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Density-Functional Theory
Kohn-Sham equations:

W. Kohn, and L. J. Sham, Phys. Rev. A140 (1965) 1133.µ
−
1

2
∆ + Veff(r)

¶
φi (r) = ²iφi(r)

single-particle Schrödinger-like equation 

⇒ This is the topic of this talk

ρ(r) =
X
i

fiφ
∗
i (r)φi(r)

φi(r) =
X
j

cijχj(r)KS orbital 
χj(r) basis function 

occupation number fi

KS orbital φi(r)

electron density 

DFT-based electronic structure methods are classified according to the 
representation that is used for the Kohn-Sham orbitals. 



Outline
There are many different approaches to represent the Kohn-Sham orbitals:

Basis Set Expansions

Projector Augmented Waves (PAW)Pseudopotential Plane Wave (PPW)

KS-DFT

Numerical Atomic Orbitals (NAO)

Augmented Plane Waves (APW)

Gaussian Type Orbitals (GTO)

Slater Type Orbitals (STO)

Linear Muffin Tin Orbitals (LMTO)

Linear Augmented Plane Waves (LAPW)

Many more …

Basis Set-Free Numerical Solution of the KS Equations on a Grid

Not the topic of this talk



Outline
Atomic region:
Rapid oscillations of the wavefunctions require fine grid for accurate numerical 
representation, chemical environment has little effect on the shape of the 
wavefunction, small basis set would be sufficient if chosen properly.

Interatomic (bonding) region:
Wavefunction is smooth but very flexible and responds strongly to the 
environment, requires large basis sets. 

Approaches:

„Atomic Point of View“ „Solid State Point of View“

Basis functions similar to atomic
orbitals:

• numerical, hard to handle but
efficient

• general (Gaussians), easy to handle
but larger basis

Atoms are a perturbation of the free
electron gas:

• plane waves + pseudopotentials 
• complete but large basis, very easy

to handle



Some Terms

Efficiency:
How many basis functions are needed for a given level of convergence?

Cost of the calculations

Bias:
Do the basis functions favor certain regions of space over other regions (by being 
more flexible in some regions)?

Accuracy of the calculations

Simplicity:
How difficult is it to calculate the matrix elements            and               ?hχi|H |χji hχi|χji

Effort in code development

Completeness:
Can the basis be improved arbitrarily by adding additional functions of the same 
type?

Accuracy of the calculations



Plane Wave Basis Sets

Bloch Theorem:
In a periodic solid (potential) each wavefunction can be written as a product of a 
lattice-periodic part                                       and a plane wave          :

Why Plane Waves?

u(k ,r+R) = u(k, r) eikr

ψ(k,r) = eikr · u(k, r)

The lattice-periodic part can be expanded in plane waves whose wave vectors 
are reciprocal lattice vectors:

G

⇒ Kohn-Sham states

Note: This approach is of more general interest, also for non-periodic systems, 
which can be modeled by supercells.

ψj(k,r) =
X
G

cj,k,Ge
i(k+G)r

u(k,r) =
X
G

ck,GeiGr



Plane Wave Basis Sets

⇒ Each wavefunction can be expanded in plane waves!

⇒ basis functions: χk(r) =

Problem: There are strong oscillations in the wavefunctions near the nucleus. 

⇒ A very large number of plane waves is required to describe these oscillations.

⇒ It is impossible to perform all-electron plane wave calculations for systems
of practical interest. 

But: Oscillations are due to core states which are less important for bonding

⇒ Oscillations can be removed by introducing pseudo potentials.

(U. von Barth, and C. D. Gelatt, Phys. Rev. B 21 (1980) 2222.)



Norm-Conserving Pseudopotentials
Aim: Remove Oscillations in Core Region

rrc

Vpseudo

Ψpseudo

• no explicit description of the core electrons

• pseudo wavefunctions have no nodes/wiggles
in the core region

• correct total charge inside core radius (norm-
conservation), proper electrostatic potential       
for r > rc

• outside rc and                   are the same

The potential inside some core radius rc is 
replaced by a pseudopotential describing the 
nucleus and the core electrons.

