Basics of density-functional theory and fast guide to actual calculations

- I. From the many-particle problem to the Kohn-Sham functional
- II. From the total energy to materials science and biophysics

"the ab initio line of computational sciences and engineering"

Born Oppenheimer Approximation

$$\Psi(\mathbf{r_{I}}, \dots \mathbf{r_{N}}; \mathbf{R_{I}}, \dots \mathbf{R_{M}}) = \sum_{\nu} \Lambda_{\nu}(\{\mathbf{R_{I}}\}) \Phi_{\nu \{\mathbf{R_{I}}\}}(\mathbf{r_{k}})$$
Where Φ_{ν} are solutions of the "electronic Hamiltonian":

$$H^{e}_{\{\mathbf{R_{I}}\}} \Phi_{\nu, \{\mathbf{R_{I}}\}}(\mathbf{r_{k}}) = E^{e}_{\nu, \{\mathbf{R_{I}}\}} \Phi_{\nu \{\mathbf{R_{I}}\}}(\mathbf{r_{k}})$$

$$H^{e} = T^{e} + V^{e-e} + V^{e-ion}$$
frequently (commonly) applied approximations:
• neglect non-adiabatic coupling (terms of order m/M_{I})
• keep only Λ_{0}
 \Longrightarrow electronic and nuclear degrees of freedom decouple

Some Limits of the Born-Oppenheimer Approximation

It does not account for correlated dynamics of ions and electrons. For example:

- polaron-induced superconductivity
- dynamical Jahn-Teller effect
- some phenomena of diffusion in solids
- non-adiabaticity in molecule-surface scattering
- etc.

Kohn and Sham (1965):

$$E_{v}[n] = T_{s}[n] + \int v(\mathbf{r})n(\mathbf{r})d^{3}\mathbf{r} + E^{\text{Hartree}}[n] + E^{\text{xc}}[n]$$
with $E^{\text{Hartree}}[n] = \frac{1}{2}\frac{e^{2}}{4\pi\varepsilon_{0}} \iint \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}d^{3}\mathbf{r}d^{3}\mathbf{r}'$
And $T_{s}[n]$ the functional of the kinetic energy of non-
interacting electrons. $E^{\text{xc}}[n]$ contains all the unknowns.
At fixed electron number N the variational principle gives
$$\delta \left\{ E_{v}[n] - \mu \left(\int n(\mathbf{r})d^{3}\mathbf{r} - N \right) \right\} = 0$$
or
$$\frac{\delta E_{v}^{[n]}}{\delta_{n}} = \mu = \frac{\delta T_{s}[n]}{\delta n(\mathbf{r})} + v^{\text{eff}}(\mathbf{r})$$

or

Kohn and Sham (1965):

$$v^{\text{eff}}(\mathbf{r}) = v(\mathbf{r}) + \frac{e^2}{4\pi\varepsilon_0} \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3\mathbf{r}' + \frac{\delta E^{\text{xc}}[n]}{\delta n(\mathbf{r})}$$
Beause $T_s[n]$ is the functional of non-interacting particles we effectively "restrict" the allowed densities to those that can be written as
$$n(\mathbf{r}) = \sum_{i=1}^{N} |\varphi_i(\mathbf{r})|^2$$
This implies:
$$\left\{ -\frac{\hbar^2}{2m} \nabla^2 + v^{\text{eff}}(\mathbf{r}) \right\} \varphi_i(\mathbf{r}) = \epsilon_i \varphi_i(\mathbf{r})$$

$$v^{\text{eff}}(\mathbf{r}) \text{ depends on the density that we are seeking.}$$

$$T_s[n] = \sum_{k=1}^{N} \langle \varphi_k \ \left| -\frac{\hbar^2}{2m} \nabla^2 \right| \varphi_k \rangle \quad,$$

$$= \sum_{k=1}^{N} \epsilon_k - \int v^{\text{eff}}[n^{\text{in}}](\mathbf{r})n(\mathbf{r})d^3\mathbf{r} \quad.$$

The Kohn-Sham Ansatz

- Kohn-Sham (1965) Replace the original many-body problem with an independent electron problem ___ that can be solved!
- Only the ground state density and the ground state energy are required to be the same as in the original --many-body problem.

$$E_v[n] = T_s[n] + \int v(\mathbf{r})n(\mathbf{r})d^3\mathbf{r} + E^{\text{Hartree}}[n] + E^{\text{xe}}[n]$$

-- Maybe the exact $E^{xc}[n]$ functional cannot be written as a closed mathematical expression. Maybe there is a detour similar to that taken for $T_s[n]$? The challenge is to find useful, approximate xc functionals.

Quantum-Mechanics Based Technology Challenges for the Near Future

Create new materials and systems by design, e.g. quantum dots, quantum wires, nano-catalysis, etc.

For nanotechnology to become affordable, nanostructures will have to build themselves; normal manufacturing methods will be useless self-organization and assembly.

Make progress in <u>understanding biological systems</u> starting from the fundamental equations of quantum mechanics.

Bridging the time and length scales

What About the Kohn-Sham Eigenvalues?

The only quantities that are supposed to be correct in the Kohn-Sham approach are **density**, **energy**, **forces**, ...

These are integrated quantities:
$$n(\mathbf{r}) = \sum_{i=1}^{n} |\varphi_i(\mathbf{r})|^2$$

What about the individual $\varphi_i(\mathbf{r})$ and ϵ_i ?

In the real interacting many-electron system, energies to add and subtract electrons are well-defined only at the Fermi energy.

The Kohn-Sham $\varphi_i(\mathbf{r})$ and ϵ_i give an approximate description of quasi-particles, a (good) starting point for many-body calculations. -- *more later this week*.

be viewed as the DFT analog of Koopmans' theorem.

Summary

- -- Interacting electrons determine the properties and function of real materials and bio molecules.
- Approximate xc functionals have been very successful, but for highly correlated situations there are problems.

Exciting arenas for theoretical work:

- -- Thermodynamic phase transitions, e.g. melting.
- -- Surfaces, interfaces, defects, nanostructures in realistic environments, ..., e.g. catalysis modeling kinetics, e.g. for catalysis or crystal growth
- --(self-assembly and self-organization)
- Molecules and clusters in solvents, electrochemistry, fuel cells, external fields, transport.
- -- Biological problems

The challenges:

- -- Find practical ways to correct the xc approximation.
- -- Develop methods for bridging the length and time scales.

Three Basic Concepts for Modern Electronic Structure Calculations

Plane waves

The simplicity and speed of Fast Fourier Transforms Requires smooth pseudopotentials

Localized orbitals

The intuitive appeal of atomic-like states; good scaling with size.

Augmented methods

"Best of both worlds" - also most demanding. Most general form: (L)APW

Use codes properly and carefully.