrum of the inflated dynamic Laplacian Δ_{G_a} be $0 \geq \Lambda_1,a > \Lambda_2,a > \cdots$. Let's compare:

Theorem [F/Koltai, *Comm. Pure Appl. Math.*’22]

1. For each $k \geq 1$ and $a > 0$ one has $\lambda_k^D \leq \Lambda_k,a$.
 (For any $a > 0$ the dynamic Laplacian eigenfunctions always experience more mixing than the eigenfunctions of the inflated dynamic Laplacian).

2. For each $k \geq 1$, Λ_k,a are nonincreasing in $a \geq 0$.
 (Increasing the parameter a leads to more mixing...because greater temporal connectivity inhibits spatial adaptation of an eigenfunction).

3. For each $k \geq 1$, $\lim_{a \to \infty} \Lambda_k,a = \lambda_k^D$.
 (Convergence of inflated dynamic Laplacian eigenvalues to the eigenvalues of the dynamic Laplacian as $a \to \infty$). Thus, a is a tuning parameter interpolating between completely non-material ($a = 0$) and fully material ($a = \infty$) coherent sets.
Let the spectrum of the dynamic Laplacian Δ^D be $0 \geq \lambda_1^D > \lambda_2^D > \cdots$ and the spectrum of the inflated dynamic Laplacian Δ_{G_a} be $0 \geq \Lambda_1,a > \Lambda_2,a > \cdots$. Let’s compare:

Theorem [F/Koltai, Comm. Pure Appl. Math.’22]

1. For each $k \geq 1$ and $a > 0$ one has $\lambda_k^D \leq \Lambda_k,a$.
 (For any $a > 0$ the dynamic Laplacian eigenfunctions always experience more mixing than the eigenfunctions of the inflated dynamic Laplacian).

2. For each $k \geq 1$, Λ_k,a are nonincreasing in $a \geq 0$.
 (Increasing the parameter a leads to more mixing...because greater temporal connectivity inhibits spatial adaptation of an eigenfunction).

3. For each $k \geq 1$, $\lim_{a \to \infty} \Lambda_k,a = \lambda_k^D$.
 (Convergence of inflated dynamic Laplacian eigenvalues to the eigenvalues of the dynamic Laplacian as $a \to \infty$). Thus, a is a tuning parameter interpolating between completely non-material ($a = 0$) and fully material ($a = \infty$) coherent sets.
Let the spectrum of the dynamic Laplacian Δ^D be $0 \geq \lambda_1^D > \lambda_2^D > \cdots$ and the spectrum of the inflated dynamic Laplacian Δ_{G_a} be $0 \geq \Lambda_{1,a} > \Lambda_{2,a} > \cdots$. Let’s compare:

Theorem [F/Koltai, *Comm. Pure Appl. Math.*’22]

1. For each $k \geq 1$ and $a > 0$ one has $\lambda_k^D \leq \Lambda_{k,a}$.
 (For any $a > 0$ the dynamic Laplacian eigenfunctions always experience more mixing than the eigenfunctions of the inflated dynamic Laplacian).

2. For each $k \geq 1$, $\Lambda_{k,a}$ are nonincreasing in $a \geq 0$.
 (Increasing the parameter a leads to more mixing... because greater temporal connectivity inhibits spatial adaptation of an eigenfunction).

3. For each $k \geq 1$, $\lim_{a \to \infty} \Lambda_{k,a} = \lambda_k^D$.
 (Convergence of inflated dynamic Laplacian eigenvalues to the eigenvalues of the dynamic Laplacian as $a \to \infty$). Thus, a is a tuning parameter interpolating between completely non-material ($a = 0$) and fully material ($a = \infty$) coherent sets.
In the flow data below, given by 400 trajectories, sampled at 100 time instants, coherence is present for 60% of the flow time.

From the eigenfunctions of the inflated dynamic Laplacian, we will automatically find when these coherent sets exist and where they are in phase space.
An example

- In the flow data below, given by 400 trajectories, sampled at 100 time instants, coherence is present for 60% of the flow time.
- From the eigenfunctions of the inflated dynamic Laplacian, we will automatically find when these coherent sets exist and where they are in phase space.
Slices of eigenvectors on M_0

(a) First 4 spatial eigenfunctions, shown on timeslices of maximal norm.

(b) Next 4 spatial eigenfunctions, shown on timeslices of maximal norm.

(c) Left: Eigenvector timeslice norms.
We use SEBA to automatically find a sparse basis for the leading 8 spatial eigenfunctions.

