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assume 0≤pos<A.size

i:=p;

while (i+1< A.size) do 

     A[i+1]:=A[i];

     i:=i+1;

     invariant (∀j∊ℤ)(pos≤j<i ⇒ A[j+1]=A[j])

end do

assert (∀j∊ℤ)(pos≤j<A.size ⇒ A[j]=A[pos])
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0≤pos<A.size

dataype nat = zero | succ of nat

add zero x = x

add (succ x) y = succ (add x y)

assert (∀ x) (add x (add x x)) =  (add (add x x) x)
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      Proving inductive properties over naturals

by saturation-based 
first-order theorem proving

0≤pos<A.size

dataype nat = zero | succ of nat

add zero x = x

add (succ x) y = succ (add x y)

assert (∀x) (∀y) (add x y) =  (add y x)a

 Automation of Induction for Program Analysis
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Proving inductive properties 
over arbitrary data types

by saturation-based 
first-order theorem proving

 Automation of Induction for Program Analysis
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Automation of Induction

in

Saturation-Based Proof Search
              

1. Use simple induction formulas over term algebras

2. Generalize induction formulas over term algebras

3. Extend induction to integers and other theories



Chalmers

14

Automation of Induction

in

Saturation-Based Proof Search
              

1. Saturation in first-order theorem proving

2. Saturation with induction over term algebras

3. Saturation with induction over integers

Joint work with Márton Hajdu, Giles Reger, Andrei Voronkov
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Part 1 | What Can We Prove?

Formulas in first-order logic* with quantifiers and theories, such as:

● group idempotency ⇒ commutativity

● 1 + 2 + … + n  =  n*(n+1)/2

● verification problems

● …
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Part 1 | Example Proof
1. ! [X0] : mult(e,X0) = X0 [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
4. ! [X0] : e = mult(X0,X0) [input]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
6. ~! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
8. ? [X0,X1] : mult(X0,X1)!=mult(X1,X0) => mult(sK0,sK1)!=mult(sK1,sK0) [choice axiom]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
10. mult(e,X0) = X0 [cnf transformation 1]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
12. mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [cnf transformation 3]
13. e = mult(X0,X0) [cnf transformation 4]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
15. mult(X0,mult(X0,X1)) = mult(e,X1) [superposition 12,13]
17. mult(inverse(X4),mult(X4,X5)) = mult(e,X5) [superposition 12,11]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
75. mult(X4,mult(X3,X4)) = mult(inverse(X3),e) [superposition 22,19]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
269. mult(sK0,sK1) != mult(sK0,sK1) [superposition 14,125]
270. $false [trivial inequality removal 269]
…
% Termination reason: Refutation
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Part 1 | Saturation-Based Theorem Proving

Proving formula F w.r.t. a set of formulas S:

1. Negate F and add ¬F to S

2. Repeat:

      2.1  Choose G ∈S

      2.2  Derive consequences C1, …, Cn of G and formulas from S

      2.3  Add C1, …, Cn to S

      2.4  If S contains false, return “F is valid”

3. Return “F is not valid”
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Proving formula F w.r.t. a set of formulas S:
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Part 1 | Saturation-Based Theorem Proving in Vampire

A lot of possibilities, 
using 

resolution/superposition over 
clauses

𝑙 = 𝑟 ∨ 𝐶      𝐿[𝑙] ∨ 𝐷
—————————

𝐿[𝑟] ∨ 𝐶 ∨ 𝐷
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Part 2 | Saturation and Induction

Induction can be implemented by reducing goals to subgoals, 

so having a goal ∀x F[x] you can prove it by induction on x.
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But . . . 
saturation theorem proving is not about reducing goals to subgoals.
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Part 2 | Saturation and Induction

Induction can be implemented by reducing goals to subgoals, 

so having a goal ∀x F[x] you can prove it by induction on x.

