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▶ Retrospective
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A personal retrospective

I wrote my first formal proof in 1990 and have been doing
formal proofs and implementing theorem proving proce-
dures for most of the intervening time. What have three
decades taught me?



Automation, interaction, libraries

▶ Automation has advanced, but only incrementally, and nothing
in modern systems would particularly surprise or impress
anyone familiar with the state of the art in the mid-1970s.

▶ In some ways we have advanced by the conscious choice to
use interactive rather than automated proof, to retain a higher
degree of control and programmability.

▶ The sheer amount of formalized material available in prover
libraries has greatly increased, and this makes the biggest
difference to the work involved in formalizing new results.

▶ Ironically, this may be leading to a resurgence in AI-style
automation because the large libraries of results proved via
interaction provide fodder for machine learning.

▶ Developing an effective formal library often requires a blend of
application-driven and systematic bottom-up construction.
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Automated and interactive
proof



Automated provers came first

Most early theorem provers (1950s–60s) were fully automatic, with
two main approaches:

▶ Human-oriented AI style approaches (Newell-Simon,
Gelerntner)

▶ Machine-oriented algorithmic approaches (Davis, Gilmore,
Wang, Prawitz)



Automated theorem proving in its pomp

The 1960s and 1970s saw rapid development of machine-oriented
automated theorem proving:

▶ Robinson’s resolution method and other techniques for
first-order logic

▶ Knuth-Bendix completion for equational logic

▶ Boyer-Moore style automation of inductive proof

▶ Shostak and Nelson-Oppen work on cooperating decision
procedures, congruence closure

However, when the power of such methods began to plateau, it
was hard to make further progress and the field stagnated.
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Interactive theorem proving

The idea of a more ‘interactive’ approach was already anticipated
by pioneers, e.g. Wang (1960):

[...] the writer believes that perhaps machines may more
quickly become of practical use in mathematical research,
not by proving new theorems, but by formalizing and
checking outlines of proofs, say, from textbooks to detailed
formalizations more rigorous that Principia [Mathematica],
from technical papers to textbooks, or from abstracts to
technical papers.

But serious interest had to wait, perhaps for disillusion with pure
automation to set in, or for the interactive capacities of computer
systems to improve.



First steps in interactive theorem proving

Early interactive provers by Paul Abrahams, then Bledsoe and
Gilbert:



SAM

First successful family of interactive provers were the SAM systems:
Semi-automated mathematics is an approach to theorem-
proving which seeks to combine automatic logic routines
with ordinary proof procedures in such a manner that the
resulting procedure is both efficient and subject to human
intervention in the form of control and guidance. Because
it makes the mathematician an essential factor in the quest
to establish theorems, this approach is a departure from
the usual theorem-proving attempts in which the computer
unaided seeks to establish proofs.

SAM V was used to settle an open problem in lattice theory.



Three influential proof checkers

▶ AUTOMATH (de Bruijn, . . . ) — Implementation of type
theory, used to check non-trivial mathematics such as
Landau’s Grundlagen

▶ Mizar (Trybulec, . . . ) — Block-structured natural deduction
with ‘declarative’ justifications, used to formalize large body
of mathematics

▶ LCF (Milner et al) — Programmable proof checker for Scott’s
Logic of Computable Functions written in new functional
language ML.

Ideas from all these systems are used in present-day systems.



Three influential proof checkers

▶ AUTOMATH (de Bruijn, . . . ) — Implementation of type
theory, used to check non-trivial mathematics such as
Landau’s Grundlagen

▶ Mizar (Trybulec, . . . ) — Block-structured natural deduction
with ‘declarative’ justifications, used to formalize large body
of mathematics

▶ LCF (Milner et al) — Programmable proof checker for Scott’s
Logic of Computable Functions written in new functional
language ML.

Ideas from all these systems are used in present-day systems.



Three influential proof checkers

▶ AUTOMATH (de Bruijn, . . . ) — Implementation of type
theory, used to check non-trivial mathematics such as
Landau’s Grundlagen

▶ Mizar (Trybulec, . . . ) — Block-structured natural deduction
with ‘declarative’ justifications, used to formalize large body
of mathematics

▶ LCF (Milner et al) — Programmable proof checker for Scott’s
Logic of Computable Functions written in new functional
language ML.

