

Relativistic semi-core states in fcc Th

cutoff energy Ecut (the approximate size of the second-variational-

step basis, including spin, is marked on the top axis) for two different muffin-tin radii. The standard FLAPW results are marked with circles, the results obtained with the additional $p_{1/2}$ local orbitals are marked with squares (the latter energies were increased by 3 eV in

order to show the curves on the same plot).

additional local orbitals for 6p_{1/2} orbital in Th

Spin-orbit (2nd variational method)

MIEN

FIG. 2. Density of states calculated with the scalar relativistic basis (top panel) and with the $p_{1/2}$ local orbitals extended basis (bottom panel). The splitting between the centers of $6p_{1/2}$ and $6p_{3/2}$ bands is shown.

J.Kuneš, P.Novak, R.Schmid, P.Blaha, K.Schwarz, Phys.Rev.B. 64, 153102 (2001)

W

Spin-orbit coupling: magnetic systems

magnetic systems:

- Define direction of magnetism (coupled to the lattice only by SO, magneto crystalline anisotropy)
- Possible reduction of symmetry: magnetic field breaks time-inversion and spin transforms like a pseudovector (current due to magn.field)
 - number of symmetry operations reduced
 - Irreducible BZ enlarged (do NOT "add" Inversion!)
 - atoms may become non-equivalent, reduced local symmetry (more LM)
- initso_lapw (with symmetso) dedects new symmetry and creates new files (case.struct, in*, clm*).
- Symmetry operations are classified into
 - A (preserves real space AND direction of spin)
 - B (preserves real space, inverts magnetic moment). Together with timeinversion this is still a valid symmetry operation.

H H

spin-orbit coupling: symmetry

direction of magnetization

	[100]	[010]	[001]	[110]
1	Α	Α	Α	Α
m _x	Α	В	В	-
m _y	В	Α	В	-
2 _z	В	В	Α	В

Spin-orbit coupling

• WIEN2k offers several levels of treating relativity:

- non-relativistic: select NREL in case.struct (not recommended)
- standard: fully-relativistic core, scalar-relativistic valence
 - mass-velocity and Darwin s-shift, no spin-orbit interaction
- "fully"-relativistic:
 - adding SO in "second variation" (using previous eigenstates as basis)
 - adding p-1/2 LOs to increase accuracy (caution!!!)
 - x lapw1 x lapwso
- (increase E-max for more eigenvalues, to have a better basis for lapwso)
- x lapw2 -so -c SO ALWAYS needs complex lapw2 version
- Non-magnetic systems:
 - SO does NOT reduce symmetry. initso_lapw just generates case.inso and case.in2c.
- Magnetic systems:
 - symmetso dedects proper symmetry and rewrites case.struct/in*/clm*

case.inso

WFFIL	
4 1 0	llmax,ipr,kpot
-10.0000 1.50000	emin,emax (output energy window)
0. 0. 1.	direction of magnetization (lattice vectors)
1	number of atoms for which RLO is added
2 -0.97 0.005	atom number,e-lo,de (case.in1), repeat NX times
00000	number of atoms for which SO is switched off; atoms

Ag – Au: the difference

Beyond LDA (GGA)

LDA+U

- Standard LDA (GGA) gives good description of structural and electronic properties of most solids (lattice parameters within 1-2%, at least qualitatively correct bandstructure, metalinsulator, magnetism,...)
- Problems: "localized" (correlated) electrons
 - late 3d transition metal oxides/halides
 - metals instead of insulators (FeO, FeF₂, cuprates, ...)
 - nonmagnetic instead of anti-ferromagnetic (La₂CuO₄, YBa₂Cu₃O₆)
 - 4f, 5f electrons
 - all f-states pinned at the Fermi energy, "always" metallic
 - orbital moments much too small
 - "weakly" correlated metals
 - FeAl is ferromagnetic in theory, but nonmagnetic experimentally
 - 3d-band position, exchange splitting,...

