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State of the Art Computer Simulations:
Where Are We Now?
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Japanese Computer Is World's Fastest, as U.S.
Falls Back

By JOHN MARKOFF

s AN FRANCISCO, April 19 — A Japanese laboratory has built the world's
fastest computer, a machine so powerful that it matches the raw processing
power of the 20 fastest American computers combined and far outstrips the
previous leader, an LB.M.-built machine.




Earth Simulator Supercomputer

Designed to model the Solid Earth (climate, earthquakes)
Construction: 1997-2002
Operation: since late 2002, by JAMSTEC
Cost: 500M$
Vendor: NEC
Type:
. Massively vector parallel
architecture
5120 processors/ 640 nodes
40 TFLOPS, 10 TB
OS: Unix, MPI / OpenMP,
FORTRANT77/90, C
Location: Yokohama




Earth Simulator Architecture

maFvhrT =7 o
Interconnection Network (IN) HEEEER

ZEFH A EU -
Shared Meamory 166G
i 2T = E o %
HIE| H 8
AnE . E EnE
| = Th zs
g 2 =B
= L K=
T HEJS—F L, W -F it W/~ F
Procassor Node Processor Node © * ' DProcessorNode T
Dt # 7 o0+ « 4 8 & 120
Spacifications Tetal numbss of processons 2
HE7OEyHOE— SR & it W /S — F B
Prm,mr&m?mrm'pmm £ GFLOES Total number of nodas B4
HES—FOE -2t FE - & o fit
Pesak porfonmancengede in SElLSIES Tetal peak pefariance 40 TFLOPS
MW/ —FDERNESER 16 GBE = kE 8 B2 B 16178

Shaard memony Total main mamony




Earth Simulator Layout




Challenging Problems:
Microscopic processes in hanostructures

excited state

J N transport \
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S
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ground state 0

Which processes follow exposure to
* Heat?

* Photo-excitations?

= Carrier injection?

* Atomic collisions?



Computational Approaches

Electronic structure calculations based on the ab initio
Density Functional formalism

Atomic motion in the electronic ground state:
Molecular dynamics simulations

Forces from total energy expressions:
Eiot = Etotl{R}) = Eqo{P(N)}
ab initio Density Functional formalism
Etot = Zi E(:oh (l) = Zi [Ebs (l) + Erep (l) ]
parametrized LCAO formalism (CRT)

Dynamics of atoms and electrons under electronic
excitations

Massively parallel computer architectures and suitable
algorithms distribute load over processors for speed-up



System evolution on the adiabatic surface of an

electronically excited state 14 fojiow right adiabatic surfaces of excited
states is rather difficult

A |e>

—
Non adiabatic decay (finite lifetime)

©
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—
Reaction coordinate
Challenges:

¢ Perform Molecular Dynamics simulations on the adiabatic surface of
an electronically excited state

¢ Solve the time-dependent Schroédinger equation for electrons during
lonic motion

¢ First-Principles Simulation tool for Electron-lon Dynamics
Sugino & Miyamoto PRB 59, 2579 (1999), PRB 66, 89901 (2002).



Excited state dynamics: flow diagram

t = 0. Change level occupations to mimic electronic
excitation. Then perform static SCF calculation.

v

t > 0: Solve y, (t+At)=exp{- i AtH(t)} p (1)

Is Hy 1-sham diagonal?

JrNO

Onset of nonradiative decay

Hellmann-Feynman theorem
works

Do MD

* Finite lifetime
* Decay path

1. No need of level assignment for a hole and an excited electron

except at the beginning.

2. Automatic monitoring of the nonradiative decay (lifetime,

decay path) without prejudice
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Searching for Transition States in
High-Dimensional Phase Spaces

Fu3|on of fuIIerenes N pealoods
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Fig. 1. Transmission electron microscopy images. (A) is

for (Cg), @SWNTs, (B) for (Cgy), @SWNTSs heated in -
(<10~* Torr) at 800°C for 14 h (HT800), (C) for HT100
(D) for HT1200. A and B indicate similar electron micro
images, but in B we can occasionally find that some ¢
adjacent Csy molecules are linked together as indicat:
arrowheads. In C, some of the Cg molecules coalesce tog
and transform to a tubular structure. In D, no Cg molecu
be observed but we easily find DWNTSs; in some of ther
inside-tubes are terminated by caps and the lengths ai
order of ~10 nm.

