
Chalmers

Automation of Induction in Saturation

Automating Induction in Saturation-Based Proof Search

Petra Hozzová and Laura Kovács

 Automating Inductive Reasoning for Program Analysis

Chalmers

Chalmers

Laura Kovács

 Automation of Induction for Program Analysis

Chalmers

Chalmers

Laura Kovács

 Automation of Induction for Program Analysis
 (ex. ~250kLoC, Vampire prover)

Chalmers

Chalmers

Laura Kovács

assume 0≤pos<A.size

i:=p;

while (i+1< A.size) do

 A[i+1]:=A[i];

 i:=i+1;

 invariant (∀j∊ℤ)(pos≤j<i ⇒ A[j+1]=A[j])

end do

assert (∀j∊ℤ)(pos≤j<A.size ⇒ A[j]=A[pos])

 Automation of Induction for Program Analysis
 (ex. ~250kLoC, Vampire prover)

Chalmers

Chalmers

Laura Kovács

assume 0≤p<A.size

i:=p;

while (i+1< A.size) do

 A[i+1]:=A[i];

 i:=i+1;

 invariant (∀j∊ℤ)(pos≤j<i ⇒ A[j+1]=A[j])

end do

assert (∀j∊ℤ)(p≤j<A.size ⇒ A[j]=A[p])

 Automation of Induction for Program Analysis
 (ex. ~250kLoC, Vampire prover)

Chalmers

Chalmers

Laura Kovács

assume 0≤p<A.size

i:=p;

while (i+1< A.size) do

 A[i+1]:=A[i];

 i:=i+1;

 invariant (∀j∊ℤ)(p≤j<i ⇒ A[j+1]=A[j])

end do

assert (∀j∊ℤ)(p≤j<A.size ⇒ A[j]=A[p])

1. Generating inductive loop properties

2. Proving inductive properties over integers

 Automation of Induction for Program Analysis
 (ex. ~250kLoC, Vampire prover)

Chalmers

Chalmers

Laura Kovács

assume 0≤p<A.size

i:=p;

while (i+1< A.size) do

 A[i+1]:=A[i];

 i:=i+1;

 invariant (∀j∊ℤ)(p≤j<i ⇒ A[j+1]=A[j])

end do

assert (∀j∊ℤ)(p≤j<A.size ⇒ A[j]=A[p])

1. Generating inductive loop properties

2. Proving inductive properties over integers

by saturation-based
first-order theorem proving

 Automation of Induction for Program Analysis
 (ex. ~250kLoC, Vampire prover)

Chalmers

Chalmers

Laura Kovács

0≤pos<A.size

dataype nat = zero | succ of nat

add zero x = x

add (succ x) y = succ (add x y)

assert (∀ x) (add x (add x x)) = (add (add x x) x)

 Automation of Induction for Program Analysis
 (ex. ~250kLoC, Vampire prover)

Chalmers

Chalmers

Laura Kovács

 Proving inductive properties over naturals

by saturation-based
first-order theorem proving

0≤pos<A.size

dataype nat = zero | succ of nat

add zero x = x

add (succ x) y = succ (add x y)

assert (∀x) (∀y) (add x y) = (add y x)a

 Automation of Induction for Program Analysis
 (ex. ~250kLoC, Vampire prover)

Chalmers

Chalmers

Laura Kovács

Proving inductive properties
over arbitrary data types

by saturation-based
first-order theorem proving

 Automation of Induction for Program Analysis
 (ex. ~250kLoC, Vampire prover)

Chalmers

Chalmers

Laura Kovács

Computer
Algebra

First-Order
Theorem Proving

Loop Analysis

Our work
Automated Reasoning about Programs -

APRe

Chalmers

Chalmers

Laura Kovács

Computer
Algebra

First-Order
Theorem Proving

Loop Analysis

Our work
Automated Reasoning about Programs -

APRe

Chalmers

13

Automation of Induction

in

Saturation-Based Proof Search

1. Use simple induction formulas over term algebras

2. Generalize induction formulas over term algebras

3. Extend induction to integers and other theories

Chalmers

14

Automation of Induction

in

Saturation-Based Proof Search

1. Saturation in first-order theorem proving

2. Saturation with induction over term algebras

3. Saturation with induction over integers

Joint work with Márton Hajdu, Giles Reger, Andrei Voronkov

Chalmers

15

Automation of Induction

in

Saturation-Based Proof Search

1. Saturation in first-order theorem proving

2. Saturation with induction over term algebras

3. Saturation with induction over integers

Chalmers

16

Part 1 | What Can We Prove?