ΨAE

VAE
ΨAE Ψpseudo

⇒ much smaller, realistic basis sets can be usedvalence regioncore region

Typically, the pseudo potential is different for each angular momentum 
(non-local pseudopotential).



Pseudopotentials

Transferability

The pseudopotential is generated for a given atomic environment (free atom).

But:
The pseudopotential should describe the scattering due to the ion in many 
different atomic environments. 

Hardness

Soft pseudopotentials:  few plane waves are sufficient to expand the pseudo 
wavefunctions

Hard pseudopotentials:many plane waves are needed to expand the pseudo 
wavefunctions

small rc: hard but more transferrable pseudopotential 
large rc: soft but less transferrable pseudopotential 

⇒ Compromise between efficiency and accuracy



Pseudopotentials

The Cutoff

A finite basis set of plane waves can be used, because

• there are only discrete G due to the lattice periodicity 
• coefficients for PWs with small kinetic energy are typically most important 

The size of the basis set is defined by the plane wave cutoff.

• The plane wave cutoff is the highest kinetic energy of all basis functions 
and determines the number of basis functions. 

• The basis set convergence can systematically be controlled by 
increasing the plane wave cutoff.  

Ecut =
h̄
2

2m
|Gmax|

2



Construction of Pseudopotentials

All-electron DFT calculation for a spherical atom on radial grid
⇒ atomic potential and the all-electron partial waves φlm(r)
There are many ways to construct the pseudo wavefunctions       :
D. R. Hamann, Phys. Rev. Lett. 42 (1979) 662. 

φ̃lm(r)

G. P. Kerker, J. Phys. C 13 (1980) L189. 
G. B. Bachelet, D. R. Hamann, and M. Schlüter, Phys. Rev. B 26 (1982) 4199. 
N. Troullier, and J. L. Martins, Phys. Rev. B 43 (1991) 1993. 
J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, Phys. Rev. B 47 (1993) 4174. 

• outside the core region: identical to the true wavefunction 
• inside core region: nodeless and the same norm as the true wavefunction
From the pseudo wavefunctions a potential          is reconstructed by inverting 
the Schrödinger equation

ul(r)µ
−
h̄2

2me

∆ + ul(r)− ²l,m

¶
φ̃l,m(r) = 0

⇒ ul(r) = ²l,m +
1

φ̃l,m(r)
·
h̄2

2me

∆φ̃l,m(r)



Construction of Pseudopotentials

The pseudo potential can then be obtained as („unscreening“):

v
ps
l (r) = ul (r)−

e2

4π²0

Z
d3r

ñ(r0) + Z̃ (r0)

|r − r0|
− µxc([ñ(r)],r)

with

ñ(r) =
X
n

fnΨ̃∗(r)Ψ̃n(r)

Z̃(r)

pseudo density

Charge density of nucleus and core electrons (Gaussian)

Different potential for each angular momentum!

Most general form of a non-local pseudo potential (semi-local):

VPS =
X
lm

|YlmivlhYlm| spherical harmonicsYlm



Ultrasoft Pseudo Potentials
Aim: Plane wave cutoff should be as low as possible

D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.
K. Laasonen, R. Car, C. Lee, and D. Vanderbilt, Phys. Rev. B 43 (1991) 6796. 

Problem:

Modified US 
wavefunction

pseudo
wavefunction
(norm cons.)

rrc

r > rc:         identical to the AE wavefunction
r < rc:         as soft as possible

⇒ The norm-conservation rule is relaxed. 

Solution:

ψUS
ψUS

Even for norm-conserving pseudo potentials large 
cutoffs might be required.