[S. Bandow, M. Takizawa, K. Hirahara,
et ¥ .0 7. M. Yudasaka, and S. lijima,
T 1 100°C Chem. Phys. Lett. 337, 48 (2001)]




Stone-Wales rearrangement pathway for

fusion of fullerenes

[Hiroshi Ueno, Shuichi Osawa, Eiji Osawa, and Kazuo Takeuchi,
Fullerene Science and Technology 6, 319-338 (1998) ]
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Stone-Wales

] —'@ % — transformation

Sequence of bond
rotations:

Solve 15x15x15
Rubik’s Cube puzzle

«» Do we understand the energetics?



Do we understand the
Stone-Wales process?
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Search in 360-dimensional configuration
space using string method:

*Stone-Wales is a multi-step process
*Activation barriers do not exceed = 5eV
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< Conclusions:

-Fusion is exothermic.

Energy gain AE=1Ry.
-Essential initial step:
(2+2) cycloaddition



Fusion of nanotubes

The zipper mechanism

M. Yoon, S. Han, G. Kim, S. Lee, S. Berber, E. Osawa, J. Ihm,
M. Terrones, F. Banhart, J.-C. Charlier, N. Grobert, H. Terrones,
P. M. Ajayan, D. Tomanek, Phys. Rev. Lett. 92, 075504 (2004).




AE[eV]

0 1 2 3 4 5 6 7 8 9
GSW step

+» Conclusion: Fusion is exothermic



Geometry of fusing Nanopants
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Ground State
Molecular Dynamics Simulations

hermal Conductivity of Carbon Nanotubes
.F Kwon, and David Tomanek,

o
i 3 o\ S & Phys.Rev. Lett. 84,4613
\eAS) (2000)

+ Nanotubes may help solve the heat problem:

Efficient conductors of electrons and heat
¢+ Record Heat Conductivity:

* Diamond

(isotopically pure): 3320 W/m/K
* Nanotubes: 6,600 W/m/K (theory, SWNT)
>3,000 Wim/K (experiment, MVWNT)

(room temperature values)

(combination of large phonon mean free path,
speed of sound, hard optical phonon modes)

& Savas Berber, Young-Kyun




Direct molecular dynamics simulation

J=-xSZ- Fouriers aw I NG —

ox o ‘o
J: Heat flux lv '
S: Cross section area BN
K: Thermal conductivity
K « phonon mean free path A
(distance that phonons
travel without scattering)

fiiti 000k-010k

Temperature (K)
o)
é

*Problem: Hot-cold
spot separation > A
to avoid artifacts

*How large is A?

L 1 L 1 L 1 1 1 | L 1 I
0 50 100 150
Position z(nm)



Temperature (T)

CPU resources for a large-scale simulation

| L,=140nm '

One time step in MD
« N (number of atoms)

L,=70nm

400- L, =35nm

Thermal flux propagation time

m along unit cell « (unit cell length) « N
K,=68.4W/mk Total CPU time xN?2
K,=33.8W/m/k
K,=27.2W/m/k
200-
o 100 200 300

Position z(nm)

CPU Time for L;: 2.5days Simulation time: 60ps  N=25,000
L,: 10 days 120ps N=50,000
L,: 40 days 240ps N=100,000

(Parametrized LCAO MD calculations)

1024 Processors / 2.5 Teraflops
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Excited State
Molecular Dynamics Simulations

Detection of Stone-\Wales defects

O— e
" state % o
(electron)
6 eV Origin of

defect
a-1T

hybridize
d state
(hole)

under photo-excitations?

Stone-Wales

» How does a Stone-Wales defect react
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4— Excitation with ultraviolet

ik

(3.3) 3 T=17 fs
carbon 2 (1962 cm-")
nanotube ol A

= Excitation with infrared

0 1 1 1 jT?;%el(fS) 1 1 160 |

1.8
(3,3) BN
nanotube

N-N bond length (A)
o 9

1.5 1 1 1 1 1 1 1 1 1 ]
"0 50 100
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Stone-Wales defects are not removed, but can be identified using photo-excitations




STM characterization of Stone-\Wales defects

(3,3) carbon

nanotube
(10,10)
CNT
(3,3) BN
nanotube
(3,3)
BNNT

[ T 1] TR

Y. Miyamoto, A. Rubio, S. Berber, M. Yoon, and D.
Phys. Rev. BR 69, 121413 (2004).



Intensity

Hot carrier dynamics in nanotubes

sHow useful are carbon nanotube devices

(field-effect transistors, non-linear optical
devices)?