Formulas in first-order logic* with quantifiers and theories, such as:

● group idempotency ⇒ commutativity

● 1 + 2 + … + n = n*(n+1)/2

● verification problems

● …

Chalmers

17

Part 1 | Example Proof
1. ! [X0] : mult(e,X0) = X0 [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
4. ! [X0] : e = mult(X0,X0) [input]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
6. ~! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
8. ? [X0,X1] : mult(X0,X1)!=mult(X1,X0) => mult(sK0,sK1)!=mult(sK1,sK0) [choice axiom]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
10. mult(e,X0) = X0 [cnf transformation 1]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
12. mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [cnf transformation 3]
13. e = mult(X0,X0) [cnf transformation 4]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
15. mult(X0,mult(X0,X1)) = mult(e,X1) [superposition 12,13]
17. mult(inverse(X4),mult(X4,X5)) = mult(e,X5) [superposition 12,11]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
75. mult(X4,mult(X3,X4)) = mult(inverse(X3),e) [superposition 22,19]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
269. mult(sK0,sK1) != mult(sK0,sK1) [superposition 14,125]
270. $false [trivial inequality removal 269]
…
% Termination reason: Refutation

Chalmers

18

Part 1 | Example Proof
1. ! [X0] : mult(e,X0) = X0 [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
4. ! [X0] : e = mult(X0,X0) [input]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
6. ~! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
8. ? [X0,X1] : mult(X0,X1)!=mult(X1,X0) => mult(sK0,sK1)!=mult(sK1,sK0) [choice axiom]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
10. mult(e,X0) = X0 [cnf transformation 1]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
12. mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [cnf transformation 3]
13. e = mult(X0,X0) [cnf transformation 4]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
15. mult(X0,mult(X0,X1)) = mult(e,X1) [superposition 12,13]
17. mult(inverse(X4),mult(X4,X5)) = mult(e,X5) [superposition 12,11]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
75. mult(X4,mult(X3,X4)) = mult(inverse(X3),e) [superposition 22,19]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
269. mult(sK0,sK1) != mult(sK0,sK1) [superposition 14,125]
270. $false [trivial inequality removal 269]
…
% Termination reason: Refutation proof by refutation

Chalmers

19

Part 1 | Example Proof
1. ! [X0] : mult(e,X0) = X0 [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
4. ! [X0] : e = mult(X0,X0) [input]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
6. ~! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
8. ? [X0,X1] : mult(X0,X1)!=mult(X1,X0) => mult(sK0,sK1)!=mult(sK1,sK0) [choice axiom]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
10. mult(e,X0) = X0 [cnf transformation 1]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
12. mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [cnf transformation 3]
13. e = mult(X0,X0) [cnf transformation 4]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
15. mult(X0,mult(X0,X1)) = mult(e,X1) [superposition 12,13]
17. mult(inverse(X4),mult(X4,X5)) = mult(e,X5) [superposition 12,11]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
75. mult(X4,mult(X3,X4)) = mult(inverse(X3),e) [superposition 22,19]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
269. mult(sK0,sK1) != mult(sK0,sK1) [superposition 14,125]
270. $false [trivial inequality removal 269]
…
% Termination reason: Refutation proof by refutation

inferences deriving
new formulas from
0+ other formulas

Chalmers

20

Part 1 | Example Proof
1. ! [X0] : mult(e,X0) = X0 [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
4. ! [X0] : e = mult(X0,X0) [input]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
6. ~! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
8. ? [X0,X1] : mult(X0,X1)!=mult(X1,X0) => mult(sK0,sK1)!=mult(sK1,sK0) [choice axiom]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
10. mult(e,X0) = X0 [cnf transformation 1]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
12. mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [cnf transformation 3]
13. e = mult(X0,X0) [cnf transformation 4]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
15. mult(X0,mult(X0,X1)) = mult(e,X1) [superposition 12,13]
17. mult(inverse(X4),mult(X4,X5)) = mult(e,X5) [superposition 12,11]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
75. mult(X4,mult(X3,X4)) = mult(inverse(X3),e) [superposition 22,19]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
269. mult(sK0,sK1) != mult(sK0,sK1) [superposition 14,125]
270. $false [trivial inequality removal 269]
…
% Termination reason: Refutation proof by refutation