But . . . 
saturation theorem proving is not about reducing goals to subgoals.

resolution/superposition
and induction
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Part 2 | Saturation and Induction over term algebras

● Induction rule over term algebras

 

E.g.: (L[0] ∧ ∀x(L[x] ➝ L[x+1])) ➝ ∀xL[x]
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      2.2  Derive consequences C1, …, Cn of G and formulas from S

      2.3  Add C1, …, Cn to S

      2.4  If S contains false, return “F is valid”

3. Return “F is not valid”

 

 

- becomes an arbitrary formula in S

 

Part 2 | Saturation and Induction over term algebras

E.g.: (L[0] ∧ ∀x(L[x] ➝ L[x+1])) ➝ ∀xL[x]

● Induction rule over term algebras

● Saturation and induction
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● Saturation tailored to induction

 

Part 2 | Saturation and Induction over term algebras

E.g.: (L[0] ∧ ∀x(L[x] ➝ L[x+1])) ➝ ∀xL[x]

● Induction rule over term algebras
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● Saturation tailored to induction: Induction + Resolution

 

Part 2 | Saturation and Induction over term algebras

E.g.: (L[0] ∧ ∀x(L[x] ➝ L[x+1])) ➝ ∀xL[x]

● Induction rule over term algebras
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     Repeat:

      2.1  Choose G ∈S

      2.2  Derive consequences C1, …, Cn of G and formulas from S

      2.3  Add C1, …, Cn to S

      2.4  If S contains false, return “F is valid”

 

 

 

Part 2 | Saturation and Induction over term algebras

E.g.: (L[0] ∧ ∀x(L[x] ➝ L[x+1])) ➝ ∀xL[x]

● Induction rule over term algebras

● Saturation tailored to induction: Induction + Resolution
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     Repeat:

      2.1  Choose G ∈S

      2.2  Derive consequences C1, …, Cn of G and formulas from S

      2.3  Add C1, …, Cn to S

      2.4  If S contains false, return “F is valid”

 

 

 

Part 2 | Saturation and Induction over term algebras

E.g.: (L[0] ∧ ∀x(L[x] ➝ L[x+1])) ➝ ∀xL[x]

● Induction rule over term algebras

● Saturation tailored to induction: Induction + Resolution
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Part 2 | Saturation and Induction over term algebras
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● are stronger than the induction axiom 

Part 2 | Saturation and Induction over term algebras
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● are stronger than the induction axiom 

 

Part 2 | Saturation and Induction over term algebras

●
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Thus, applying thousands of induction inferences during proof search 
would hardly affect the prover’s performance.

Part 2 | Saturation and Induction over term algebras

● are stronger than the induction axiom 

●
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Part 2 | Saturation and Induction over term algebras

● can be targeted by further applications of induction
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● obtain the clauses:
 

Part 2 | Saturation and Induction over term algebras

● can be targeted by further applications of induction
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● obtain the clauses:
 

 

Part 2 | Saturation and Induction over term algebras

●

● can be targeted by further applications of induction
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But, we perform all these steps within the saturation framework!

Part 2 | Saturation and Induction over term algebras

 

●

● obtain the clauses:

● can be targeted by further applications of induction
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● Induction rule over term algebras

 

 

● Saturation tailored to induction: Induction + Resolution

Part 2 | Saturation and Induction over term algebras

Summary
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Part 2 | Saturation and Induction over term algebras

Summary

● Any valid induction scheme can be used

Genericity

● Structural induction on any term algebra (e.g. lists, trees)

● Induction rule over term algebras

● Saturation tailored to induction: Induction + Resolution
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Part 2 | Saturation and Induction over term algebras

Natural Extension: Induction with Generalization

● Proving stronger/generalized formulas 
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Part 2 | Saturation and Induction over term algebras

Natural Extension: Induction with Generalization

● Proving stronger/generalized formulas 

● To prove ∀x (x+(x+x) = (x+x)+x), use an induction axiom for 

     in addition to an axiom for ∀x (x+(x+x) = (x+x)+x)
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Part 2 | Saturation and Induction over term algebras

Natural Extension: Induction with Generalization

● Induction with generalization rule over term algebras

 

    where L’ is a generalization of L and 𝑝𝑟𝑒𝑚𝑖𝑠𝑒 → ∀yL’[y] is a valid induction scheme 
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Part 2 | Saturation and Induction over term algebras

