Basics of density-functional theory and
fast guide to actual calculations

From the many-particle problem to the
Kohn-Sham functional

From the total energy to materials science and bio-

physics

"the ab initio line of computational
sciences and engineering”

Modeling Materials and Bio-Molecular Properties
and Functions: The Many-Body Schradinger Equation
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Born Oppenheimer Approximation
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Where @, are solutions of the “electronic Hamiltonian™:
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frequently (commonly) applied approximations:

* neglect non-adiabatic coupling (terms of order m/M,)

* keep onlyA,

— electronic and nuclear degrees of freedom decouple




Some Limits of the
Born-Oppenheimer Approximation

It does not account for correlated dynamics of ions

and electrons. For example:

- polaron-induced superconductivity

- dynamical Jahn-Teller effect

- some phenomena of diffusion in solids

- non-adiabaticity in molecule-surface scattering

- etc.

Wave-Function Theories

selected gubclass of
ons ® (Hartree and
Hartree-Fock theory);

i or Quantum Monte Carlo.
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The Hohenber g-Kohn Theorem

n(r) = n[®] A
B2 ; L= <02 8(r-T) [0 o
-

The set of non-degenerate
ground state wave functions
@ of arbitrary N-particle
Hamiltonians.

The set of particle densities
n(r) belonging to non-
degenerate ground states of
the N-particle problem.

The dashed arrow isnot possible




Density Functional Theory

The energy of the ground state of a many-
electron system : 19 { RI V) = Minq, <O|H| D>
Hohenberg and Kohn (1964): The functional
n(r)y = n[®@] = <®| 2 3(r-r,) |O>
i

can be inverted, i.e.,
(D(r]: r29 LRI I’N,) = (D[}’l(r)] .
Thisimplies:

E, ({R;}) =Min,,, E g, [n]

Comparison of Wave-Function and
Density-Functional theory
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Summary of Hohenber g-K ohn
Density-Functional Theory (DFT) -- 1964

—=- There is a one-to-one correspondence between the
ground-state wave function and the many-body
Hamiltonian [or the nuclear potential, voue(r)].

-- The many-body Hamiltoniar4 determines everything.|

-- There is a one-to-one ondence between
|the ground-state electron—densityl and the ground-
state wave functlion.




Kohn and Sham (1965):
Eyn] = Tin] + / v(r)n(r)d*e + EBTC (] + F5[n)]
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And T[n] the functional of the kinetic energy of non-
interacting electrons. £*[n] contains all the unknowns.

At fixed electron number N the variational principle gives
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Kohn and Sham (1965)'
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Bcause T[n] is the functional of non-interacting particles
we effectively “restrict” the allowed,densities to those
that can be written as n(r) = Z o, ()2

This implies: i=1

{—,ﬁ—“\—"'— '“Il]} (r)=¢, ¢, (r)
vef(r) depends on the density that we ar e seeking.
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The Kohn-Sham Ansatz

--  Kohn-Sham (1965) — Replace the original many-
body problem with an independent electron problem
that can be solved!

-- Only the ground state density and the ground state
energy are required to be the same as in the original
many-body problem.

E,[n] = T\n] 4 f:‘[l'}n{l'}rf"-‘l' ; J"'.‘H"rm'ei_n] + E%n)

-- Maybe the exact £*°[n] functional cannot be written as
a closed mathematical expression. Maybe there is a
detour similar to that taken for 7,[n]? The challenge is
to find useful, approximate xc functionals.




T,, EHatee and Exc are all universal functionals in n(r),
i.e., they are independent of the special system studied.
(general theory: see the work by Levy and Lieb)
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Most-Cited Papersin APS Journals

11 papers published in APS journals since 1893 with
>1000 citations citations in APS journals (~5 times
as many references in all science journals)

Table 1. Physical Review Articles with more than 1000 Citations Through June 2000
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From Physics Today, June, 2005

The Total Energy

From DFT a classical term
~ 1 1_‘. M 5
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+ quantum mechanical corrections for lattice vibrations

T
<A T'"A> The total energy per

“ atom without zero
" point vibrations as a

VBO 1 4 . .
M Y - . function of the inter-
/ - -/ atomic distance. The
agtha s .
cohesive . measured interatomic
. energy - i .
Zero point distance is the average

gnergy over the positions of
- ' vibrating atoms.

e

a, lattice parameter




34 years before
DFT invention

34 years after
DFT invention
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Solving the Kohn-
Sham Equations

* Structure, types of atoms
* Guess for input

* Solve KS Egs.

* New density

* Self-consistent?