inferences deriving
new formulas from
0+ other formulas

preprocessing

Chalmers

21

Part 1 | Example Proof
1. ! [X0] : mult(e,X0) = X0 [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
4. ! [X0] : e = mult(X0,X0) [input]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
6. ~! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
8. ? [X0,X1] : mult(X0,X1)!=mult(X1,X0) => mult(sK0,sK1)!=mult(sK1,sK0) [choice axiom]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
10. mult(e,X0) = X0 [cnf transformation 1]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
12. mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [cnf transformation 3]
13. e = mult(X0,X0) [cnf transformation 4]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
15. mult(X0,mult(X0,X1)) = mult(e,X1) [superposition 12,13]
17. mult(inverse(X4),mult(X4,X5)) = mult(e,X5) [superposition 12,11]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
75. mult(X4,mult(X3,X4)) = mult(inverse(X3),e) [superposition 22,19]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
269. mult(sK0,sK1) != mult(sK0,sK1) [superposition 14,125]
270. $false [trivial inequality removal 269]
…
% Termination reason: Refutation proof by refutation

inferences deriving
new formulas from
0+ other formulas

preprocessing

superposition
calculus

Chalmers

22

Part 1 | Example Proof
1. ! [X0] : mult(e,X0) = X0 [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
4. ! [X0] : e = mult(X0,X0) [input]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
6. ~! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
8. ? [X0,X1] : mult(X0,X1)!=mult(X1,X0) => mult(sK0,sK1)!=mult(sK1,sK0) [choice axiom]
9. mult(sK0,sK1) != mult(sK1,sK0) [skolemisation 7,8]
10. mult(e,X0) = X0 [cnf transformation 1]
11. e = mult(inverse(X0),X0) [cnf transformation 2]
12. mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [cnf transformation 3]
13. e = mult(X0,X0) [cnf transformation 4]
14. mult(sK0,sK1) != mult(sK1,sK0) [cnf transformation 9]
15. mult(X0,mult(X0,X1)) = mult(e,X1) [superposition 12,13]
17. mult(inverse(X4),mult(X4,X5)) = mult(e,X5) [superposition 12,11]
19. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 12,13]
21. mult(X0,mult(X0,X1)) = X1 [forward demodulation 15,10]
22. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 17,10]
27. mult(inverse(X2),e) = X2 [superposition 21,11]
75. mult(X4,mult(X3,X4)) = mult(inverse(X3),e) [superposition 22,19]
90. mult(X4,mult(X3,X4)) = X3 [forward demodulation 75,27]
125. mult(X2,X3) = mult(X3,X2) [superposition 21,90]
269. mult(sK0,sK1) != mult(sK0,sK1) [superposition 14,125]
270. $false [trivial inequality removal 269]
…
% Termination reason: Refutation proof by refutation

inferences deriving
new formulas from
0+ other formulas

preprocessing

superposition
calculus

unused
formulas

Chalmers

23

Part 1 | Saturation-Based Theorem Proving

Proving formula F w.r.t. a set of formulas S:

1. Negate F and add ¬F to S

2. Repeat:

 2.1 Choose G ∈S

 2.2 Derive consequences C1, …, Cn of G and formulas from S

 2.3 Add C1, …, Cn to S

 2.4 If S contains false, return “F is valid”

3. Return “F is not valid”

Chalmers

24

Proving formula F w.r.t. a set of formulas S:

1. Negate F and add ¬F to S

2. Repeat:

 2.1 Choose G ∈S

 2.2 Derive consequences C1, …, Cn of G and formulas from S

 2.3 Add C1, …, Cn to S

 2.4 If S contains false, return “F is valid”

3. Return “F is not valid”

Part 1 | Saturation-Based Theorem Proving

Chalmers

25

Proving formula F w.r.t. a set of formulas S:

1. Negate F and add ¬F to S

2. Repeat:

 2.1 Choose G ∈S

 2.2 Derive consequences C1, …, Cn of G and formulas from S

 2.3 Add C1, …, Cn to S

 2.4 If S contains false, return “F is valid”

3. Return “F is not valid”

G is an arbitrary
formula,

not necessarily F

Part 1 | Saturation-Based Theorem Proving

Chalmers

26

Proving formula F w.r.t. a set of formulas S:

1. Negate F and add ¬F to S

2. Repeat:

 2.1 Choose G ∈S

 2.2 Derive consequences C1, …, Cn of G and formulas from S

 2.3 Add C1, …, Cn to S

 2.4 If S contains false, return “F is valid”

3. Return “F is not valid”

G is an arbitrary
formula,

not necessarily F

A lot of possibilities,
using

resolution/superposition over
clauses

Part 1 | Saturation-Based Theorem Proving in Vampire

Chalmers

27

Proving formula F w.r.t. a set of formulas S:

1. Negate F and add ¬F to S

2. Repeat:

 2.1 Choose G ∈S

 2.2 Derive consequences C1, …, Cn of G and formulas from S

 2.3 Add C1, …, Cn to S

 2.4 If S contains false, return “F is valid”

3. Return “F is not valid”

G is an arbitrary
formula,

not necessarily F

Part 1 | Saturation-Based Theorem Proving in Vampire

A lot of possibilities,
using

resolution/superposition over
clauses

𝑙 = 𝑟 ∨ 𝐶 𝐿[𝑙] ∨ 𝐷
—————————

𝐿[𝑟] ∨ 𝐶 ∨ 𝐷

Chalmers

28

Automation of Induction

in

Saturation-Based Proof Search

1. Saturation in first-order theorem proving

2. Saturation with induction over term algebras

3. Saturation with induction over integers

Chalmers

29

Part 2 | Saturation and Induction

Induction can be implemented by reducing goals to subgoals,

so having a goal ∀x F[x] you can prove it by induction on x.

Chalmers

30

Part 2 | Saturation and Induction

Induction can be implemented by reducing goals to subgoals,

so having a goal ∀x F[x] you can prove it by induction on x.

But . . .
saturation theorem proving is not about reducing goals to subgoals.

Chalmers

1. Negate F and add ¬F to S

2. Repeat:

 2.1 Choose G ∈S

 2.2 Derive consequences C1, …, Cn of G and formulas from S

 2.3 Add C1, …, Cn to S

 2.4 If S contains false, return “F is valid”

3. Return “F is not valid”

31

Part 2 | Saturation and Induction

Induction can be implemented by reducing goals to subgoals,

so having a goal ∀x F[x] you can prove it by induction on x.

But . . .
saturation theorem proving is not about reducing goals to subgoals.

Chalmers

1. Negate F and add ¬F to S

2. Repeat:

 2.1 Choose G ∈S

 2.2 Derive consequences C1, …, Cn of G and formulas from S

 2.3 Add C1, …, Cn to S

 2.4 If S contains false, return “F is valid”

3. Return “F is not valid”

32

Part 2 | Saturation and Induction

Induction can be implemented by reducing goals to subgoals,

so having a goal ∀x F[x] you can prove it by induction on x.

But . . .
saturation theorem proving is not about reducing goals to subgoals.

resolution/superposition
and induction

Chalmers

33

Part 2 | Saturation and Induction over term algebras

● Induction rule over term algebras

E.g.: (L[0] ∧ ∀x(L[x] ➝ L[x+1])) ➝ ∀xL[x]

Chalmers

34

● Induction rule over term algebras

● Saturation and induction

Part 2 | Saturation and Induction over term algebras

E.g.: (L[0] ∧ ∀x(L[x] ➝ L[x+1])) ➝ ∀xL[x]

1. Negate F and add ¬F to S

2. Repeat:

 2.1 Choose G ∈S

 2.2 Derive consequences C1, …, Cn of G and formulas from S

 2.3 Add C1, …, Cn to S

 2.4 If S contains false, return “F is valid”

3. Return “F is not valid”

Chalmers

35

1. Negate F and add ¬F to S

2. Repeat:

 2.1 Choose G ∈S

 2.2 Derive consequences C1, …, Cn of G and formulas from S

 2.3 Add C1, …, Cn to S

 2.4 If S contains false, return “F is valid”

3. Return “F is not valid”

- becomes an ordinary formula in S

Part 2 | Saturation and Induction over term algebras

E.g.: (L[0] ∧ ∀x(L[x] ➝ L[x+1])) ➝ ∀xL[x]

● Induction rule over term algebras

● Saturation and induction

Chalmers

36

1. Negate F and add ¬F to S

2. Repeat:

 2.1 Choose G ∈S

 2.2 Derive consequences C1, …, Cn of G and formulas from S

 2.3 Add C1, …, Cn to S

 2.4 If S contains false, return “F is valid”

3. Return “F is not valid”

- becomes an arbitrary formula in S

Part 2 | Saturation and Induction over term algebras

E.g.: (L[0] ∧ ∀x(L[x] ➝ L[x+1])) ➝ ∀xL[x]

