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Chemical Systems:

Evolution of an isothermal, spatially homogeneous mixture of
chemically reacting molecules contained in a fixed volume V .

NS species of molecules Si, i = 1, . . . , NS involved in
MR reactions Rj, j = 1, . . . , MR.

Let xi be the number of molecules of species Si.

Each reaction Rj is characterized by a rate function aj(x) and a
state change (or stochiometric) vector νj:

Rj = (aj, νj), R = {R1, . . . , RMR
}.
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Continuous-time Markov Chain:

Given state x = (x1, . . . , xNS
), the occurrences of the reactions on

an infinitesimal time interval dt are independent of each other and
the probability for reaction Rj to happen during this time interval
is given by aj(x)dt. The state of the system after reaction Rj

is x + νj.

Equivalently: Given that the state of the system is Xt = x at
time t;

1. The probability that the next reaction happens after time t+s

is e−a(x)s where a(x) =
∑MR

j=1 aj(x).

2. Given that a reaction happens at time t + s, the probability
that it be reaction j is aj(x)/a(x).
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Gillespie’s Stochastic Simulation Algorithm (SSA, aka BKL):

D. T. Gillespie, J. Comp. Phys. 22, 403 (1976)

A. B. Bortz, M. H. Kalos and J. L. Lebowitz, J. Comp. Phys. 17, 10 (1975)

Assume that the system is at state Xn at time tn, then:

1. Generate two independent random numbers r1 and r2 with
uniform distribution on the unit interval (0,1]. Let

δtn+1 = −
ln r1

a(Xn)
,

and kn+1 be the natural number such that (a0 = 0)

1

a(Xn)

kn+1−1∑

j=0
aj(Xn) < r2 ≤

1

a(Xn)

kn+1∑

j=0
aj(Xn),

2. Update the time and the state of the system by

tn+1 = tn + δtn+1 , Xn+1 = Xn + νkn+1
.

Then repeat.

Exact realization of the process Xt
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Systems with two disparate time scales.:

Assume that the reactions can be grouped as

Rs = {(as(x), νs)}, (Slow reactions)

Rf = {(ε−1af(x), νf)} (Fast reactions)

where ε" 1 represents the ratio of time scales of the system.

Then: The time-step between reactions is O(ε) and with prob-
ability 1−O(ε) a fast reaction happens.

Difficult to simulate the evolution up to
the O(1) time-scale of the slow reactions!

Several recent works on this topic e.g. by E. L. Haseltine and J. B. Rawlings,

J. of Chem. Phys., 117 6959 (2002); C. V. Rao and A. P. Akin J. of Chem.

Phy. 118, 4999–5010 (2003); Y. Cao, D. Gillespie, and L. Petzold, J. Chem.

Phys. 122, 014116 (2005); A. Samant and D. G. Vlachos J. Chem. Phys.

123, 144114 (2005).
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Simple example:

S1

a1−→←−
a2

S2
︸ ︷︷ ︸

fast

, S2

a3−→←−
a4

S3
︸ ︷︷ ︸

slow

S3

a5−→←−
a6

S4
︸ ︷︷ ︸

fast

.

with

a1 = 105x1, ν1 = (−1,+1, 0, 0),

a2 = 105x2, ν2 = (+1,−1, 0, 0),

a3 = x2, ν3 = ( 0,−1,+1, 0),

a4 = x3, ν4 = ( 0,+1,−1, 0),

a5 = 105x3, ν5 = ( 0, 0,−1,+1),

a6 = 105x4, ν6 = ( 0, 0,+1,−1).

i.e. the first and third reactions are faster than the second one.

Every species is involved in at least one fast reaction so there is
no slow species.

But the variables y1 = x1 + x2 and y2 = x3 + x4 are conserved
during the fast reactions and only evolve during the slow reaction.
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Evolution of slow variable y1 = x1 + x2 and
fast variable x3 on the intermediate time scale.

7

0 0.5 1 1.5

x 10
!3

0

2

4

6

8

10

12

14

16

18

time

m
o
le
c
u
le
s

x
1
+x
2

x
3

Fig. 1. Evolution of slow variable y1 = x1 + x2 and fast variable x3 on the interme-
diate time scale.

2.2 Effective dynamics on the slow time scale

For the kind of systems discussed above, very often we are interested mostly in
the effective dynamics over the slow time scale. In this section we will derive
the model for this effective dynamics.

