Nested Stochastic Simulation Algorithm
for KMC with Multiple Time-Scales

Eric Vanden-Eijnden
Courant Institute

Join work with Weinan E and Di Liu



Chemical Systems:
Evolution of an isothermal, spatially homogeneous mixture of

chemically reacting molecules contained in a fixed volume V.

Ng species of molecules S;, : = 1,..., Ng involved in
Mg reactions R;, 7 =1,..., Mp.

Let x; be the number of molecules of species S;.

Each reaction R; is characterized by a rate function a;(z) and a
state change (or stochiometric) vector v;:

R] — (CLj,Vj), R = {Rl, . "RMR}'



Continuous-time Markov Chain:

Given statex = (x1, ... ,:I:NS), the occurrences of the reactions on
an infinitesimal time interval dt are independent of each other and
the probability for reaction Rj to happen during this time interval
is given by a;(x)dt. The state of the system after reaction R;
is x + V.

Equivalently: Given that the state of the system is X; = x at
time ¢;

1. The probability that the next reaction happens after time t+s
is e—2()s where a(z) = ] % oai(x).

2. Given that a reaction happens at time ¢t 4+ s, the probability
that it be reaction j is a;(x)/a(x).



Gillespie’s Stochastic Simulation Algorithm (SSA, aka BKL):

D. T. Gillespie, J. Comp. Phys. 22, 403 (1976)
A. B. Bortz, M. H. Kalos and J. L. Lebowitz, J. Comp. Phys. 17, 10 (1975)

Assume that the system is at state X,, at time ¢,,, then:

1. Generate two independent random numbers r{ and ro with
uniform distribution on the unit interval (0,1]. Let

Inrq
ot = — ,
and k,41 be the natural number such that (ag = 0)
1 kn—|—1_1 kn-{—l
a;j(Xn) <1y < a;(Xn),
a(Xn) jg() / a(Xn) jgo /

2. Update the time and the state of the system by

tp41 =tn + 0lpy1 Xn41 = Xn + YEpt1
Then repeat.

Exact realization of the process X;



Systems with two disparate time scales.:

Assume that the reactions can be grouped as

R® = {(a®(z), %)}, (Slow reactions)
R/ = {(e_laf(x),uf)} (Fast reactions)
where ¢ < 1 represents the ratio of time scales of the system.

Then: The time-step between reactions is O(e) and with prob-
ability 1 — O(e) a fast reaction happens.

Difficult to simulate the evolution up to
the O(1) time-scale of the slow reactions!

Several recent works on this topic e.g. by E. L. Haseltine and J. B. Rawlings,
J. of Chem. Phys., 117 6959 (2002); C. V. Rao and A. P. Akin J. of Chem.
Phy. 118, 4999-5010 (2003); Y. Cao, D. Gillespie, and L. Petzold, J. Chem.
Phys. 122, 014116 (2005); A. Samant and D. G. Vlachos J. Chem. Phys.
123, 144114 (2005).



Simple example:

ai a3 as
Sq — S, So — S3 S3 — Sa .
an as a6
T fast T siow T fast
with
a1 = 10°z1, v1 = (—1,41, 0, 0),
ar = 10°xo, vy = (+1,—-1, 0, 0),
a3z = xo, v3=(0,-1,41, 0),
ag = T3, vga = (0,4+1,-1, 0),
as = 10°z3, vs = (0, 0,—1,41),
ag = 10°z4, vg = (0, 0,41,-1).

i.e. the first and third reactions are faster than the second one.

Every species is involved in at least one fast reaction so there is
NO slow species.

But the variables y; = 1 + o and yo = x3 + x4 are conserved
during the fast reactions and only evolve during the slow reaction.
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Evolution of slow variable y1 = x1 + > and
fast variable x3 on the intermediate time scale.



Solution: Nested Stochastic Simulation Algorithm:
W. E, D. Liu, and E. V.-E., J. Chem Phys. in press; J. Comp Phys. submitted

Inner SSA: Run N independent replicas of SSA with the fast
reactions R/ = {(¢~1a/,v/})} only, for a time interval of Ty + T7.
During this calculation, compute the modified slow rates from

~S

1 N 1 [Ty+To
/f S(Xf)d/ra ]:1,,MR

where X7’? is the result of the k-th replica of this auxiliary virtual
fast process at virtual time 7 whose initial value is Xf:o = Xn.

Outer SSA: Run one step of SSA for the modified slow reactions
R® = (a®,v®) to generate (t,41,X,+1) from (tn, Xp).