FeO, Cu-oxides

- Cuprates (La₂CuO₄, YBa₂Cu₃O₆)
 - LDA and GGA yields non-magnetic metals instead of AFM insulators

Can LSDA be improved ?

ab initio methods

- GGA: usually improvement, but often too small.
- Exact exchange: imbalance between exact X and approximate C
- Hybrid functionals: Hartree-Fock + LDA/GGA mix (adiabatic connection)
- GW: gaps in semiconductors, but groundstate? expensive!
- Quantum Monte-Carlo: very expensive

not fully ab initio

- Self-interaction-correction: vanishes for Bloch states
- Orbital polarization: Hund's 2nd rule by atomic Slater-parameter
- LDA+U: strong Coulomb repulsion via external Hubbard U parameter
- DMFT: extension of LDA+U for weakly correlated systems

"Beyond-LDA" results for NiO

B3LYP

Fock-35

I.Moreira etal., PRB65,155102 (2002)

LDA, hybrid-DFT or Hartree-Fock:

LDA+U method

MIEN

- Separation of electrons into two subsystems:
 - itinerant electrons (described by LSDA)
 - Localized d (f) electrons:

$$E^{ee} = \frac{1}{2}UN^{2} - \frac{1}{2}J\sum_{\sigma}N_{\sigma}^{2} - \frac{1}{2}(U-J)\sum_{\sigma}n_{m,\sigma}^{2}$$

- N...total number of $e^{\scriptscriptstyle -}$ $n_{m,\sigma}$...orbital occupancies
- Hubbard U describes the coulomb energy cost to place two electrons at the same site:

U = E(n+1) + E(n-1) - 2E(n) $n + n \Rightarrow n+1 + n-1$

• J is the averaged intraatomic exchange parameter

Beyond LDA:

- gaps, bandstructure (spectra): not groundstate properties
 - validity is difficult to judge
 - some properties (like gaps or magnetic moments) are obtained by "design"
- compare electron density (or "related" quantities)
 - X-ray diffraction has improved (synchrotrons, detectors), but only for Si it might be accurate enough to test DFT-methods

Electric field gradients

 Fe-EFG in FeF2:

 LSDA:
 6.2

 GGA:
 16.8

 exp:
 16.5

LDA+U Functional

- Define a new energy functional: $F^{LDA+U} = F^{LDA} + E^{ee}(n_m) - F^{dc}(n_m)$
- Double counting term F^{dc} can be approximated in several ways
 - Fully localized limit (Anisimov etal.): Assumes that the total number of d (f) electrons N=Σ n_m is given properly by LDA (but not the eigenvalues). Their energy is (SIC free Hartree energy):

$$E^{dc} = \frac{U}{2}N(N-1) - \frac{J}{2}\sum_{\sigma}N_{\sigma}^{2}$$

 $V_{m,m',\sigma} = (U-J)(\frac{1}{2} - n_{m,m',\sigma})$ can shift center of bands

Around mean field approximation (Czyzyk&Sawatzky):

$$E^{dc} = \frac{1}{2}UN^2 - \frac{1}{2}J\sum_{\sigma}N_{\sigma}^2 - \frac{1}{2}(U-J)\sum_{\sigma}n_{aver,\sigma}^2$$
$$V_{m,m',\sigma} = (U-J)(n_{aver,\sigma} - n_{m,m',\sigma}) \qquad \text{leaves constraints}$$

leaves center unchanged

Orbitals with occupancies n_{m,m',σ} larger than ½ (or n_{average}) become more occupied, others become depopulated.

rotational invariant LDA+U

- In essence, LDA+U shifts occupied states $(n_i > 1/2)$ down in energy by U/2 (increasing the occupation n_i) and empty states up (decreasing their occupation).
- A generalization leads to the "rotational invariant LDA+U" method, which is independent of coordinate systems, uses the full density matrix $n_{m,m'}$ and two parameters, Hubbard U and Stoner exchange J.
- U and J can be taken from experiment or estimated by constraint LDA calculations (see recipe on our website).
 (U ... 2-10 eV, J ... 1-2 eV)

LDA+U in WIEN2k:

cp \$WIENROOT/SRC_templates/case.inorb . cp \$WIENROOT/SRC_templates/case.indm . (done automatically in w2web)

Specify atoms, orbitals, double counting correction (FLL) and U (J=0)

runsp_lapw -orb

for nonmagnetic cases use

runsp_c_lapw -orb

Note: Different solutions may be obtained when starting from different density matrices.

LDA+U in weakly correlated metals: FeAl

Experimentally

- FeAl is nonmagnetic
- DFT
 - Conventional LSDA calculation
 - yields a ferromagnetic ground state
 LDA+U(AFM)
 - nonmagnetic
 - Fe-t_{2g} and Fe-e_g affected differently

P.Mohn, C.Persson, P.Blaha, K.Schwarz, P.Novak, H.Eschrig, *Correlation induced paramagnetic ground state in FeAI* Phys.Rev.Lett. 87, 196401 (2001)