The analysis is built upon the perturbation theory developed in [17,19,14–16].
First we need to understand what the slow variables are in the system. Let v
be a function of the state variable x, which we call an observable. We say v(x)
is a slow observable if it does not change during the fast reactions, i.e. if for
any x and any state change vector νf

j associated with the fast reactions one
has

v(x + νf
j ) = v(x). (9)

This is equivalent to saying that the slow observables are conserved quanti-
ties for the fast process Rf defined in (5). A general representation of such
observables is given by special slow observables which are linear functions sat-
isfying (9). We call such slow observables slow variables. It is easy to see that
v(x) = b · x is a slow variable if

b · νf
j = 0, (10)

for all {νf
j }’s. The set of such vectors form a linear subspace in RNS . Let

b1, b2, . . . , bJ be a set of basis vectors of this subspace, and let

yj = bj · x for j = 1, . . . , J, (11)

then y1, y2, · · · , yJ defines a complete set of slow variables, i.e. all slow ob-
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Solution: Nested Stochastic Simulation Algorithm:

W. E, D. Liu, and E. V.-E., J. Chem Phys. in press; J. Comp Phys. submitted

Inner SSA: Run N independent replicas of SSA with the fast
reactions Rf = {(ε−1af, νf})} only, for a time interval of T0+Tf .
During this calculation, compute the modified slow rates from

ãs
j =

1

N

N∑

k=1

1

Tf

∫ Tf+T0

T0
as

j(X
k
τ )dτ, j = 1, · · · , MRS

where Xk
τ is the result of the k-th replica of this auxiliary virtual

fast process at virtual time τ whose initial value is Xk
t=0 = Xn.

Outer SSA: Run one step of SSA for the modified slow reactions
R̃s = (ãs, νs) to generate (tn+1, Xn+1) from (tn, Xn).

Then repeat.

Totally seamless!
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Justification: Averaging theorem for Markov chains.

Consider the u(x, t) = Exf(Xt), where Xt is the state variable at
time t, and Ex denotes expectation conditional on Xt=0 = x.

Then

sup
0≤t≤T

|u(x, t)− ū(x, t)| = O(ε)

Here ū(x, t) = Exf(X̄t), where X̄t is the process generated by:

R̄ =
{(

āj(x) =
∑

x′
as

j(x
′)µy(x)(x

′), νs
j

)}

j=1,...,MRS

where µy(x)(x
′) is the equilibrium distribution of the virtual fast

process, i.e. the original process where only the fast reactions
are kept and Xt=0 = x.
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u(x, t) = Exf(Xt) satisfies the backward Kolomogorov equation:

∂u(x, t)

∂t
=

MR∑

j=1
aj(x)

(
u(x + νj, t)− u(x, t)

)

≡ (Lu)(x, t) = ε−1(L1u)(x, t) + (L0u)(x, t)

Singular perturbation analysis of this equation (Khasminskii,...).

Key observations: (i) the slow variables coincide with the maxi-
mum ergodic components of the process associated with L1; (ii)
they are given by

yk = bk · x for k = 1, . . . , K,

where {b1, . . . , bK} form a basis of the linear subspace such that

b · νf
j = 0 for all νf

j ;

and (iii) if x and x′ belong to the same ergodic component, then
x + νs

j and x′ + νs
j also belong to the same ergodic component

for all νs
j .
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Simple example revisited

S1

a1−→←−
a2

S2
︸ ︷︷ ︸

fast

, S2

a3−→←−
a4

S3
︸ ︷︷ ︸

slow

S3

a5−→←−
a6

S4
︸ ︷︷ ︸

fast

.

Slow variables:

y1 = x1 + x2, y2 = x3 + x4

Equilibrium distribution of the virtual fast process:

µy1,y2(x1, x2, x3, x4) =
y1! y2!

x1! x2! x3! x4!
(1/2)y1(1/2)y2δx1+x2=y1

δx3+x4=y2
.