Natural Extension: Induction with Generalization

 

• We do not replace L by L’ in the search space

• During saturation, both induction rules are used (w and w/o generalization)

• We add induction axioms for both L and L’ to the search space

● Induction with generalization rule over term algebras

    where L’ is a generalization of L and 𝑝𝑟𝑒𝑚𝑖𝑠𝑒 → ∀yL’[y] is a valid induction scheme 
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Part 2 | Saturation and Induction over term algebras
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Part 2 | Saturation and Induction over term algebras

Implementation Questions

● Which induction schemas to use

● Where to apply induction: clauses, literals, terms 
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Part 2 | Saturation and Induction over term algebras

Implementation Questions and Solutions in Vampire

• Induction schemas are implemented individually, controlled by options

• Options for selecting literals/terms: negative, uninterpreted constants, 
uninterpreted constants in the given goal…

• Options to limit the induction depth

• Options to limit inductive generalizations

• Rules and options for multi-clause induction for combining multiple 
literals in one induction axiom

● Which induction schemas to use

● Where to apply induction: clauses, literals, terms 
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Automation of Induction

in

Saturation-Based Proof Search
              

1. Saturation in first-order theorem proving

2. Saturation with induction over term algebras

3. Saturation with induction over integers
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Part 3 | Saturation and Induction over integers

● Integers with the standard ordering are not well-founded
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Part 3 | Saturation and Induction over integers

● But any set of integers with a lower/upper bound is well-founded

● Integers with the standard ordering are not well-founded
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Part 3 | Saturation and Induction over integers

● We define downward/upward induction schema with symbolic bounds:

 

        ₂

(upward)

(downward)

● But any set of integers with a lower/upper bound is well-founded

● Integers with the standard ordering are not well-founded
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Part 3 | Saturation and Induction over integers

 

        ₂

(upward)

(downward)

● We introduce integer induction rules, e.g.: 

 

● We define downward/upward induction schema with symbolic bounds:

● But any set of integers with a lower/upper bound is well-founded

● Integers with the standard ordering are not well-founded
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Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.: 
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Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.: 
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Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.: 
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Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.: 
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Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.: 
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Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.: 
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Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.: 
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Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.: 
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Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.: 
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Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.: 
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Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.: 
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Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.: 

 

 



Chalmers

81

 

 

Part 3 | Saturation and Induction over integers
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Induction scheme (upward):

 

Part 3 | Saturation and Induction over integers
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Induction scheme (upward):

 

Instantiate the scheme:

   

Part 3 | Saturation and Induction over integers
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Induction scheme (upward):

 

Instantiate the scheme:

   

Part 3 | Saturation and Induction over integers
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Part 3 | Saturation and Induction over integers
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Part 3 | Saturation and Induction over integers
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Part 3 | Saturation and Induction over integers

Array properties
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Part 3 | Saturation and Induction over integers

Sum properties
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Part 3 | Saturation and Induction over integers

Power properties
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Conclusions | Saturation and Induction

Induction in saturation-based proof search

● Induction rules in saturation

● Proving inductive properties from software analysis, math, …



Chalmers

Chalmers

Laura Kovács

assume 0≤p<A.size

i:=p;

while (i+1< A.size) do 

     A[i+1]:=A[i];

     i:=i+1;

     invariant (∀j∊ℤ)(p≤j<i ⇒ A[j+1]=A[j])

end do

assert (∀j∊ℤ)(p≤j<A.size ⇒ A[j]=A[p])

Conclusions | Saturation and Induction
                                                                       (ex. ~250kLoC, Vampire prover)

         Proving inductive properties

0≤pos<A.size

dataype nat = zero | succ of nat

add zero x = x

add (succ x) y = succ (add x y)

assert (∀ x) (∀ y) (add x y) =  (add y x)a
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Conclusions | Saturation and Induction

Further work on

● Guiding search (when to apply induction, reduce applications of induction, …)

● Use rewriting (extensions on recursive function definitions, …)

● Lemma generation (consequence finding, generalizations, …)

Induction in saturation-based proof search

● Induction rules in saturation

● Proving inductive properties from software analysis, math, …