⇒ introduction of atom-centered 
augmentation charges to compensate for 
charge deficit



Pros and Cons of the PPW Method

Advantages:

• systematic convergence is possible by increasing the cutoff
• simple forces (no Pulay corrections required)
• basis independent of atomic positions and species (no BSSE, unbiased)
• simple coding
• no need to include core electrons (less KS orbitals to calculate)
• total energies smaller (less sensitive to numerical noise)

Disadvantages:

• not all-electron, pseudopotentials can introduce errors (transferability)
• large basis sets (about 100 PWs per atom)
• volume variation changes basis set size for given cutoff
• all information on the charge density and wavefunctions near the nucleus is lost
(some quantities require core wavefunctions)

• bound to periodic boundary conditions (plane waves!)
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Augmentation Methods

Motivationinteratomic region 
(interstitial) muffin tin radius

Strong oscillations of the wavefunctions 
in the core region ⇒ PWs not sufficient

Is there an all-electron method?

(RMT)

Augmented Wave Methods: 

⇒ all-electron method possible if suitable 
basis functions can be constructed

• core regions: atom-like wavefunctions
• bonding regions: „envelope functions“

atomic region 
(muffin tin spheres)

O. K. Andersen, Phys. Rev. B 12 (1975) 3060. 
J. C. Slater, Phys. Rev. 51 (1937) 846. 



Augmentation Methods: Overview

Core Region
atom-centered spheres

Bonding Region
Interstitial

Method

PWs

PWs

Hankel Functions

PWs

AOs

AOs

AOs

Projectors + PWs

APW

LAPW

LMTO

PAW

PWs

e.g. NAOs

Pseudopotentials + PWs

e.g. NAOs

PPW

Local Basis

Other Approaches



Augmented Planewave Method
Muffin tin Approximation („historic“):

Muffin tin region: Solution of the radial Schrödinger equation for the spheridized 
effective potential. 

Interstitial region: Solution of the Schrödinger equation for a constant potential. 

⇒ Basis function (augmented planewave): APWs are non-orthogonal

χk (r, E) =

(
1√
Ω
ei(k+G)r r ∈ IP
lmA

α,k+G
lm uαl (r

0, E)Ylm(θ, φ) r ∈ RMT

r0 = |r− rα |with

uαl (r, E)

radius

radial function

spherical harmonicYlm(θ, φ)

Aα,k+G parameter
lm



Augmented Planewave Method

Aα,k+G
lmDetermination of the parameter                    :

The radial functions match the planewaves at the sphere boundary in value, but not 
in slope. 
For this purpose the planewave is expanded in spherical harmonics around center 
α. This expansion is truncated at some lmax
⇒ number of planewaves = number of basis functions

Core states are localized within the MT sphere and are obtained by the solution of 
the radial Schrödinger equation in the sphere. 
Valence states are given as a linear combination of APWs. 

φk(r) =

(
1√
Ω

P
G cGe

i(k+G)r r ∈ IP
lmA

α,k+G
lm uαl (r

0, E)Ylm(θφ) r ∈ RMT



APW

Problem: 

To describe an eigenstate             correctly, the parameter E has to be the 
eigenvalue      of that state.²kn

φkn(r)

Therefore the APWs have to be determined self-consistently for each eigenvalue. A 
matrix diagonalization is required for each eigenvalue ⇒ slower than PPW

⇒ the original APW technique is of no practical use anymore



Linearized Augmented Planewaves

Energy dependence of the APWs E = ²kn
Idea: Taylor expansion 

uαl (r
0, ²kn) = u

α
l (r

0,E0) + (E0 − ²kn)
∂uαl (r

0, E)

∂E

¯̄̄
E=E0

Motivation: 

= uαl (r
0, E0) +(E0− ²kn)u̇

α
l (r

0,E0)

But                   is unknown ⇒ new parameter(E0 − ²kn)

χk(r) =

(
1

Basis functions: Linearized Augmented Plane Wave: 

√
Ω
ei(k+G)r r ∈ IP
lm

³
Aα,k+G
lm uαl (r

0,Eα
1,l ) +B

α,k+G
lm u̇αl (r

0,Eα
1,l )
´
Ylm(θ, φ) r ∈ RMT

l-dependent 



Linearized Augmented Planewaves

We now have two parameters:                     and Aα,k+G
lm Bα,k+G

lm

They are determined by matching the planewaves in value and slope at the sphere 
boundary. 