Effective dynamics:

ās
3 = Px2 =

x1 + x2

2
=

y1

2
, ν̄s

3 = (−1,+1),

ās
4 = Px3 =

x3 + x4

2
=

y2

2
, ν̄s

4 = (+1,−1).
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Identification of the slow variables

Example:

S1

a1−→←−
a2

S2 S2

a3−→←−
a4

S3 S3

a5−→←−
a6

S4

(a1, a2, a3, a4, a5, a6) = (
x1

ε
,
x2

ε
, x2, x3,

x3

ε
,
x4

ε
)

Every variable is involved in one fast reaction

Effective dynamics:

R̄1 = (
1

2
(x1 + x2), (0,−1, 1, 0) ) R̄2 = (

1

2
(x3 + x4), (0, 1,−1, 0) )
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Fig. 1. Evolution of slow variable y1 = x1 + x2 and fast variable x3 on the interme-
diate time scale.
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has
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Error estimate:

For any T > 0, there exist constants C and α independent of
(N, T0, Tf) such that,

sup
0≤t≤T

E |v(x, t)− u(x, t)| ≤ C



ε +
e−αT0/ε

1 + Tf/ε
+

1
√

N(1 + Tf/ε)



 .

Efficiency:

Given an error tolerance λ:

cost = O(N(1 + T0/ε + Tf/ε)) = O
( 1

λ2

)
(nested SSA)

cost = O
(1

ε

)
(direct SSA)
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Example: Heat shock response of E. Coli 

Mechanism of protection that the E. Coli bacteria uses to fight against 
denaturation (unfolding) of its constituent proteins induced by the
increase of temperature.

Stochastic petri net for heat shock response  (from Srivastava et al.)

14 species,
17 reactions

R. Srivastava, M. Peterson and W. Bently, Biotech. Bioeng. 75, 120 (2001)
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Tables

Species Initial value

DNA.σ32 1

mRNA.σ32 17

σ32 15

RNAPσ32 76

DNA.DnaJ 1

DNA.FtsH 0

DNA.GroEL 1

DnaJ 4640

FtsH 200

GroEL 4314

DnaJ.UnfoldedProtein 5 × 106

Protein 5 × 106

σ32.DnaJ 2959

UnfoldedProtein 2 × 105

TABLE I: List of species and their initial value (in number of molecules) in the Petri net model of

heat shock response of E. Coli proposed in [8].

18

tion, the generic binding constant between the recombinant

protein and the J-complex was varied. In this way, predic-

tions of a !32-mediated stress response could be generated.
Three scenarios were evaluated: low requirement for chap-

erone mediation, equal requirement, and strong requirement

for chaperone mediation, with their corresponding values

shown in Table II. Although the model of the !32 circuit
was in part lumped, we assumed that it could be modeled as

a Markov process, allowing SPN implementation.

Experimental Conditions and Simulation Details

In our previous work (Srivastava et al., 2000), we demon-

strated that IPTG-induced !32 antisense mRNA mediated a
decrease in !32 sense mRNA, !32 protein, and GroEL pro-
tein. We further demonstrated that, in the presence of !32

antisense, the activity level of a recombinant organophos-

phorous hydrolase was increased substantially. GroEL was

monitored as a marker protein of the !32-related stress re-
sponse, as it has little if any direct impact on !32 metabo-
lism. It provides, therefore, a basis for correlation between

simulations and our previous data as well as others (Gamer

et al., 1992, 1996; Strauss et al., 1987, 1990).

The !32 SPN simulations were run using ULTRASAN, a

software package for modeling stochastic activity networks

(Sanders, 1995). The ULTRASAN software was kindly pro-

vided by Dr. Sanders (Center for Reliable and High-

Performance Computing at the University of Illinois at Ur-

bana–Champaign).

The time duration used for simulations was 30 min. Ex-

perimentally, we found that antisense reached a maximum

within the first 30 min postinduction, and most of the meta-

bolic activity occurred within this timeframe. Also, a 30-

min timeframe enables one to safely neglect the effects of

cell doubling. Places were seeded with 1 to 15 tokens, and

simulations were performed until a steady state was

reached. The number of tokens available at steady state was

considered the nonstressed state of the cell. These steady-

state-level concentrations were subsequently used as the

starting point for all further simulations.

RESULTS

Transient Analysis of Ethanol Shock and
Comparison to Data

When subjected to ethanol (4% v/v), E. coli increased !32

levels by over ten-fold (Srivastava et al., 2000). In simula-

Figure 3. SPN of the !32 genetic regulatory circuit. All simulations were based on the SPN shown. The arcs made up of dotted lines were included only
for the recombinant protein simulations.