Ideas from all these systems are used in present-day systems.



Three influential proof checkers

▶ AUTOMATH (de Bruijn, . . . ) — Implementation of type
theory, used to check non-trivial mathematics such as
Landau’s Grundlagen

▶ Mizar (Trybulec, . . . ) — Block-structured natural deduction
with ‘declarative’ justifications, used to formalize large body
of mathematics

▶ LCF (Milner et al) — Programmable proof checker for Scott’s
Logic of Computable Functions written in new functional
language ML.

Ideas from all these systems are used in present-day systems.



Milner on automation and interaction

I wrote an automatic theorem prover in Swansea for myself
and became shattered with the difficulty of doing anything
interesting in that direction and I still am. I greatly ad-
mired Robinson’s resolution principle, a wonderful break-
through; but in fact the amount of stuff you can prove
with fully automatic theorem proving is still very small.
So I was always more interested in amplifying human in-
telligence than I am in artificial intelligence.



Libraries: their motivations and
problems



Libraries
To avoid always starting from ground level, it’s vital to build up
“libraries” of basic mathematical results. Otherwise any interesting
proof tends to regress into a long stream of elementary and often
barely relevant lemmas.

▶ Sometimes flashy or exciting theorems (e.g. the Picard
theorems) aren’t as useful as less showy ones that are the
workhorses of libraries (the change of variables formula for
integrals etc.)

▶ Large formalizations (Odd Order Theorem, Flyspeck) have
motivated formalization of ‘foundational’ material as a
by-product, making similar efforts easier in future.

▶ The earliest large mathematical library is the Mizar
Mathematical Library (MML), following the style of
mathematical papers with extracted text and references.

▶ Many theorem provers including Coq, HOL Light,
Isabelle/HOL (including the ‘archive of formal proofs’) and
Lean also have large and every-expanding mathematical
libraries.
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Reasons for developing library results

▶ ‘As needed’: some high-level application in verification or
formalization needs key definitions or lemmas

▶ Conscious development of foundations with an overall
application in mind (e.g. measure theory in Euclidean space
for the Flyspeck project).

▶ Simple curiosity, fun, excuse to more thoroughly understand a
piece of mathematics or exercise the theorem prover.

▶ Completionism, often takes over once some other motivation
provided the initial push.

All of these different motivations and approaches tend to result in
stylistically different libraries. The best are often motivated by a
combination of all of these.
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Libraries: what can go wrong?

▶ Applications turn out to require more general forms of some
basic lemmas

▶ Even though all hypotheses of a lemma hold in the particular
application, a more economical list would be easier to
discharge

▶ Some subtle mismatch or forgotten degenerate cases can
make lemmas or even axioms vacuous or contradictory, or
definitions inconvenient.

My rule of thumb: if you haven’t used a library for a non-trivial
application, there’s probably something significantly wrong about
the way it is organized, and quite possibly about the basic
definitions.
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Case study: the isoperimetric
theorem



The Great 100 Theorems

The goal was to get the total from 98% to 99%.



The Isoperimetric Theorem (informally)

A typical statement:



The Isoperimetric Theorem (formally)

The formalized HOL Light statement in HOL Light ASCII syntax,
as presented on the “Great 100 Theorems” page.



Unpacking the definitions (standard)

The notions of ‘path’, ‘simple path’, ‘rectifiable’, ‘length’ etc. are
pretty standard; paths are just functions out of [0, 1], apart from
some vector type tweaks.

|- path(g:real^1->real^N) <=> g continuous_on interval[vec 0,vec 1]

|- rectifiable_path (g:real^1->real^N) <=>

path g /\ g has_bounded_variation_on interval[vec 0,vec 1]

|- path_length (g:real^1->real^N) =

vector_variation (interval[vec 0,vec 1]) g

These in turn unpack to more integration theory, which was all
initially developed to support the Flyspeck proof.
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Unpacking the definitions (not so standard)

The “inside” function returns the union of bounded components of
the complement:

|- inside (s:real^N->bool) =

{x | ~(x IN s) /\

bounded(connected_component ((:real^N) DIFF s) x)}

This notion is completely different from “interior”, and is
somewhat distinctive but convenient, applying even to non-simple
curves and other shapes.
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Jordan with inside and outside
With its “outside” dual (union of unbounded components of the
complement) this gives a tidy-looking general form of the Jordan
Curve Theorem:

JORDAN_INSIDE_OUTSIDE_GEN =

|- !s:real^N->bool.