Eα
1,lWith the energy          the basis functions can be determined once and for all. 

⇒ one diagonalization of H sufficient to obtain all eigenvalues/eigenvectors
⇒ much faster than APW

RαminGmax is more commonly used. 

Like in the PPW method the number of basis functions is determined by an energy 
cutoff               . G2max

Reason:

The larger RMT, the smaller the cutoff for a given accuracy since the wavefunctions 
are smoother further away from the nuclei (easier to describe). 



Linearized Augmented Planewaves
Core states:

• localized inside RMT
• treated like in free atom, but in the potential of the valence electrons

Valence states:

• leak outside RMT
• described by LAPWs

Semi-core states:

• leak outside RMT, low-lying valence states, same l-value as other valence states
• described by addition of a local orbital (LO), localized in one particular RMT

χlmα,LO(r) =

(
0 r ∈ I³
A
α,LO
lm uαl (r

0, Eα
1,l) + B

α,LO
lm u̇αl (r

0, Eα
1,l ) + C

α,LO
lm uαl (r

0, Eα
2,l )
´
Ylm(θ,φ) r ∈ RMT

3 Parameters: LO is normalized and has zero value and slope at RMT.

⇒ B
α,k+G
lmA

α,k+G
lm C

α,k+G
lm



The APW+lo Method
Two types of basis functions:

1. APWs with fixed energy

χk(r) =

(
1√
Ω
ei(k+G)r r ∈ IP
lm A

α,k+G
lm uαl (r

0,Eα
1,l)Ylm(θ,φ) r ∈ RMT

2. Local orbitals (different from LAPW)

χ lmα,lo(r) =

(
0 r ∈ I³
A
α,lo
lm uαl (r

0, Eα
1,l) + B

α,lo
lm u̇αl (r

0,Eα
1,l )
´
Ylm(θ, φ) r ∈ RMT

A
α,k+G
lm

B
α,k+G
lm⇒ 2 parameters

Determination: normalized and zero value at RMT (not zero slope)

Smaller basis set than LAPW (like APW), but basis set independent of energy 
(like LAPW).



Linear Muffin Tin Orbital
Linear Muffin Tin Orbital Method = LMTO

• all-electron method
• muffin-tin spheres and interstitial
• envelope functions are Hankel functions
• solutions of the radial Schrödinger equation inside MT spheres
• matching in value and slope at RMT

O. K. Andersen, Phys. Rev. B 12 (1975) 3060. 

Interstitial:

φlm(r,E) = ilYlm(θ,φ)(uαl (Eν , r) + ω(E)u̇αl (Eν,r ))MT Sphere:

φlm(r,E)matches tail function in value and slope at RMT by normalization and 
choice of             . ω(E)

Often a muffin tin potential approximation is used:
• interstitial: constant potential
• MT sphere: spherically symmetric potential 



Linear Muffin Tin Orbital
Atomic Sphere Approximation (ASA):

• potential is assumed to be spherically symmetric around each atom
• muffin tin spheres are increased up to the size of the Wigner-Seitz cell
⇒ overlapping atomic spheres

• envelope (tail) functions: κ = 0

(multipole potentials)Klm(r) = r− l−1Ylm(θφ)⇒ Interstitial:

• applicable only to closed-packed systems (or introduction of empty 
spheres) 
• energy differences due to structural changes are often qualitatively wrong
• simple and efficient method for large systems

There are much more sophisticated FP-LMTO schemes

• All materials require the same computational effort 
• More complex codes than PPW
• mainly used as bandstructure method



PAW: Motivation
The Projector Augmented Wave Method

P.E. Blöchl, Phys. Rev. B 50 (1994) 17953.    (http://www.pt.tu-clausthal.de/~paw )
We want: • accuracy of (linear) augmented plane wave methods

• efficiency of (US) pseudo potential calculations 

We need: • smooth wavefunctions that can easily be represented in a
plane wave expansion

• information of all-electron full-potential calculations 
Idea:
True all-electron wave function     is transformed into pseudo 
wavefunction . 