The **8 separately supported vectors** (each vector is supported on one coherent set in space-time) are superimposed in this figure.

Note that SEBA knows nothing about “space” and “time” coordinates in our dynamical system.
Left: composite SEBA function timeslices through time
Right: trajectories coloured by SEBA through time.
The eigenfunctions of the dynamic Laplacian are an effective way to extract finite-time coherent sets from sparse trajectory data.

An efficient FEM-based approach [F/Junge’18] handles sparse trajectory data very robustly (code at github.com/gaioguy/FEMDL).

When many coherent sets are present, the SEBA algorithm [F/Rock/Sakellariou’19] disentangles the eigenfunctions arising from the dynamic Laplacian.

SEBA is a general-purpose post-processing step for the output of any type of spectral clustering.

When coherent sets are emerging and vanishing, the eigenfunctions of the inflated dynamic Laplacian [F/Koltai’22] (to appear in Comm.Pure.Appl.Math), clearly detect the birth and death phenomena as well as spatial evolution during the coherent set lifetimes.

Currently extending and specialising these algorithms for application to (i) geophysical flows, (ii) general high-dimensional datasets, and (iii) time-varying networks.
Plotting the complex eigenvector

- **Upper:** a lagged Niño 3.4 index (lagged by 1 year = 1/4 period). Note that by definition **strong El Niño is the far right** and **strong La Niña is the far left.**

- **Lower:** plot of eigenfunction $g(\tilde{y}_t)$.

- Those parts of the domain corresponding to large magnitude values of the eigenfunctions correspond to a strong (slowly decaying) ENSO cycle.

- The transition from El Niño to La Niña is faster than from La Niña to El Niño [An/Kim’18].

- Our eigenfunction “rectifies” the ENSO cycle so that in the lower figure, one proceeds at constant speed and La Niña will appear “earlier” in the northwest of the plot.
Plotting the complex eigenvector

- **Upper:** a lagged Niño 3.4 index (lagged by 1 year = 1/4 period). Note that by definition strong El Niño is the far right and strong La Niña is the far left.

- **Lower:** plot of eigenfunction $g(\hat{y}_t)$.

Those parts of the domain corresponding to large magnitude values of the eigenfunctions correspond to a strong (slowly decaying) ENSO cycle.

- The transition from El Niño to La Niña is faster than from La Niña to El Niño [An/Kim’18].

- Our eigenfunction “rectifies” the ENSO cycle so that in the lower figure, one proceeds at constant speed and La Niña will appear “earlier” in the northwest of the plot.
Plotting the complex eigenvector

- **Upper:** a lagged Niño 3.4 index (lagged by 1 year = 1/4 period). Note that by definition strong El Niño is the far right and strong La Niña is the far left. **Lower:** plot of eigenfunction $g(\tilde{y}_t)$.

Those parts of the domain corresponding to large magnitude values of the eigenfunctions correspond to a strong (slowly decaying) ENSO cycle.

The transition from El Niño to La Niña is faster than from La Niña to El Niño [An/Kim’18].

Our eigenfunction “rectifies” the ENSO cycle so that in the lower figure, one proceeds at constant speed and La Niña will appear “earlier” in the northwest of the plot.
Plotting the complex eigenvector

- **Upper:** a lagged Niño 3.4 index (lagged by 1 year = 1/4 period). Note that by definition strong El Niño is the far right and strong La Niña is the far left. **Lower:** plot of eigenfunction $g(\tilde{y}_t)$.

Those parts of the domain corresponding to large magnitude values of the eigenfunctions correspond to a strong (slowly decaying) ENSO cycle.

The transition from **El Niño to La Niña is faster** than from La Niña to El Niño [An/Kim’18].

Our eigenfunction “rectifies” the ENSO cycle so that in the lower figure, one proceeds at constant speed and La Niña will appear “earlier” in the northwest of the plot.
Phases as SST fields

By computing the average SST anomaly in each of our 8 phases, we obtain 8 SST anomaly fields equally spaced around our canonical ENSO cycle.
Polar vortex breakup

Evolution of the polar vortex

G. Froyland, UNSW, Sydney

Extracting cycles and coherent sets from complex data
The time-expanded constructions on \mathcal{M}_0 and \mathcal{M}_1

Coherence throughout $[0, \tau]$:

- Trivial time-extension (\mathcal{M}_0):
 - $\{0\} \times A
 \{t\} \times A$

Coherence on $[\tau_1, \tau_2] \subset [0, \tau]$:

- Time-extension with advection (\mathcal{M}_1):
 - $\{0\} \times A
 \{t\} \times \phi_t(A)$

G. Froyland, UNSW, Sydney

Extracting cycles and coherent sets from complex data
We consider the Childress-Soward flow, a two-dimensional velocity field \[\text{Childress/Soward'89}\] \(v : \mathbb{T}^2 \rightarrow \mathbb{R}^2\), parameterised by \(A > 0\) and \(-1 \leq r \leq 1\):

\[
v = A \cdot \left(\frac{\partial \psi_r}{\partial y}, -\frac{\partial \psi_r}{\partial x} \right),
\]

with streamfunction \(\psi_r(x, y) = \sin x \sin y + r \cos x \cos y\). For \(r \approx 0\) the flow has **four vortices**, for \(|r| \approx 1\) the flow is a **diagonal shear**; otherwise it possesses an intermediate “cat’s-eye” structure.
In low dimensions we estimate Δ^D by meshing the location of trajectories at each time instant t in a discrete subset of $[0, \tau]$ and applying a bespoke finite-element approach [F/Junge’18].

The eigenproblem $\Delta^D f = \frac{1}{\tau} \int_0^\tau \Delta g_t \, dt = \lambda f$ becomes a discrete generalised eigenproblem $\frac{1}{T} \sum_{t=1}^T D_t = \lambda \frac{1}{T} \sum_{t=1}^T M_t$.

(The entries of D_t and M_t can be associated with edge weights and vertex weights of the graph defined by the mesh).

Code for the meshing and construction of the D_t and M_t is available at github.com/gaioguy/femdl.

To estimate the inflated dynamic Laplacian on time-expanded space, we take the matrices D_t and M_t, $t = 1, \ldots, T$ and “linearly interpolate” across the time dimension [F/Koltai’22].

Alternatively (and relevant for high-dimensional data) one can use a specialised diffusion-maps approach to compute eigenfunctions of the inflated dynamic Laplacian [Atnip/F/Koltai, in prep.].
Computation

- In low dimensions we estimate Δ^D by meshing the location of trajectories at each time instant t in a discrete subset of $[0, \tau]$ and applying a bespoke finite-element approach [F/Junge’18].

- The eigenproblem $\Delta^D f = \frac{1}{\tau} \int_0^\tau \Delta g_t \, dt = \lambda f$ becomes a discrete generalised eigenproblem $\frac{1}{T} \sum_{t=1}^T D_t = \lambda \frac{1}{T} \sum_{t=1}^T M_t$.

- (The entries of D_t and M_t can be associated with edge weights and vertex weights of the graph defined by the mesh).

- Code for the meshing and construction of the D_t and M_t is available at github.com/gaioguy/femdl.

- To estimate the inflated dynamic Laplacian on time-expanded space, we take the matrices D_t and M_t, $t = 1, \ldots, T$ and “linearly interpolate” across the time dimension [F/Koltai’22].

- Alternatively (and relevant for high-dimensional data) one can use a specialised diffusion-maps approach to compute eigenfunctions of the inflated dynamic Laplacian [Atnip/F/Koltai, in prep.].

G. Froyland, UNSW, Sydney
In low dimensions we estimate Δ^D by meshing the location of trajectories at each time instant t in a discrete subset of $[0, \tau]$ and applying a bespoke finite-element approach [F/Junge’18].

The eigenproblem $\Delta^D f = \frac{1}{\tau} \int_0^\tau \Delta g_t \, dt = \lambda f$ becomes a discrete generalised eigenproblem $\frac{1}{T} \sum_{t=1}^T D_t = \lambda \frac{1}{T} \sum_{t=1}^T M_t$.

(The entries of D_t and M_t can be associated with edge weights and vertex weights of the graph defined by the mesh).

Code for the meshing and construction of the D_t and M_t is available at github.com/gaioguy/femdl.

To estimate the inflated dynamic Laplacian on time-expanded space, we take the matrices D_t and M_t, $t = 1, \ldots, T$ and “linearly interpolate” across the time dimension [F/Koltai’22].

Alternatively (and relevant for high-dimensional data) one can use a specialised diffusion-maps approach to compute eigenfunctions of the inflated dynamic Laplacian [Atnip/F/Koltai, in prep.].
In low dimensions we estimate Δ^D by meshing the location of trajectories at each time instant t in a discrete subset of $[0, \tau]$ and applying a bespoke finite-element approach [F/Junge’18].