● Induction rule over term algebras

● Saturation and induction

Chalmers

37

● Saturation tailored to induction

Part 2 | Saturation and Induction over term algebras

E.g.: (L[0] ∧ ∀x(L[x] ➝ L[x+1])) ➝ ∀xL[x]

● Induction rule over term algebras

Chalmers

38

● Saturation tailored to induction: Induction + Resolution

Part 2 | Saturation and Induction over term algebras

E.g.: (L[0] ∧ ∀x(L[x] ➝ L[x+1])) ➝ ∀xL[x]

● Induction rule over term algebras

Chalmers

39

 Repeat:

 2.1 Choose G ∈S

 2.2 Derive consequences C1, …, Cn of G and formulas from S

 2.3 Add C1, …, Cn to S

 2.4 If S contains false, return “F is valid”

Part 2 | Saturation and Induction over term algebras

E.g.: (L[0] ∧ ∀x(L[x] ➝ L[x+1])) ➝ ∀xL[x]

● Induction rule over term algebras

● Saturation tailored to induction: Induction + Resolution

Chalmers

40

 Repeat:

 2.1 Choose G ∈S

 2.2 Derive consequences C1, …, Cn of G and formulas from S

 2.3 Add C1, …, Cn to S

 2.4 If S contains false, return “F is valid”

Part 2 | Saturation and Induction over term algebras

E.g.: (L[0] ∧ ∀x(L[x] ➝ L[x+1])) ➝ ∀xL[x]

● Induction rule over term algebras

● Saturation tailored to induction: Induction + Resolution

Chalmers

41

Part 2 | Saturation and Induction over term algebras

Chalmers

42

Part 2 | Saturation and Induction over term algebras

Chalmers

43

Part 2 | Saturation and Induction over term algebras

Chalmers

44

Part 2 | Saturation and Induction over term algebras

Chalmers

45

Part 2 | Saturation and Induction over term algebras

Chalmers

46

Part 2 | Saturation and Induction over term algebras

Chalmers

47

Part 2 | Saturation and Induction over term algebras

Chalmers

48

● are stronger than the induction axiom

Part 2 | Saturation and Induction over term algebras

Chalmers

49

● are stronger than the induction axiom

Part 2 | Saturation and Induction over term algebras

●

Chalmers

50

Thus, applying thousands of induction inferences during proof search
would hardly affect the prover’s performance.

Part 2 | Saturation and Induction over term algebras

● are stronger than the induction axiom

●

Chalmers

51

Part 2 | Saturation and Induction over term algebras

● can be targeted by further applications of induction

Chalmers

52

● obtain the clauses:

Part 2 | Saturation and Induction over term algebras

● can be targeted by further applications of induction

Chalmers

53

● obtain the clauses:

Part 2 | Saturation and Induction over term algebras

●

● can be targeted by further applications of induction

Chalmers

54

But, we perform all these steps within the saturation framework!

Part 2 | Saturation and Induction over term algebras

●

● obtain the clauses:

● can be targeted by further applications of induction

Chalmers

55

● Induction rule over term algebras

● Saturation tailored to induction: Induction + Resolution

Part 2 | Saturation and Induction over term algebras

Summary

Chalmers

56

Part 2 | Saturation and Induction over term algebras

Summary

● Any valid induction scheme can be used

Genericity

● Structural induction on any term algebra (e.g. lists, trees)

● Induction rule over term algebras

● Saturation tailored to induction: Induction + Resolution

Chalmers

57

Part 2 | Saturation and Induction over term algebras

Natural Extension: Induction with Generalization

● Proving stronger/generalized formulas

Chalmers

58

Part 2 | Saturation and Induction over term algebras

Natural Extension: Induction with Generalization

● Proving stronger/generalized formulas

● To prove ∀x (x+(x+x) = (x+x)+x), use an induction axiom for

 in addition to an axiom for ∀x (x+(x+x) = (x+x)+x)

Chalmers

59

Part 2 | Saturation and Induction over term algebras

Natural Extension: Induction with Generalization

● Induction with generalization rule over term algebras

 where L’ is a generalization of L and 𝑝𝑟𝑒𝑚𝑖𝑠𝑒 → ∀yL’[y] is a valid induction scheme

Chalmers

60

Part 2 | Saturation and Induction over term algebras

Natural Extension: Induction with Generalization

• We do not replace L by L’ in the search space

• During saturation, both induction rules are used (w and w/o generalization)