Then repeat.

Totally seamless!



Justification: Averaging theorem for Markov chains.

Consider the u(xz,t) = E, f(X:), where X; is the state variable at
time ¢, and [E,; denotes expectation conditional on X;—g = .

Then

sup |u(z,t) —u(x,t)| = O(e)
0<t<T

Here u(x,t) = E. f(X;), where X; is the process generated by:

R= {<C_Lj($) — ;ai(x/)“y(x)(x/)’ Vj)} '

j=1,...,MRS

where /Ly(x)(x’) is the equilibrium distribution of the virtual fast
process, i.e. the original process where only the fast reactions
are kept and X;—g = =.



u(x,t) = E, f(X;) satisfies the backward Kolomogorov equation:

u\xr MR
’ E’?t7 V= > aj(z) (“(a? + vj,t) — “(mﬂt»
1=1

= (Lu)(z,t) = e Y (Liu)(a,t) + (Lou) (=, t)
Singular perturbation analysis of this equation (Khasminskii,...).

Key observations: (i) the slow variables coincide with the maxi-
mum ergodic components of the process associated with Ly; (ii)
they are given by

ykzbk-a: for k=1,... K,

where {bq1,...,bg} form a basis of the linear subspace such that
Y f.

b-v; = for all vy

and (iii) if x and 2’ belong to the same ergodic component, then
T -+ u;?’ and z/ + z/j also belong to the same ergodic component

for all yj.



Simple example revisited

al a3z as

S; — So, Sy — S S3 — S4.
an aq ag
fast slow fast

Slow variables:

Y1 = x1 + T2, Yo = T3+ T4

Equilibrium distribution of the virtual fast process:

y1'! yo!
My17y2(331,$2,$3,x4) — 21! 25! 23! x4!(1/2)y1(1/2)y25x1+x2=y15x3+x4:y2-

Effective dynamics:

_ 1+ _
i3 = Pop =12 =", 75 = (~1,+1),
B =Py =20 22 g (41,0,
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Error estimate;

For any 1" > 0, there exist constants ' and « independent of
(N, Ty, Ty) such that,

e—ozTO/cS 1
E|v(x,t) —u(z,t)| < C
0ioT e t) = ule bl 8Jr1+Tf/€+\/J\’(lJrTf/»s)

Efficiency:.

Given an error tolerance \:

cost = O(N(1 +Tp/e +Ty/e)) = O (%) (nested SSA)

1
cost = O (—) (direct SSA)
g



Example: Heat shock response of E. Coli

Mechanism of protection that the E. Coli bacteria uses to fight against
denaturation (unfolding) of its constituent proteins induced by the
increase of temperature.

Stochastic petri net for heat shock response (from Srivastava et al.)

R. Srivastava, M. Peterson and W. Bently, Biotech. Bioeng. 75, 120 (2001)

|4 species,
| 7 reactions



Species

Initial value

DNA.g32
mRNA .g32

0.32

RNAPg32
DNA.DnaJ
DNA.FtsH

DNA.GroEL
DnaJ
FtsH
GroEL
DnaJ.UnfoldedProtein
Protein
032 DnalJ

UnfoldedProtein

1
17
15
76

4640
200
4314
5 x 108
5 x 106
2959
2 x 10°

disassoc

transcription
o2
@ Protein
translation
deg
GroEL

0% deg

Rec-J-disassoc

Rec. Prot.-J-Comp.

.m.._gq—---wo rec. prot.



Reaction

Rate constant

Rates magnitude

DNA.o%? — mRNA.c*

mRNA.03? — 032 4+ mRNA.o3?

mRNA.o39 — degradation

032 — RNAPg3?

RNAPo3?2 — 32

032 4+ DnaJ — 032.DnaJ ()

DnaJ — degradation (%)

032.DnaJ— o032 + Dnal

DNA.DnaJ + RNAP¢%? — DnaJ + DNA.DnaJ + o
DNA.FtsH + RNAP.0%? — FtsH + DNA.FtsH + 032
FtsH — degradation

GroEL — degradation

032 DnaJ + FtsH — DnaJ + FtsH

DNA.GroEL + RNAP¢3? — GroEL + DNA.GroEL +032
Protein — UnfoldedProtein (x)

DnaJ+ UnfoldedProtein — DnaJ.UnfoldedProtein (%)
DnaJ.UnfoldedProtein — DnaJ+ UnfoldedProtein (x)