The eigenproblem $\Delta^D f = \frac{1}{\tau} \int_0^\tau \Delta g_t \, dt = \lambda f$ becomes a discrete generalised eigenproblem $\frac{1}{T} \sum_{t=1}^T D_t = \lambda \frac{1}{T} \sum_{t=1}^T M_t$.

(The entries of D_t and M_t can be associated with edge weights and vertex weights of the graph defined by the mesh).

Code for the meshing and construction of the D_t and M_t is available at github.com/gaioguy/femdl.

To estimate the inflated dynamic Laplacian on time-expanded space, we take the matrices D_t and M_t, $t = 1, \ldots, T$ and “linearly interpolate” across the time dimension [F/Koltai’22].

Alternatively (and relevant for high-dimensional data) one can use a specialised diffusion-maps approach to compute eigenfunctions of the inflated dynamic Laplacian [Atnip/F/Koltai, in prep.].
In low dimensions we estimate Δ^D by meshing the location of trajectories at each time instant t in a discrete subset of $[0, \tau]$ and applying a bespoke finite-element approach [F/Junge’18].

The eigenproblem $\Delta^D f = \frac{1}{\tau} \int_0^\tau \Delta g_t \, dt = \lambda f$ becomes a discrete generalised eigenproblem $\frac{1}{T} \sum_{t=1}^T D_t = \lambda \frac{1}{T} \sum_{t=1}^T M_t$.

(The entries of D_t and M_t can be associated with edge weights and vertex weights of the graph defined by the mesh).

Code for the meshing and construction of the D_t and M_t is available at github.com/gaioguy/femdl.

To estimate the inflated dynamic Laplacian on time-expanded space, we take the matrices D_t and M_t, $t = 1, \ldots, T$ and “linearly interpolate” across the time dimension [F/Koltai’22].

Alternatively (and relevant for high-dimensional data) one can use a specialised diffusion-maps approach to compute eigenfunctions of the inflated dynamic Laplacian [Atnip/F/Koltai, in prep.].
In low dimensions we estimate Δ^D by meshing the location of trajectories at each time instant t in a discrete subset of $[0, \tau]$ and applying a bespoke finite-element approach [F/Junge’18].

The eigenproblem $\Delta^D f = \frac{1}{\tau} \int_0^\tau \Delta g_t \ dt = \lambda f$ becomes a discrete generalised eigenproblem $\frac{1}{T} \sum_{t=1}^T D_t = \lambda \frac{1}{T} \sum_{t=1}^T M_t$.

(The entries of D_t and M_t can be associated with edge weights and vertex weights of the graph defined by the mesh).

Code for the meshing and construction of the D_t and M_t is available at github.com/gaioguy/femdl.

To estimate the inflated dynamic Laplacian on time-expanded space, we take the matrices D_t and M_t, $t = 1, \ldots, T$ and “linearly interpolate” across the time dimension [F/Koltai’22].

Alternatively (and relevant for high-dimensional data) one can use a specialised diffusion-maps approach to compute eigenfunctions of the inflated dynamic Laplacian [Atnip/F/Koltai, in prep.].
Spectrum and eigenfunctions of Δ_{G_a}

- We use 400 trajectories and 100 time steps over the interval $[0, 4]$ (videos) and 900 trajectories and 150 time steps (still images).
- The plot on the left shows the numerical spectrum of the inflated dynamic Laplacian (separated into temporal and spatial eigenvalues).
- Together with the spatial eigenvalue 0 we expect 8 dominant coherent sets that come and go during times $[0, 4]$.
- The plot on the right shows the norm of the t-fibre, indicating when the coherence is present.
Other contributions in [F/Koltai, subm]

In addition to theory and numerics for \textbf{automatically detecting partially present coherent sets and timing of the loss of coherence}:

1. In [F/Koltai’22] we introduce \textit{inflated dynamic Cheeger and Sobolev constants} (which are the standard constants associated with ΔG_a) and prove a theorem relating these to dynamic Cheeger and Sobolev constants [F’15]. These geometric results \textit{formalises trade-off of the regularity of the boundaries of semi-material coherent sets: more material means more irregular coherent sets.}

2. We collapse the spatial dimensions to produce a one-dimensional Sturm–Liouville ODE (in the time-coordinate) that provides
 - finer information on spatial norms of eigenfunctions over time.
 - a natural quantification of instantaneous mixing experienced by an eigenfunction and thus \textit{identification of time intervals where mixing is greater than or less than average}.