Ψ(r)
Ψ̃(r)

Caution: „Pseudo wavefunction“ has nothing to do with a 
pseudo potential. Better is „auxiliary wavefunction“.

How can we obtain well-behaved pseudo wavefunctions?
How can they be used to obtain the same information as from the all-
electron wavefunctions?

http://www.pt.tu-clausthal.de/~paw


Projector Augmented Wave (PAW)

Transformation operator:
T̂ = Û−1⇒

Ψ(r) = T̂ Ψ̃(r)

Ψ̃(r) = ÛΨ(r)

We need: • a method to determine the pseudo wavefunctions
• the transformation operator 
• other physical quantities: electron density, expectation values, …

1. Calculation of the pseudo wavefunctions:

We need to express the total energy by the pseudo wavefunctions.

E = E[Ψn(r)] = E[T̂ Ψ̃n(r)]

⇒ Schrödinger-like equation:

⇒ We are able to determine the             of the ground state.

n(     contains k-point, band index, spin) 
³
T̂ +HT̂ − T̂ +T̂ ²n

´
Ψ̃n(r) = 0

Ψ̃n(r)



Projector Augmented Wave (PAW)

2. Derivation of the Transformation Operator        :T̂

We have to find a transformation       so that the pseudo wavefunctions are well-
behaved.

T̂

What is „well-behaved“?

• should be smooth (expanded in few plane waves)
T̂ = 1 +

X
R

SR

(sum over atomic contributions, because      has to modify      in each 
atomic region)

T̂ Ψ̃n(r)

Ψ̃n(r)
• local, linear operator 

For each atom,        adds the difference between             and             .SR Ψn(r) Ψ̃n(r)

This difference is expanded in partial waves for the free isolated atoms.

|φ̃ii

|φiiall-electron valence partial wave:

pseudo partial wave:
SR|φ̃ii = |φi i− |φ̃i i

i = R, l,m,α



PAW Transformation Operator
In the augmentation region              is expanded in partial waves          .|φ̃ii

The      are determined by projector functions yielding the contribution of each 
partial wave.

hp̃i|ci

⇒ ⇒ orthogonality hp̃i|φ̃ji = δij

Remember:
SR|φ̃ii = |φi i− |φ̃i i

Remember:
T̂ = 1 +

X
R

SR T̂ = 1+
X
i

³
|φi i − |φ̃i i

´
hp̃i|

Now we have access to the true wave function .Ψ(r) = T̂ Ψ̃(r)

Ψ̃n(r)

Ψ̃n(r) =
X
i∈R

φ̃i(r)cin

ci = hp̃i|Ψ̃ni |Ψ̃ni =
X
i∈R

|φ̃iihp̃i|Ψ̃ni

=
X
i∈R

³
|φii− |φ̃ii

´
hp̃i|Ψ̃ni

SR|Ψ̃ni = SR
X
i∈R

|φ̃i ihp̃i|Ψ̃ni

(times spherical harmonics)



Projector Augmented Wave

Partial Waves:

• and         are pairwise identical outside some augmentation radius

• solve Schrödinger equation for all-electron atomic potential

• and          are represented on a radial grid (radial functions) and multiplied 
with spherical harmonics

|φ̃ii |φii rc

|φ̃ii |φii

| p̃iiProjector Functions          :

• are localized within the augmentation region of a particular atom

• obey the orthogonality condition:

• probe the character of the wavefunction 

hp̃i|φ̃ji = δij



Projector Functions
s-type projector functions

| p̃ii

p-type projector functions

d-type projector function

(figures courtesy P. Blöchl)



PAW Expectation Values
Expectation value:

hAi =
X
n

fnhΨn |A|Ψni

=
X
n

fnhΨ̃n |A|Ψ̃ni plane wave part

−
X
i

X
j

Dijhφ̃i|A|φ̃ji

+
X
i

X
j

Dijhφi|A|φji one-center expansion of true wavefunction

one-center expansion of pseudo wavefunction

+
X
n

hΨcn|A|Ψ
c
ni core contribution

Dij =
X
n

hp̃ i|Ψ̃nifnhΨ̃n| p̃jiWith a one-center density matrix

and the core states |Ψcni



Projector Augmented Wave

one-center terms, sums of atomic contributions,
cancel each other outside augmentation region, 
but correct for           inside augmentation region

Electron density: ( ñ(r)

pseudo density, PW expansion

n(r) = ñ(r) + n1(r)− ñ1(r) ñ(r) =
X
n

fnhΨ̃n|rihr|Ψ̃ni

n1(r) =
X
ij

ρijhφi|rihr|φji

ñ1(r) =
X
ij

ρijhφ̃i|rihr|φ̃ji

ρ ij =
X
n

fnhΨ̃n| p̃iihp̃j |Ψ̃niOccupancies of augmentation channel (ij):

Total energy:

E([Ψ̃n], Ri ) = Ẽ + E
1− Ẽ1 evaluated for each sphere 

individually on radial grid
evaluated on regular grid

(



Projector Augmented Wave
• first all-electron Car-Parrinello scheme
• core electrons explicitly included in the frozen core approximation
• works equally well for all atoms (transition metals, first row elements)
• accuracy comparable to LAPW
• PAW unifies all-electron and pseudopotential approaches
• computationally efficient
• all-electron method, full wavefunctions including their nodal structure are 
properly defined

• exact when converged (no transferability problem)
• periodic boundary conditions

Approximations

• frozen core approximation (ρ and E from isolated atoms, not necessary)
• truncated plane wave expansion (basis set,          like USPP)
• truncated partial wave expansion (augmentation, 1 or 2 per     and atom)(lm)

Ecut



Projector Augmented Wave
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Localized Basis Sets
Examples

• Numerical atomic orbitals (NAO)

• Gaussian type orbitals (GTO)

• Slater Type orbitals (STO)

Properties

• atom-centered

• applicable to periodic and non-periodic systems

• no costs for empty space

⇒ particularly useful for molecular calculations 



Slater Type Orbitals (STO)

(primitive STO)General form of a STO: f(r, θ,φ) =R(r) · Y (θ, φ)

Angular part: Spherical harmonics Y (θ, φ)

R(r) =N(n, ζ) · rn−1 · e−ζr

⇒

Radial part:

Normalization:
Z ∞
0

[R(r)]2r2dr = 1

(   = integer quantum number)2 Parameters: and ζ

N(n,ζ)

nn

STO Basis sets:
„single zeta“: one radial function per (nl) subshell (e.g. 2px, 2py, 2pz)
„double zeta“: two radial functions per (nl) subshell 

J. C. Slater, Phys. Rev. 36 (1930) 57.
S. Huzinaga, Comp. Phys. Rep. 2 (1985) 281.
A. Szabo, and N. S. Ostlund, „Modern Quantum Chemistry“, Dover Publications 1996 



Gaussians Type Orbitals (GTO)

Spherical Gaussians for atomic calculations:

(primitve GTO)General form of a GTO: f(r, θ,φ) =R(r) · Y (θ, φ)

R(r) =N(n,α) · rn−1 · e−αr
2

Y (θ, φ)

