

<section-header><section-header><list-item><list-item><list-item><list-item>

EXC!TING

Orthor	hombic c	cell: Pmmm	O(1)
	position [a b c]	point symmetry	Ba • O(4)
Y	(1/2 1/2 1/2)	mmm	
Cu(1)	$(0 \ 0 \ 0)$	mmm	Cu(2) 🖤 💣 🖤
O(1)	(0 ½ 0)	mmm	Y 🥪
Ba	(½½2)	mm	
Cu(2)	(0 0 z)	mm	O(2)
O(2)	(½ 0 z)	mm	
O(3)	(0 ½ z)	mm	
O(4)	(0 0 z)	mm	<i></i>
			2000 C
Å		Exc	ample: YBa ₂ Cu ₃ O ₇

Force con	tribut	ions fo	r a mix	ed dist	tortion
-O(2), -O(4)	Ba	Cu(2)	O(2)	O(3)	O(4)
position [c]	0.1815	0.3530	0.3740	0.3787	0.1540
F ^{HF} [mRy / a.u.]	46.66	123.82	0.76	-8.77	290.52
FIBS [mRy / a.u.]	-13.03	-35.22	6.50	7.91	-75.75
F ^{core} [mRy / a.u.]	-36.08	-88.30	6.45	0.75	-188.87
F [mRy/a.u.]	-2.45	0.30	13.71	-0.09	25.90
D		F	orces	in YBc	1_2CU_3

٨	\sim	~	٦	~~
Aa	ш	O	a	es

Г

Mode	ω LDA	ω GGA	ω Exp. [4]	rel. dev. LDA	rel. dev. GGA
Ba	103	115	118	-13%	-3%
Cu(2)	130	144	145	-10%	-1%
0(2)-0(3)	327	328	335	-2%	-2%
O(2)+O(3)	387	405	440	-12%	-8%
O(4)	452	452	500	-9%	-9%
VI			hono	n Eroc	NUODO

,	A _g moo	des				
	Mode	Ba	Cu(2)	O(2)	O(3)	O(4)
	Ba	0.85	0.52	0.05	0.05	0.00
	Cu(2)	0.53	-0.84	-0.08	-0.07	0.06
	O(2)-O(3)	0.00	0.02	-0.81	0.59	-0.05
	O(2)+O(3)	0.02	0.09	-0.51	-0.74	-0.43
	O(4)	0.03	-0.11	0.28	0.32	-0.90
H		YBc	a ₂ Cu ₃ (D ₇ : Nc	rmal `	Vector

	Mode	The	Theory		
		Ref. [1-2]	optimized	Ref. [3-7]	₩ •• ₩
. .	Ba	105 / 103	123	116-119	
٦Ig	Cu(2)	127 / 130	147	145-150	a
	0(2)-0(3)	312/327	338	335-336	
	0(2)+0(3)	361 / 387	422	435-440	P1 - P1
	O(4)	513 / 452	487	493-500	
200	Ba	57	65	70	
2g	Cu(2)	133	142	142	
	O(4)	185	222	210	
	O(3)	365	389	370	 R. E. Cohen et al., Phys. Rev. Lett. 64, 2575 (1990). R. Kouho et al., Phys. Rev. B 56, 14766 (1997).
	O(2)	568	593	579	[2] K. Kouba et al., Phys. Rev. B 30, 14766 (1997). [3] T. Strach et al., Phys. Rev. B 51, 16460 (1995).
30	Ba	72	79	83	[4] G. Burns et al., Solid State Commun. 66, 217 (1988)
.Jg	Cu(2)	133	141	140	[5] K. F. McCarty et al., Phys. Rev. B 41, 8792 (1990).
	O(4)	257	293	303	[6] V. G. Hadjiev et al., Physica C 166, 1107 (1990).
	O(2)	335	372	-	[7] B. Friedl et al., Solid State Commun. 76, 217 (1990)
	O(3)	524	546	526	[8] K. Syassen et al., Physica C 153-155, 264 (1988).

Supercell method:

- Unit cell commensurate with the q-vector (supercell)
- Computationally very demanding

Linear response theory:

- N. E. Zein, Sov. Phys. Sol. State 26, 1825 (1984). S. Baroni, P. Gianozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987).
- Starting point: undisplaced structure
- Treat q-dependent displacement as perturbation
- Self-consistent linear-response theory
- Keep single cell
- \clubsuit Computational effort nearly independent of $\mathbf{q}\text{-vector}$
- Anharmonic effects neglected

Supercells vs. Perturbation Theory

Comparison with experiment helps to analyze measured data contributes to assign modes P. Puschnig, C. Ambrosch-Draxl, R. W. Henn, and A. Simon, Phys. Rev. B 64, 024519-1 (2001). Theory can predict superconducting transition temperatures J. K. Dewhurst, S. Sharma, and CAD, 68, 020504(R) (2003); H. Rosner, A. Kitaigarodatsky, and W. E. Pickett, Phys. Rev. Lett. 88, 127001 (2002). predict phase transitions (phonon softening) much more What Can We Learn?