2 <= dimindex(:N) /\

s homeomorphic sphere(vec 0:real^N,&1)

==> ~(inside s = {}) /\

open(inside s) /\

connected(inside s) /\

~(outside s = {}) /\

open(outside s) /\

connected(outside s) /\

bounded(inside s) /\

~bounded(outside s) /\

inside s INTER outside s = {} /\

inside s UNION outside s = (:real^N) DIFF s /\

frontier(inside s) = s /\

frontier(outside s) = s

This Euclidean topology was originally developed just for
fun/interest.
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Reduction to the convex case (informally)
Given any non-convex simple closed curve, there is a convex curve
that is shorter and encloses a larger area:

Andrejs Treibergs, “The Strong Isoperimetric Inequality of
Bonnesen”



Reduction to the convex case (formally)

Easy? But even a rectifiable curve can have infinitely many
“wiggles”, so it seemed to call for a limit argument.

...

?h. (!n. simple_path (h n) /\

rectifiable_path (h n) /\

pathstart (h n) = pathstart g /\

pathfinish (h n) = pathfinish g /\

convex hull path_image (h n) = convex hull path_image g /\

(!x y.

x IN interval [vec 0,vec 1] /\ y IN interval [vec 0,vec 1]

==> dist (h n x,h n y) <= L * dist (x,y)) /\

(!x.

x IN UNIONS {interval (a m,b m) | m < n}

==> h n x IN frontier (convex hull path_image g)) /\

(!x. ~(x IN UNIONS {interval (a m,b m) | m < n})

==> h n x = g x)) /\

(!n x. ~(x IN interval(a n,b n) /\

!m. m < n ==> ~(x IN interval(a m,b m)))

==> (h:num->real^1->real^2)(SUC n) x = h n x)

...



Reduction to the convex case (formally)

The end result is at least natural:

|- !g:real^1->real^2.

rectifiable_path g /\

simple_path g /\

pathfinish g = pathstart g /\

~convex(inside(path_image g))

==> ?h:real^1->real^2.

rectifiable_path h /\

simple_path h /\

pathfinish h = pathstart h /\

path_length h <= path_length g /\

convex hull path_image h = convex hull path_image g /\

path_image h = frontier (convex hull path_image g) /\

measure(inside(path_image g)) < measure(inside(path_image h))



Brunn-Minkowski?
One natural argument is based on the Brunn-Minkowski theorem:



Brunn-Minkowski . . . doesn’t quite fit

We already have a proof of Brunn-Minkowski in a general setting
formalized in HOL Light, so this looks promising:

BRUNN_MINKOWSKI_MEASURABLE =

|- !s t:real^N->bool.

(s = {} <=> t = {}) /\

measurable s /\ measurable t /\

measurable {x + y | x IN s /\ y IN t}

==> root (dimindex(:N)) (measure {x + y | x IN s /\ y IN t})

>= root (dimindex(:N)) (measure s) +

root (dimindex(:N)) (measure t)

Unfortunately, it doesn’t seem easy to relate “length” as a limit of
area differences to our ”length” of a rectifiable path.
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Steiner’s hinge argument (informally)

One of Steiner’s many proofs of the isoperimetric theorem was
based on the “hinge” argument

Bl̊asjö, Evolution of The Isoperimetric Problem



Existence of maximal curve

So any “maximal area” curve of a given length must be a circle.
Steiner famously overlooked the need to actually prove, however
that there is a “maximal area” curve.

Using the Arzela-Ascoli theorem we were able to prove in HOL
Light that there is a maximal solution.

ARZELA_ASCOLI_LIPSCHITZ =

|- compact s /\ bounded t /\

(!n x. x IN s ==> ~(IMAGE (f n) s INTER t = {})) /\

(!n x y. x IN s /\ y IN s ==> norm(f n x - f n y) <= b * norm(x - y))

==> ?g. (!x y. x IN s /\ y IN s ==> norm(g x - g y) <= b * norm(x - y)) /\

?r. (!m n. m < n ==> r m < r n) /\

!e. &0 < e

==> ?N. !n:num x. n >= N /\ x IN s

==> norm(f (r n) x - g x) < e
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The hinge gets stuck

However, we found formalizing Steiner’s hinge argument
surprisingly fiddly, e.g.