Normalization: ⇒

Angular part: Spherical harmonics 

Radial part: Z ∞
0

[R(r)]2r2dr = 1N(n,α)

Analytic integral evaluation possible,
in contrast to STOs ⇒ easy to handle

J. C. Slater, Phys. Rev. 36 (1930) 57.
S. Huzinaga, Comp. Phys. Rep. 2 (1985) 281.
A. Szabo, and N. S. Ostlund, „Modern Quantum Chemistry“, Dover Publications 1996 



Cartesian GTOs

Cartesian Gaussians for molecular calculations:

fl,m,n(x,y,z) =N(l, α)N(m,α)N(n,α)x
lymzne−αr

2

GTO:

Normalization:

⇒

Z ∞
−∞

[flmn(x,y, z)]2dxdydz = 1

N(l,α),N(m,α),N(n, α)

s-type: l +m+ n= 0

e−αr
2

l+m+ n = 1

(x,y,z) · e−αr
2

p-type:

d-type: l +m+ n= 2

(x2, y2, z2, xy,yz, xz) · e−αr
2

f-type: l+m+ n = 3

(x3, y3, z3, x2y,x2z,y2x,y2z,z2x,z2y, xyz) · e−αr
2



Beyond Primitive GTOs

⇒ Several primitive Gaussians can be used to mimic a STO

Linear combination of N primitive Gaussians

STOs are closer to the actual physics of the system than Gaussians

By using many primitive Gaussians a minimal basis set can be very accurate for 
atomic calculations.

Split-Valence Basis Sets:

R(d, α; r) =
NX
k=1

dkg(αk, r)

Contracted Gaussian Functions (CGFs):

Inner shells:
minimal basis

Valence shells:
double zeta basis

Example: 6-31G for C, N, O, and F
6 primitive Gaussians for the core orbital
3 primitive Gaussians for the valence orbitals
1 primitive Gaussian for a second set of 
valence orbitals

More advanced: split-valence plus polarization: STO-3G*, 3-21G*, 6-31G*, 
6-31G**, …



Comparison: STOs vs. GTOs
Boundary Conditions Use GTOs to mimic STOs

r → 0: cusp condition
• STOs not well, 
• GTOs hopeless, since

About 2 to 3 times more GTOs as 
STOs for the same accuracy needed
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df
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r →∞ :                            
• STOs: ok
• GTOs decay too fast

∼ e−const r

r

R

⇒ Use contracted GTOs 

r

R



Numerical Atomic Orbitals (NAOs)

1s

2s 2px 2py 2pz

3s 3px 3py 3pz 3dxy 3dyz 3dzx 3d3dx -y22

General form:
• the exact shape depends on

nuclear and atomic charges
• no general analytic form available

(in contrast to STOs and GTOs)
• numerical representation on an

atom-centered grid 
(spline interpolation) 

f(r, θ,φ) =R(r) · Y (θ, φ)

z2

See e.g.: B. Delley, J. Chem. Phys. 92 (1990) 508. 



Numerical Atomic Orbitals
Determination of NAOs

• exact DFT-spherical-atomic orbitals of
• neutral atoms
• ions
• hydrogenic atoms

• radial functions are calculated in the setup (free atom) 
• implemented as numerically tabulated functions

Properties of NAOs

• maximum of accuracy for a given basis set size
• infinitely separated atoms limit treated exactly
• small basis set superposition error (BSSE)
• small number of additional functions needed for polarization
• cusp singularities at the nuclei correct 



Basis Set Libraries
Minimal basis set:

One basis function per orbital in occupied subshells, not very accurate
Example: STO-3G for Carbon: 5 CGFs: 1s, 2s, 2px, 2py, 2pz, each consisting of 
3 primitive GTOs

GTOs: Double zeta, triple zeta, quadruple zeta:

Several basis functions per orbital

Split-valence basis sets, e.g. 3-21G, 6-31G …

Polarization functions can be added (higher angular momentum).