1.4 x 1073
0.07
1.4 x 1076
0.7
0.13
3.62 x 1073
6.4 x 10719
4.4 x 1074
8
4.88 x 1072
7.4 x 10711
1.8 x 1078
1.42 x 107°
0.063
0.2
0.108
0.2

1.4 x 1073
1.19
2.38 x 107°
10.5
9.88
25.2
2.97 x 1076
1.30
3.71
0
1.48 x 1078
7.76 x 107°
8.4
4.78
106
107
106




Nested SSA allows a speed-up by a factor of 100 in this example
without any loss of accuracy
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Shown: Growth rate of GroEL (a protein measuring stress response)



(N, T¢/107%) || (1,1) |(1,4) [(1,16) | (1,64)| (1, 256) | (1,1024)

CPU 0.62 | 1.32 | 2.98 | 9.56 | 35.81 | 142.08

032 4.60 | 8.66 | 13.60 | 14.52 | 14.98 | 15.00

var(o3?) || 4.41|8.11]12.22|13.13 | 13.73 | 14.66

TABLE III: Efficiency of nested SSA when N = 1. Since we used Ny = 1000 realizations of the

Outer SSA to compute 32 and var(o32), the statistical errors on these quantities is about 0.1.

(N, T3 /1075)||(1,1) 2,2)| (4,4) | (8,8) | (16, 16) | (32.32)
CPU 0.64 | 1.38 | 3.17 [10.13]| 36.94 | 142.65

032 4.60 | 9.06 |13.85(14.57| 15.04 | 14.90

var(osp) || 4.41 | 8.68 |13.07|13.63| 14.01 | 14.38

TABLE IV: Efficiency of nested SSA with multiple replicas in the Inner SSA. Again the statistical

errors on 032 and var(c3?) is about 0.1.



Generalization: Nested SSA with more than two levels:

ai as as
S1 — 5o, Sy —— S5, Sz Sa.
a2 a4 aeg
17| ——— Nested SSA
- - - Direct SSA
0 5 08 SR |
a| — 2-10 Ty, vy = (—1,+1, O, O), -g | :
Ay = 10103327 Vo = <+17 _17 07 0)7 :g, 0.61 : :
n
as = 10°z,, vy =(0,—1,41, 0), S 1 |
ay = 2 10°23, vy =(0,41,-1, 0), S 0.4f ‘ |
— |
as — I3 , Vg = ( 07 07 17+1>7 g- ‘
|
g = T4, Vg = ( 0, O,—|—1, —1) wo.z2 : :
0_ L— - — — — — -

x1 X2 x3 x4



Generalization: Adaptive nested SSA:

al as as
Sl E SQ, SQ E 53, 232 -+ Sg E 334
as aq ae
ap = Iy, = (—17 +17 O: 0)7
Qg = T2, Vo = (+]—7 17 07 0)7
as = 1041}2, V3 = (O, —1, —|—1, 0),
ay = 10%z5, vy = (0, +1, —1, 0),
ar — 2$2($2 - 1)5(73, Vg — ( O, —2, —1, —|—3),
g — 2334(564 - 1)(334 - 2), Vg = ( O, —|—2, —I—l, —3)
1% e
|I:||||:| o 1y IE a1 lllllll il |: i
Initial data: (21, 22, 73, 73) = (100,3,3,3).  10°} B
l|l;‘|j. )
10°} “
I
102MW!
I
0

0.2 0.4 0.6 0.8 1
Time



Direct SSA: 71
- 8781.83 seconds of CPU time

27.62+0.2,  var(z;) = 20.97 4+ 0.2.

Adaptive Nested SSA:

Ty/107° 1 2 4 8 16 32 64
CPU 13.6 | 18.6 | 28.0 | 47.2 | 86.2 | 163.0 | 316.2
TT 27.50 | 27.55 | 27.44 | 27.51 | 27.55 | 27.55 | 27.61
var(z1) 20.58 | 20.65 | 20.82 | 20.57 | 20.84 | 20.58 | 21.01

Table 4
Efficiency and accuracy of the adaptive nested SSA.



Generalization to other types of KMC

Generator

(LH (@) = > N(@)(f(x+ zj(x)) — f(x))
JjeET

Ergodic components of fast process: for any test function f :
X — R, we have

| 1T
f xcX, then Tll_>moof/0 Exf(Xf)dtszZXuy(x)f(x),

where [, denotes the expectation conditional on th:O =

Assumption: Slow reactions induce an injection on the ergodic
components &, i.e. for each e;, there exists a unique e; such
that for all z € X,

if =€ Ay then a;—l—eJ-Gij with y;, =y +e€;.