Siegel, “A Historical Review of the Isoperimetric Theorem”

In the end we gave up and switched to a completely different
“analytic” proof following Osserman.
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Osserman’s analytical proof (2)



Formalizing Osserman’s proof

We need several ingredients:

▶ Integral-based formula for length (already formalized in HOL
Light)

▶ Integral-based formula for area (no usable differential
geometry like Green’s theorem formalized in HOL Light)

▶ Proof of Wirtinger’s inequality (none previously formalized but
the proof seems not too difficult)

Moreover, if we want to apply this to an arbitrary rectifiable curve,
we need to generalize away all the smoothness and differentiability
assumptions.
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Wirtinger’s inequality (informally)

Formalized straight from Hardy, Littlewood and Polya’s
Inequalities:

H-L-P superficially appear to be talking about derivatives, but
really they’re antiderivatives, so this is strong enough to avoid
smoothness, with a little care.
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Wirtinger’s inequality (formally)

A simple formal version without mentioning derivatives explicitly:

WIRTINGER_INEQUALITY =

|- (!x. x IN real_interval[&0,&2 * pi]

==> (f’ has_real_integral (f x - f(&0))) (real_interval[&0,x])) /\

f(&2 * pi) = f(&0) /\

(f has_real_integral &0) (real_interval[&0,&2 * pi]) /\

(\x. f’(x) pow 2) real_integrable_on real_interval[&0,&2 * pi]

==> (\x. f(x) pow 2) real_integrable_on real_interval[&0,&2 * pi] /\

real_integral (real_interval[&0,&2 * pi]) (\x. f(x) pow 2) <=

real_integral (real_interval[&0,&2 * pi]) (\x. f’(x) pow 2) /\

(real_integral (real_interval[&0,&2 * pi]) (\x. f(x) pow 2) =

real_integral (real_interval[&0,&2 * pi]) (\x. f’(x) pow 2)

==> ?c a. !x. x IN real_interval[&0,&2 * pi]

==> f x = c * sin(x - a))

Proof was not too bad but needed generalizations of several
calculus lemmas like “integration by parts”.



Absolute continuity

The concept of absolute continuity is useful in keeping the
reasoning general enough, roughly “is an antiderivative”:

ABSOLUTE_INTEGRAL_ABSOLUTELY_CONTINUOUS_DERIVATIVE_EQ =

|- !f:real^1->real^N f’ a b.

f’ absolutely_integrable_on interval[a,b] /\

(!x. x IN interval[a,b]

==> (f’ has_integral (f x - f a)) (interval[a,x])) <=>

f absolutely_continuous_on interval[a,b] /\

?s. negligible s /\

!x. x IN interval [a,b] DIFF s

==> (f has_vector_derivative f’ x)

(at x within interval[a,b])

or alternatively

BANACH_ZARECKI =

|- f absolutely_continuous_on interval[a,b] <=>

f continuous_on interval[a,b] /\

f has_bounded_variation_on interval[a,b] /\

!t. t SUBSET interval[a,b] /\ negligible t ==> negligible(IMAGE f t)

All this was originally developed because of completionism.



Absolute continuity

The concept of absolute continuity is useful in keeping the
reasoning general enough, roughly “is an antiderivative”:

ABSOLUTE_INTEGRAL_ABSOLUTELY_CONTINUOUS_DERIVATIVE_EQ =

|- !f:real^1->real^N f’ a b.

f’ absolutely_integrable_on interval[a,b] /\

(!x. x IN interval[a,b]

==> (f’ has_integral (f x - f a)) (interval[a,x])) <=>

f absolutely_continuous_on interval[a,b] /\

?s. negligible s /\

!x. x IN interval [a,b] DIFF s

==> (f has_vector_derivative f’ x)

(at x within interval[a,b])

or alternatively

BANACH_ZARECKI =

|- f absolutely_continuous_on interval[a,b] <=>

f continuous_on interval[a,b] /\

f has_bounded_variation_on interval[a,b] /\

!t. t SUBSET interval[a,b] /\ negligible t ==> negligible(IMAGE f t)

All this was originally developed because of completionism.