NAOs: Double numeric (DN), double numeric plus polarization (DNP)…

A second set of basis functions can be obtained from an ionic calculation.

Typically, basis set libraries are provided in the DFT codes. 

They are easy to use, but hard to extend/improve.



BSSE
Basis Set Superposition Error

Definition:
BSSE is a lowering of the total energy if the electrons of an atom 
spread into the basis functions provided by the other atoms due to 
an incomplete basis set for this atom (mimics binding).

Plane waves: no BSSE

GTOs and STOs: BSSE can be a serious problem

NAOs: (nearly) no BSSE with respect to free atoms
BSSE with respect to molecules exists



Periodic Boundary Conditions
and Localized Basis Sets

Bloch theorem:

χ0i(r) = χni (r−Tn)Lattice periodic function:

with Tn = n1 · a1+ n2 · a2+ n3 · a3

Kohn-Sham eigenstates                 are 
expanded in a finite set of Bloch basis functions:

ψj(k,r) =
X
i

ckjiϕi(k, r)

ψj (k,r)

Bloch basis functions:

ϕi(k, r) =
∞X

n=−∞
eikTnχni (r−Tn)



Periodic Boundary Conditions
and Localized Basis Sets

The coefficients        are determined self-consistently by solving coupled 
matrix equations for a chosen set of k-points within the reference unit cell:

ckji

X
µ

Hνµ(k)c
k
iµ = ²

k
i

X
µ

Sνµ(k)c
k
iµSecular equation

Hνµ(k) =
∞X

n=−∞
eikTnhχ0ν |H |χ

n
µi

Hamilton matrix

Sνµ(k) =
∞X

n=−∞
eikTnhχ0ν |χ

n
µi

Overlap matrix



Comparison: 
Localized vs. Periodic Basis Sets

Localized Basis Sets

„Periodic“ Basis Sets

• non-orthogonal

• smaller basis sets

• element specific

• all-electron and pseudopotentials

efficient, maybe biased, overcomplete, not simple

• systematic

• general

• userfriendly

not efficient, not biased, complete, simple

quality ⇒ basis set 
extension ⇒ rcut

quality ⇒ Ecut

extension ⇒ infinite

Convergence
NAOs: PWs:



What is the “best” DFT Code?

The best DFT code should be

• fast (CPU time)

• economically (hardware, e.g. memory)

• accurate (within limitations of XC)

• easy to use (man-power)

• applicable to all types of systems

• maintainable (readable source code)

• available (license, price)



Benchmark Calculations

• LAPW and APW+lo: WIEN2k

• Numerical Atomic Orbitals: DMol3

• Pseudo Potential Plane Waves: Castep (USPP)

Codes:

(all-electron

Accuracy:
• coarse calculation: binding energy error < 0.1 eV

• accurate calculation: binding energy error < 0.02 eV

• PBE functional 

Systems:
• Aluminium: atom and bulk

• 7 layer Al(111) slabs, clean and adsorbed oxygen atoms
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The performance for small molecules is very similar.
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Calculations performed by JB, Mira Todorova, Jutta Rogal, and Angelos Michaelides.



Bulk Aluminium 
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Oxygen at (1x1) Al(111) Slabs 
Oxygen Binding Energy
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• 7 Al layers

• O adsorbed at both sides

• 15 Å vacuum

Calculations performed by JB, Mira Todorova, Jutta Rogal, and Angelos Michaelides.



Oxygen at (1x1) Al(111) Slabs 
CPU Times
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Oxygen at (2x2) Al(111) Slabs 
Oxygen Binding Energy
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Conclusion

• there is no „black box“ DFT code in state-of-the-art research

• some codes hide complexity (dangerous)

• no code is the best choice for all types of questions/systems

• efficiency strongly depends on the type of basis set

• accuracy hard to check (approximations prohibit total energy 
comparisons), best is to use different codes on critical problems

The best code is the code the user understands!
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