SRIVASTAVA, PETERSON, AND BENTLEY: STOCHASTIC ANALYSIS OF E. COLI STRESS CIRCUIT 123



Reaction Rate constant Rates magnitude

DNA.σ32 → mRNA.σ32 1.4 × 10−3 1.4 × 10−3

mRNA.σ32 → σ32 + mRNA.σ32 0.07 1.19

mRNA.σ32 → degradation 1.4 × 10−6 2.38 × 10−5

σ32 → RNAPσ32 0.7 10.5

RNAPσ32 → σ32 0.13 9.88

σ32 + DnaJ → σ32.DnaJ ("") 3.62 × 10−3 25.2

DnaJ → degradation ("") 6.4 × 10−10 2.97 × 10−6

σ32.DnaJ→ σ32 + DnaJ 4.4 × 10−4 1.30

DNA.DnaJ + RNAPσ32 → DnaJ + DNA.DnaJ + σ32 8 3.71

DNA.FtsH + RNAP.σ32 → FtsH + DNA.FtsH + σ32 4.88 × 10−2 0

FtsH → degradation 7.4 × 10−11 1.48 × 10−8

GroEL → degradation 1.8 × 10−8 7.76 × 10−5

σ32.DnaJ + FtsH → DnaJ + FtsH 1.42 × 10−5 8.4

DNA.GroEL + RNAPσ32 → GroEL + DNA.GroEL +σ32 0.063 4.78

Protein → UnfoldedProtein (") 0.2 106

DnaJ+ UnfoldedProtein → DnaJ.UnfoldedProtein (") 0.108 107

DnaJ.UnfoldedProtein → DnaJ+ UnfoldedProtein (") 0.2 106

TABLE II: Reaction list for the heat shock model of E. Coli proposed in [8]. The rate constant is

the number ci in ai(x) = cixj for the reactions involving one species, or in ai(x) = cixjxk for the

reactions involving two species. The rate magnitude is the value of ai(x) evaluated at initial time

or equilibrium. The last three reactions marked with a (") in the table are fast: they are used in

the Inner SSA. All the other reactions are used in the Outer SSA, and the rates of the reactions

marked with a ("") are averaged according to (17).
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Nested SSA allows a speed-up by a factor of 100 in this example 
without any loss of accuracy
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Shown: Growth rate of GroEL (a protein measuring stress response)



(N,Tf/10−6) (1, 1) (1, 4) (1, 16) (1, 64) (1, 256) (1, 1024)

CPU 0.62 1.32 2.98 9.56 35.81 142.08

σ32 4.60 8.66 13.60 14.52 14.98 15.00

var(σ32) 4.41 8.11 12.22 13.13 13.73 14.66

TABLE III: Efficiency of nested SSA when N = 1. Since we used N0 = 1000 realizations of the

Outer SSA to compute σ32 and var(σ32), the statistical errors on these quantities is about 0.1.

(N,Tf/10−6) (1, 1) (2, 2) (4, 4) (8, 8) (16, 16) (32, 32)

CPU 0.64 1.38 3.17 10.13 36.94 142.65

σ32 4.60 9.06 13.85 14.57 15.04 14.90

var(σ32) 4.41 8.68 13.07 13.63 14.01 14.38

TABLE IV: Efficiency of nested SSA with multiple replicas in the Inner SSA. Again the statistical

errors on σ32 and var(σ32) is about 0.1.

Tf/10−5 1 4 16 64 256

CPU 298.2 304.4 310.3 347.9 426.7

x1 27.07 27.10 27.28 27.20 27.32

var(x1) 20.03 20.25 20.04 20.22 20.57

TABLE V: Efficiency and accuracy of the adaptive nested SSA.
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Generalization: Nested SSA with more than two levels:

5.1 Multi-level nested SSA

When the assumptions for iteratively averaged dynamics (94) hold, we can
generalize the nested SSA with two levels proposed in section 3 straightfor-
wardly to handle multi-scale system (81) by using a nested SSA with more
than two levels. Here we consider three levels. The innermost SSA uses only
the ultra-fast rates and serves to compute the averaged fast and slow rates
using formulas similar to (37). This will give us the dynamics on the fast time
scale and the following quantities

ãs ≈ Pas, ãf ≈ Paf . (102)

The inner SSA uses only the above averaged fast rates ãf and the results are
used again to compute the averaged slow rates (which are already averaged
with respect to the ultra-fast reactions) as in (37):