3. As $a \to \infty$ we recover the process generated by Δ^D (time-copied on \mathbb{M}_0) from the SDEs generated by the ΔG_a on the pullback space \mathbb{M}_0 and the co-evolved space \mathbb{M}_1 (cf. [Karrasch/Schilling, subm]).
In addition to theory and numerics for automatically detecting partially present coherent sets and timing of the loss of coherence:

1. In [F/Koltai’22] we introduce *inflated dynamic Cheeger and Sobolev constants* (which are the standard constants associated with Δ_{G_a}) and prove a theorem relating these to dynamic Cheeger and Sobolev constants [F’15]. These geometric results *formalises trade-off of the regularity of the boundaries of semi-material coherent sets*: more material means more irregular coherent sets.

2. We collapse the spatial dimensions to produce a one-dimensional Sturm–Liouville ODE (in the time-coordinate) that provides
 - finer information on spatial norms of eigenfunctions over time.
 - a natural quantification of instantaneous mixing experienced by an eigenfunction and thus *identification of time intervals where mixing is greater than or less than average*.

3. As $a \to \infty$ we recover the process generated by Δ^D (time-copied on \mathcal{M}_0) from the SDEs generated by the Δ_{G_a} on the pullback space \mathcal{M}_0 and the co-evolved space \mathcal{M}_1 (cf. [Karrasch/Schilling,subm]).
Other contributions in [F/Koltai, subm]

In addition to theory and numerics for **automatically detecting partially present coherent sets** and **timing of the loss of coherence**:

1. In [F/Koltai’22] we introduce **inflated dynamic Cheeger and Sobolev constants** (which are the standard constants associated with Δ_{G_a}) and prove a theorem relating these to dynamic Cheeger and Sobolev constants [F’15]. These geometric results **formalises trade-off of the regularity of the boundaries of semi-material coherent sets**: more material means more irregular coherent sets.

2. We collapse the spatial dimensions to produce a one-dimensional Sturm–Liouville ODE (in the time-coordinate) that provides
 - *finer information on spatial norms of eigenfunctions over time*.
 - *a natural quantification of instantaneous mixing experienced by an eigenfunction* and thus **identification of time intervals where mixing is greater than or less than average**.

3. As $a \to \infty$ we recover the process generated by Δ^D (time-copied on \mathbb{M}_0) from the SDEs generated by the Δ_{G_a} on the pullback space \mathbb{M}_0 and the co-evolved space \mathbb{M}_1 (cf. [Karrasch/Schilling, subm]).
Other contributions in [F/Koltai, subm]

In addition to theory and numerics for automatically detecting partially present coherent sets and timing of the loss of coherence:

1. In [F/Koltai’22] we introduce inflated dynamic Cheeger and Sobolev constants (which are the standard constants associated with Δ_{G_a}) and prove a theorem relating these to dynamic Cheeger and Sobolev constants [F’15]. These geometric results formalise trade-off of the regularity of the boundaries of semi-material coherent sets: more material means more irregular coherent sets.

2. We collapse the spatial dimensions to produce a one-dimensional Sturm–Liouville ODE (in the time-coordinate) that provides
 - finer information on spatial norms of eigenfunctions over time.
 - a natural quantification of instantaneous mixing experienced by an eigenfunction and thus identification of time intervals where mixing is greater than or less than average.

3. As $a \to \infty$ we recover the process generated by Δ^D (time-copied on \mathbb{M}_0) from the SDEs generated by the Δ_{G_a} on the pullback space \mathbb{M}_0 and the co-evolved space \mathbb{M}_1 (cf. [Karrasch/Schilling, subm]).
Eigenfunctions of the inflated dynamic Laplacian

\[\Delta_{G_a} F(t, \cdot) = a^2 \partial_{tt} F(t, \cdot) + \Delta_{g_t} F(t, \cdot). \]

- Eigenfunctions\(^1\) of \(\Delta_{G_a} \) with no spatial dependence are easy to identify: \(F_{k,a}^{\text{temp}}(t, x) := \cos(ak\pi t / \tau), \quad k \geq 1, \) with eigenvalue \(\Lambda_{k,a}^{\text{temp}} := -(a\pi k / \tau)^2. \)

- We call these **temporal eigenfunctions**; they tell us nothing about coherent sets in space.

- The temporal eigenfunctions generate the eigenspace \(S^{\text{temp}} \).

- We are primarily interested in the orthogonal complement \(S^{\text{spat}} := (S^{\text{temp}})^\perp \), containing the remaining **spatial eigenfunctions** (with non-trivial spatial dependence).

\(^1\)applying Neumann b.c.s on the “time faces”.

G. Froyland, UNSW, Sydney

Extracting cycles and coherent sets from complex data