* Output:

— Total energy, force, ...
— Eigenvalues

The self-consistent field method

update the geometry




The Exchange-Correlation Hole
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Comparison
(e 1) 5 of Hartree,
Hartree-Fock, and
density-functional
theories for jellium

For non-jellium systemsand the LDA (or the GGA) the shape of
n*(rr') isincorrect. However, only its spherical average enters:
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The Exchange Holein Ne Atom

O. Gunnarsson, M. Jonson, and B. I. Lundqvist, Phys. Rev. B 20, 3136 (1979)

. Sbhcdcal avc}ag'c 'arounc:l.
Exchange hole n*(r,r") the electron
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Exchange-Correlation Holein Silicon

R. Q. Hood, M. Y. Chou, A. J. Williamson, G. Rajagopal, and R. J. Needs, PRB 57, 8972 (1998)

T

The spherically averaged exchange-correlation hole in variational
Monte Carlo (VMC) and DFT-LDA with (a) one electron fixed at
the bond center, (b) one electron fixed at the tetrahedral interstitial
site, and (c) plots (a) and (b) superimposed with the same scale.




Quantum-M echanics Based Technology
Challengesfor the Near Future

Create new materials and systems by design, e.g.
quantum dots, quantum wires, nano-catalysis, etc.

For nanotechnology to become affordable, nano-
structures will have to build themselves; normal
manufacturing methods will be useless

> self-organization and assembly.

Make progress in understanding biological systems
starting from the fundamental equations of quantum
mechanics.

Bridging the time and length scales

Statistical Mechanics
or Thermodynamics

@

Density macroscopic
Functional

electronic
regime

The first (convincing) DFT calculations:
Stability of crystals and crystal phase transitions

M. T. Yin and
M. L. Cohen
PRB 26 (1982)

silicon

see also:
790 RO V.L. Moruzzi, J.F. Janak,
r diamond 1 and A. R. Williams
792l Calculated Electronic
0.6 0.7 0.8 0.9 1.0 1.1 Properties of Metals
Volume Pergamon Press (1978)

Total energy (Ryd./atom)




Electron Density of Si

Electron density difference from sum of atoms

experiment DFT-LDA DFT-GGA

J. M. Zuo, P. Blaha, and K. Schwarz, J. Phys. Cond. Mat. 9, 7541 (1997)

Ab initio melting curve of Fe
as function of pressure
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and G. D Price
NATURE 401 (1999)

Bio-Physics: DFT vs Force Fields

DFT-PBE " AMBER | n
C!.f 310

both force fields
CHARMM?27 g n predict the a-

| helix to be the
most stable

’ I : conformation
e I’ I only AMBER
‘ reproduces all
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What About the Kohn-Sham Eigenvalues?

The only quantities that are supposed to be correct in the
Kohn-Sham approach are density, energy, forces, ...
These are integrated quantities: n(r) = i lp; (r)?

What about the individual ¢,(r) and €;? -

In the real interacting many-electron system, energies to

add and subtract electrons are well-defined only at the
Fermi energy.

The Kohn-Sham ¢,(r) and €; give an approximate
description of quasi-particles, a (good) starting point for
many-body calculations. -- more later this week.

What About the Kohn-Sham Eigenvalues?

The ionization energy is: L = BY7'-E
'L OE, 1] .
(Well defined for the highest = i /“ T”,.JL—'UJL
occupied state. Otherwise, this g
only holds approximately.) = - / el fi) dfy
]

Here we assume that the positions of the atoms don’t
change upon ionization, or that they change with some

delay (Franck-Condon principle). Using the mean-value
theorem of integral algebra gives: I, = —€,(0.5)

This is called the Slater-Janak “transition state”. It can
be viewed as the DFT analog of Koopmans’ theorem.

Kohn-Sham Electron Bands

Kohn-Sham band gap: A =€, - €, of the N-particle system
The measured (optical) band gap is something else:

removal addition Epp = I—A
conduction A = EN_EVH
| | band EN-1_ gN
1 | (empty states) ) -
“1 7 ) the KS gap A E — EN-14 pNHl_opN
. - 2
= | valence = A+ AT
band Modern calculations of £
- gap
== | (filled states) — eploy the GIV approach,
1 starting from KS energies

L r X W and wave functions.
more comes later this week
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Summary

- Interacting electrons determine the properties and
function of real materials and bio molecules.

-- Approximate xc functionals have been very successful,
but for highly correlated situations there are problems.

Exciting arenas for theoretical work:

-- Thermodynamic phase transitions, e.g. melting.

-- Surfaces, interfaces, defects, nanostructures — in
realistic environments, ... , e.g. catalysis

-- modeling kinetics, e.g. for catalysis or crystal growth
(self-assembly and self-organization)

-- Molecules and clusters in solvents, electrochemistry,
fuel cells, external fields, transport.

-- Biological problems

The challenges:
-- Find practical ways to correct the xc approximation.
-- Develop methods for bridging the length and time scales.

Three Basic Conceptsfor
Moder n Electronic Structure Calculations

Plane waves
The simplicity and speed of Fast

Fourier Transforms
Requires smooth pseudopotentials
L ocalized orbitals
The intuitive appeal of atomic- Be aware of the
like states; good scaling with size. limitations of
present xc
Augmented methods functionals.
“Best of both worlds” — also most
demanding. Use codes
Most general form: (L)APW properly and
carefully.
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