âs ≈ QPas. (103)

Finally, the outer SSA uses only the above averaged slow rates. The cost of
such a nested SSA is independent of ε, and as before, precise error estimates
can be given in the same form of (41) in terms of Tuf—(the time interval over
which the Innermost SSA is run and (ãs, ãs) is averaged), Nuf (the number
of replicas in the Innermost SSA), Tf (the time interval over which the Inner
SSA is run and âs is averaged), and Nf (the number of replicas in the Inner
SSA):

error ≤ C



ε +
1

1 + Tf/ε
+

1

1 + Tuf/ε2

+
1

√

Nf (1 + Tf/ε)
+

1
√

Nuf(1 + Tuf/ε2)



 .

(104)

Let us take a look at an example. Consider the following system

S1

a1−→
←−

a2

S2, S2

a3−→
←−
a4

S3, S3

a5−→
←−
a6

S4. (105)

with the reaction rates and state change vectors

a1 = 2 · 1010x1, ν1 = (−1, +1, 0, 0),

a2 = 1010x2, ν2 = (+1,−1, 0, 0),

a3 = 105x2, ν3 = ( 0,−1, +1, 0),

a4 = 2 · 105x3, ν4 = ( 0, +1,−1, 0),

a5 = x3 , ν5 = ( 0, 0,−1, +1),

a6 = x4, ν6 = ( 0, 0, +1,−1).

(106)
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cost. The distribution produced by nested SSA is nearly exact, whereas the one
produced by direct SSA is totally inaccurate.

results:

µ = (.1999, .3994, .1991, .2017) (three-level nested SSA) (116)

The maximum error is about 0.0085 compared with the exact values given by
(113). In contrast, it is almost impossible to run the direct SSA to T = 104.
To compare the efficiency of the nested SSA with the direct SSA, we fix the
total number of iterations in the calculations. The calculation with the nested
SSA with the parameters in (115) requires O(1010) iterations. With the same
number of iterations, the direct SSA only advanced up to time T ′

0 = O(1),
which is way too small to produce an accurate estimate for the equilibrium
distribution. Figure 5.1 shows this result. It can be seen that result from direct
SSA is far from being accurate.

5.2 Nested SSA for the diffusive limit

In this section, we discuss the situation where the following centering condition
for holds

PL1Ū = 0. (117)

which means that (87) is trivially satisfied. In this case, there is no need to
introduce z variable as the slow dynamics on the O(1) time scale involves the
y variables themselves. If (117) is satisfied the second equation in (86) can be
formally solved as

u1 = −L−1
2 L1Ū . (118)
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Generalization: Adaptive nested SSA:

for any v : Y → R, it gives Qv : Z → R as

(Qv)(z) =
∑

y∈Y

µ̄z(y)v(y) (91)

The equation for ¯̄U is obtained from the solvability condition for the third
equation in (86), which is obtained by projection this equation first by P ,
then by Q. It reads

∂ ¯̄U

∂t
= QPL1

¯̄U =
Ms
∑

i=1

¯̄as
i (z)

(

¯̄U(z + ν̄s
i ) −

¯̄U(z)
)

(92)

Here ¯̄νs
i = c · (b · νs

i ) and

¯̄as
i (z) =

∑

y∈X

∑

x∈X

as
i (x)µy(x)µ̄z(y). (93)

Notice that (87) is equivalent to following equation for ¯̄u(x, t) on the original
state-space X ,

∂ ¯̄u

∂t
=

Ms
∑

i=1

¯̄as
i (c · (b · x)) (¯̄u(x + νs

i ) − ¯̄u(x)) (94)

in the sense that if we solve (94) with the initial condition ¯̄u(x, t = 0) =
f(c · (b · x)), then ¯̄u(x, t) = ¯̄U(c · (b · x), t) where ¯̄U solves (92) with the initial
condition ¯̄U(z, t = 0) = f(z). We will make use of (94) in the next section.
Notice also what we did above is an iterated averaging, a technique that has
been developed in the context of homogenization [14].