*Maximum switching frequency:
m |ifetime of excited carriers

*How long do electronic excitations last?

"\WWhat dampens electronic excitations:
*Electron gas?

-Phonons?

Gate Oxide
I 1.5ps i 3.0ps | 5.0ps
Evolution of photoelectron spectra as a function of
pump-probe delay. At pump-probe delays of over 200 fs. the
& spectra can be well described by a Fermi-Dirac distribution
s E (dashed lines).
{ 4 L‘ T. Hertel and G. Moos,
Vo8 B PRL 84, 5002 (2000)
}:. e i 460K M-
SLG 1 LY Interpretation:
oA A A &
AR A

| bnc bt i | e-e comes before e-ph
0.0 08 00 0.5 00 0.5 00 0.5 0.0 0.5
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What are Excitations Good for?

Defect tolerance of nanotubes

»Defects limit performance, lifetime of devices

sAre CNT devices as sensitive to defects as Si-LSI circuits?
atomic vacancy

Will atomic vacancies trigger failure under
=high temperatures?
sillumination?



Equilibrium structure near a monovacancy
In sSp? carbon

Strain
too large

Barely stable



Stability of defective tubes at high temperatures

¢Danger of pre-melting near vacancies?
_ vacancy

T=0K T=4,000 K

¢ Nanotube remains intact until 4,000 K

¢ Self-healing behavior:
Formation of new bond helps recover
sstructural stiffness
=conductance



Reconstructed geometry

Stability increase due to
reconstruction
(bond formation across vacancy)

Does reconstruction affect
favorably transport in defective
tubes?




Quantum conductance of a (10,10) nanotube
with a single vacancy

5 Perfect tube —

bonds: o
electrons

network of 1T
electrons

Good news for applications: Self-healing
by reconstruction may remove one of the sharp dips



Optical excitation (AE=0.9 eV)
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Time evolution of the electronic states
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W (t+At)=exp(-i/h HAt ) W (t)
+Very long-lived excitation

¢ Correct PES is followed in case of level alternation



Structural changes under illumination

¢ Self-healing due to new bond formation
Y. Miyamoto, S. Berber, M. Yoon, A. Rubio, D. Tomanek, Can Photo Excitations
Heal Defects in Carbon Nanotubes? Chem. Phys. Lett. 392, 209-213 (2004)



Deoxidation of defective nanotubes

HOW tO d&OXidiZE? lBy heat treatment? .By chemical treatment with H?

03 . co — d-NH
o — ox-NH
(/7]
3 02
o 02.
£ Co
£
£ lr 0, co
= CO— B,

il
0 et i N
273 473 673 873 1073 1273

Temperature/ K

Yoshiyuki Miyamoto, Noboru Jinbo,
Hisashi Nakamura, Angel Rubio, and David Tomanek,
Photosurgical Deoxidation of Nanotubes, Phys. Rev. B 70 (2004).



Alternative to thermal and chemical treatment
Electronic excitations!

O~ - 0O-related
I ] electronic
| levels

—10

Energy level (eV)

20

e







Auger decay following the O1s — 2p excitation (~520 V)

D\ g
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Summary and Conclusions

0 Fusion of fullerenes inside a nanotube starts with a cycloaddition
and continues exclusively with Stone-Wales transformations.

g Fusion of nanotubes occurs efficiently via a zipper mechanism.
. Carbon nanotubes are Nature’s best thermal conductors.

3 Photo-excitations may be used to detect specific defects by their
vibrational signature.

g Hot carriers decay by electron-electron, subsequently by electron-
phonon scattering.

5 Heat and photo-excitations may induce self-healing behavior in
defective nanotubes.

3 Photo-excitations can be used to selectively remove oxygen
Impurities.



The End
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