• We add induction axioms for both L and L’ to the search space

● Induction with generalization rule over term algebras

 where L’ is a generalization of L and 𝑝𝑟𝑒𝑚𝑖𝑠𝑒 → ∀yL’[y] is a valid induction scheme

Chalmers

61

Part 2 | Saturation and Induction over term algebras

Chalmers

62

Part 2 | Saturation and Induction over term algebras

Implementation Questions

● Which induction schemas to use

● Where to apply induction: clauses, literals, terms

Chalmers

63

Part 2 | Saturation and Induction over term algebras

Implementation Questions and Solutions in Vampire

• Induction schemas are implemented individually, controlled by options

• Options for selecting literals/terms: negative, uninterpreted constants,
uninterpreted constants in the given goal…

• Options to limit the induction depth

• Options to limit inductive generalizations

• Rules and options for multi-clause induction for combining multiple
literals in one induction axiom

● Which induction schemas to use

● Where to apply induction: clauses, literals, terms

Chalmers

64

Automation of Induction

in

Saturation-Based Proof Search

1. Saturation in first-order theorem proving

2. Saturation with induction over term algebras

3. Saturation with induction over integers

Chalmers

65

Part 3 | Saturation and Induction over integers

● Integers with the standard ordering are not well-founded

Chalmers

66

Part 3 | Saturation and Induction over integers

● But any set of integers with a lower/upper bound is well-founded

● Integers with the standard ordering are not well-founded

Chalmers

67

Part 3 | Saturation and Induction over integers

● We define downward/upward induction schema with symbolic bounds:

 ₂

(upward)

(downward)

● But any set of integers with a lower/upper bound is well-founded

● Integers with the standard ordering are not well-founded

Chalmers

68

Part 3 | Saturation and Induction over integers

 ₂

(upward)

(downward)

● We introduce integer induction rules, e.g.:

● We define downward/upward induction schema with symbolic bounds:

● But any set of integers with a lower/upper bound is well-founded

● Integers with the standard ordering are not well-founded

Chalmers

69

Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.:

Chalmers

70

Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.:

Chalmers

71

Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.:

Chalmers

72

Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.:

Chalmers

73

Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.:

Chalmers

74

Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.:

Chalmers

75

Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.:

Chalmers

76

Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.:

Chalmers

77

Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.:

Chalmers

78

Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.:

Chalmers

79

Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.:

Chalmers

80

Part 3 | Saturation and Induction over integers

● We introduce integer induction rules, e.g.:

Chalmers

81

Part 3 | Saturation and Induction over integers

Chalmers

82

Induction scheme (upward):

Part 3 | Saturation and Induction over integers

Chalmers

83

Induction scheme (upward):

Instantiate the scheme:

Part 3 | Saturation and Induction over integers

Chalmers

84

Induction scheme (upward):

Instantiate the scheme:

Part 3 | Saturation and Induction over integers

Chalmers

85

Part 3 | Saturation and Induction over integers

Chalmers

86

Part 3 | Saturation and Induction over integers

Chalmers

87

Part 3 | Saturation and Induction over integers

Array properties

Chalmers

88

Part 3 | Saturation and Induction over integers

Sum properties

Chalmers

89

Part 3 | Saturation and Induction over integers

Power properties

Chalmers

90

Conclusions | Saturation and Induction

Induction in saturation-based proof search

● Induction rules in saturation

● Proving inductive properties from software analysis, math, …

Chalmers

Chalmers

Laura Kovács

assume 0≤p<A.size

i:=p;

while (i+1< A.size) do

 A[i+1]:=A[i];

 i:=i+1;

 invariant (∀j∊ℤ)(p≤j<i ⇒ A[j+1]=A[j])

end do

assert (∀j∊ℤ)(p≤j<A.size ⇒ A[j]=A[p])

Conclusions | Saturation and Induction
 (ex. ~250kLoC, Vampire prover)

 Proving inductive properties

0≤pos<A.size

dataype nat = zero | succ of nat

add zero x = x

add (succ x) y = succ (add x y)

assert (∀ x) (∀ y) (add x y) = (add y x)a

Chalmers

92

Conclusions | Saturation and Induction

Further work on

● Guiding search (when to apply induction, reduce applications of induction, …)

● Use rewriting (extensions on recursive function definitions, …)

● Lemma generation (consequence finding, generalizations, …)

Induction in saturation-based proof search

● Induction rules in saturation

● Proving inductive properties from software analysis, math, …