Keeping the calculus general

A useful lemma following Serrin and Varberg’s paper “A general
chain rule...”.

CONVERSE_SARD_1 =

|- !(f:real^1->real^1) f’ s.

(!x. x IN s ==> (f has_vector_derivative f’(x)) (at x within s)) /\

negligible(IMAGE f s)

==> negligible {x | x IN s /\ ~(f’(x) = vec 0)}

This is used to generalize the chain rule for derivatives and
integration by parts to the required setting.



Area via Green’s theorem

We prove an area formula for a very special shape but with very
general differentiability assumptions:

GREEN_AREA_THEOREM =

|- !(g:real^1->real^2) g’ u a b.

simple_path g /\ pathstart g = a /\ pathfinish g = a /\

b IN path_image g /\ a$1 < b$1 /\ a$2 = b$2 /\

dist(a,b) = diameter(path_image g) /\

convex(inside(path_image g)) /\

g absolutely_continuous_on interval[vec 0,vec 1] /\

negligible u /\

(!t. t IN interval[vec 0,vec 1] DIFF u

==> (g has_vector_derivative g’(t)) (at t))

==> (\t. lift(g’(t)$1 * g(t)$2)) absolutely_integrable_on

interval[vec 0,vec 1] /\

norm(integral (interval[vec 0,vec 1])

(\t. lift(g’(t)$1 * g(t)$2))) =

measure(inside(path_image g))



The overall isoperimetric proof

▶ Choose coordinate axes appropriately for the very special case
of Green’s theorem

▶ Reparametrize the curve by arc length (this is Lipschitz and so
AC, strong enough to use our lemmas)

▶ Follow the analytic proof in Osserman using the general form
of Wirtinger.



The final statement

ISOPERIMETRIC_THEOREM =

|- !L g:real^1->real^2.

rectifiable_path g /\

simple_path g /\

pathfinish g = pathstart g /\

path_length g = L

==> measure(inside(path_image g)) <= L pow 2 / (&4 * pi) /\

(measure(inside(path_image g)) = L pow 2 / (&4 * pi)

==> ?a r. path_image g = sphere(a,r))

We could actually consider further generalizing by removing
hypotheses . . .
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Retrospective

▶ All the basic definitions used in the statement of the theorem
existed in the HOL Light libraries; none was developed just for
this application.

▶ The proof would probably have been much easier if the library
contained more differential geometry or more results relating
our version of ‘length’ to other notions.

▶ The ingredients used in the proof arose from many sources,
with Flyspeck the motivation for much of the background
theory, but general interest and completionism contributing
too.

▶ As with most non-trivial applications, we found cases where
the existing library results (e.g. “integration by parts”) could
be generalized significantly.



Retrospective

▶ All the basic definitions used in the statement of the theorem
existed in the HOL Light libraries; none was developed just for
this application.

▶ The proof would probably have been much easier if the library
contained more differential geometry or more results relating
our version of ‘length’ to other notions.

▶ The ingredients used in the proof arose from many sources,
with Flyspeck the motivation for much of the background
theory, but general interest and completionism contributing
too.

▶ As with most non-trivial applications, we found cases where
the existing library results (e.g. “integration by parts”) could
be generalized significantly.



Retrospective

▶ All the basic definitions used in the statement of the theorem
existed in the HOL Light libraries; none was developed just for
this application.

▶ The proof would probably have been much easier if the library
contained more differential geometry or more results relating
our version of ‘length’ to other notions.

▶ The ingredients used in the proof arose from many sources,
with Flyspeck the motivation for much of the background
theory, but general interest and completionism contributing
too.

▶ As with most non-trivial applications, we found cases where
the existing library results (e.g. “integration by parts”) could
be generalized significantly.



Retrospective

▶ All the basic definitions used in the statement of the theorem
existed in the HOL Light libraries; none was developed just for
this application.

▶ The proof would probably have been much easier if the library
contained more differential geometry or more results relating
our version of ‘length’ to other notions.

▶ The ingredients used in the proof arose from many sources,
with Flyspeck the motivation for much of the background
theory, but general interest and completionism contributing
too.

▶ As with most non-trivial applications, we found cases where
the existing library results (e.g. “integration by parts”) could
be generalized significantly.



Thank you!