5 Adaptively partitioning the set of slow and fast reactions

In this section, we discuss the generalization of the nested SSA to systems for
which the set of fast reactions changes over time. We would like the nested
SSA to pick up the set of fast reactions dynamically. Consider the following
system:

S1

a1−→
←−
a2

S2, S2

a3−→
←−
a4

S3, 2S2 + S3

a5−→
←−

a6

3S4. (95)
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Fig. 3. Time evolution of the reaction rates a1 + a2 and a5 + a6

The reaction rates and the state change vectors are

a1 = x1, ν1 = (−1, +1, 0, 0),

a2 = x2, ν2 = (+1, −1, 0, 0),

a3 = 104x2, ν3 = (0, −1, +1, 0),

a4 = 104x3, ν4 = (0, +1, −1, 0),

a5 = 2x2(x2 − 1)x3, ν5 = ( 0,−2,−1, +3),

a6 = 2x4(x4 − 1)(x4 − 2), ν6 = ( 0, +2, +1,−3).

(96)

Suppose that we start with the following initial condition:

(x1, x2, x3, x3) = (100, 3, 3, 3). (97)

At the beginning, when the concentration of S2 is low, only the transition
between S2 and S3 is fast. As the number of S2 grows, the last two reactions
become faster and faster. Figure 5 shows the evolution of the sum of the
reaction rates a1 +a2 and a5 +a6. It can be seen that the reaction rate a5 +a6

grows from O(1) to O(105) on a time scale of O(1).

To test the nested SSA and compare it with the direct SSA, we use the mean
and the variance at time T = 4 of x1, the number of species S1, as a benchmark.
A computation of the direct SSA with N0 = 10000 gives

x1 = 27.62 ± 0.2, var(x1) = 20.97 ± 0.2. (98)

The calculation took 8781.83 seconds of CPU time on our machine.

In the nested SSA, we dynamically change the set of fast reactions by con-
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Fig. 4. Adaptive mechanism of the nested SSA

Fig. 5. Accuracy of the adaptive nested SSA

stantly monitoring the following quantity

κ(t) =
∫ t

0

(

a5(s) + a6(s)

a1(s) + a2(s)

)

exp(s − t)ds. (99)

The kernel exp(s − t) serves to smooth out the oscillation in the ratio a5+a6

a1+a2
.

If κ > 104, the last two reactions are included in the set of fast reactions. If
κ < 103, the last two reactions are treated as slow reactions. Otherwise, the
direct SSA is adopted to simulate the whole system. Figure 5 shows the above
adaptive strategy. The indicator is set to be 0 when κ < 103, 2 when κ > 104

and 1 when κ is between 103 and 104. It can be seen that the adaptive scheme
first treats the last two reactions as being slow and then as being fast when the
time scale separation increases to the predetermined value of 104. The scheme
oscillates between the direct and the nested SSA during some brief period of
time when the last two reactions evolve from being slow to being fast. This is
not a serious problem since the direct simulation is exact and there is still an
efficiency gain due to the fact that the nested SSA is used most of the time.

To test the nested SSA, we conduct a series of simulations in which the size of
the ensemble and simulation time of the inner SSA in the nested SSA scheme
are chosen to be

(N, Tf ) = (1, 2k × 10−5), (100)

for different values of k = 0, 1, 2, . . .. The error should be

λ = O(2k/2). (101)

The following table gives the CPU time and the values of the mean and vari-
ance of x1 using N0 = 10000. The sum of the relative errors of the mean and
the variance is shown in figure 5.

Tf/10−5 1 2 4 8 16 32 64

CPU 13.6 18.6 28.0 47.2 86.2 163.0 316.2

x1 27.50 27.55 27.44 27.51 27.55 27.55 27.61

var(x1) 20.58 20.65 20.82 20.57 20.84 20.58 21.01

Table 4
Efficiency and accuracy of the adaptive nested SSA.

The strategy for adaptively determining the set of fast and slow reactions may
not be the best one. Further work in this direction is clearly needed.
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Adaptive Nested SSA: 



Generalization to other types of KMC

Generator

(Lf)(x) =
∑

j∈J
λj(x)(f(x + zj(x))− f(x))

Ergodic components of fast process: for any test function f :
X → R, we have

if x ∈ Xy then lim
T→∞

1

T

∫ T

0
Exf(Xf

t )dt =
∑

x∈X
µy(x)f(x),

where Ex denotes the expectation conditional on Xf
t=0 = x

Assumption: Slow reactions induce an injection on the ergodic
components Xy, i.e. for each ej, there exists a unique ēj such
that for all x ∈ X ,

if x ∈ Xy then x + ej ∈ Xyj with yj = y + ēj.
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