
1

SMT: quantifiers, and future prospects

Pascal Fontaine (University of Liège)

Based on joint works with many, including
Haniel Barbosa, Jasmin Blanchette, Daniel El Ouraoui, Mathias Fleury, Mikolás
Janota, Cezary Kaliszyk, Andrew Reynolds, Hans-Jörg Schurr, Sophie Tourret. . .

. . . and built on the work of many others (see citations)

IPAM Workshop, UCLA, February 2023

2

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques

Conclusion

References

3

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques

Conclusion

References

4

Motivation

▶ Formal proofs should not be mostly about proving easy things

▶ Automated theorem provers (ATPs) should prove the easy things for you

▶ ATP proofs can be replayed: confidence is not compromised

▶ E.g. Sledgehammer

▶ Proof obligations often use quantifiers

5

SMT = SAT + expressiveness

▶ SAT solvers

¬
[
(p ⇒ q)⇒

[
(¬p ⇒ q)⇒ q

]]
▶ Congruence closure (uninterpreted symbols + equality)

a = b ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b))

]
▶ and with arithmetic

a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b + x))

]
▶ . . .

▶ What about quantifiers?

6

Quantifiers in SMT

/ Full first-order logic is undecidable

, First-order logic is semi-decidable
refutationally complete procedures terminate on UNSAT

, If finite model property, then decidable

/ Presburger with even one unary predicate is not even semi-decidable [Halper91]

, Pragmatic approaches are quite successful

Why does the pragmatic SMT approach work?

▶ Verification problems are big and shallow

▶ SMT appropriate for long, mostly ground, uninterpreted function reasoning

Working hypothesis

Quantifier handling for pure FOL will work most of the time sufficiently for SMT

7

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

8

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

9

Herbrand

Unlike superposition-based FOL provers, SMT solvers essentially based on instantiation

1908-1931

Herbrand instance of a Skolem formula ∀x̄φ(x̄): any ground formula
φ(t̄), where t̄ are terms in the language

Theorem (Herbrand)

A finite set of Skolem formulas is unsatisfiable if and only if there
exists a finite unsatisfiable set of Herbrand instances

Caveats

▶ there should be at least one constant available for every sort

▶ holds for pure FOL, might not in presence of theories

10

Example

Is this syllogism correct?

All humans are mortal
All Greeks are humans
Then all Greeks are mortal

Translate to FOL
∀x .H(x)⇒ M(x)
∀x .G (x)⇒ H(x)
∀x .G (x)⇒ M(x)

Artistotle
384–322 BC

▶ Checking the validity of this formula((
∀x .H(x)⇒ M(x)

)
∧
(
∀x .G (x)⇒ H(x)

))
⇒ ∀x .G (x)⇒ M(x)

▶ Checking the unsatisfiability of
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬∀x .G (x)⇒ M(x)

▶ Skolemize
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬(G (s)⇒ M(s))

▶ Instantiate: add the two formulas (Herbrand instances)
H(s)⇒ M(s),G (s)⇒ H(s)

▶ A ground (SAT/SMT) solver will deduce unsatisfiability.

10

Example

Is this syllogism correct?

All humans are mortal
All Greeks are humans
Then all Greeks are mortal

Translate to FOL

∀x .H(x)⇒ M(x)
∀x .G (x)⇒ H(x)
∀x .G (x)⇒ M(x)

Artistotle
384–322 BC

▶ Checking the validity of this formula((
∀x .H(x)⇒ M(x)

)
∧
(
∀x .G (x)⇒ H(x)

))
⇒ ∀x .G (x)⇒ M(x)

▶ Checking the unsatisfiability of
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬∀x .G (x)⇒ M(x)

▶ Skolemize
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬(G (s)⇒ M(s))

▶ Instantiate: add the two formulas (Herbrand instances)
H(s)⇒ M(s),G (s)⇒ H(s)

▶ A ground (SAT/SMT) solver will deduce unsatisfiability.

10

Example

Is this syllogism correct?

All humans are mortal
All Greeks are humans
Then all Greeks are mortal

Translate to FOL
∀x .H(x)⇒ M(x)
∀x .G (x)⇒ H(x)
∀x .G (x)⇒ M(x)

Artistotle
384–322 BC

▶ Checking the validity of this formula((
∀x .H(x)⇒ M(x)

)
∧
(
∀x .G (x)⇒ H(x)

))
⇒ ∀x .G (x)⇒ M(x)

▶ Checking the unsatisfiability of
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬∀x .G (x)⇒ M(x)

▶ Skolemize
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬(G (s)⇒ M(s))

▶ Instantiate: add the two formulas (Herbrand instances)
H(s)⇒ M(s),G (s)⇒ H(s)

▶ A ground (SAT/SMT) solver will deduce unsatisfiability.

10

Example

Is this syllogism correct?

All humans are mortal
All Greeks are humans
Then all Greeks are mortal

Translate to FOL
∀x .H(x)⇒ M(x)
∀x .G (x)⇒ H(x)
∀x .G (x)⇒ M(x)

Artistotle
384–322 BC

▶ Checking the validity of this formula((
∀x .H(x)⇒ M(x)

)
∧
(
∀x .G (x)⇒ H(x)

))
⇒ ∀x .G (x)⇒ M(x)

▶ Checking the unsatisfiability of
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬∀x .G (x)⇒ M(x)

▶ Skolemize
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬(G (s)⇒ M(s))

▶ Instantiate: add the two formulas (Herbrand instances)
H(s)⇒ M(s),G (s)⇒ H(s)

▶ A ground (SAT/SMT) solver will deduce unsatisfiability.

10

Example

Is this syllogism correct?

All humans are mortal
All Greeks are humans
Then all Greeks are mortal

Translate to FOL
∀x .H(x)⇒ M(x)
∀x .G (x)⇒ H(x)
∀x .G (x)⇒ M(x)

Artistotle
384–322 BC

▶ Checking the validity of this formula((
∀x .H(x)⇒ M(x)

)
∧
(
∀x .G (x)⇒ H(x)

))
⇒ ∀x .G (x)⇒ M(x)

▶ Checking the unsatisfiability of
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬∀x .G (x)⇒ M(x)

▶ Skolemize
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬(G (s)⇒ M(s))

▶ Instantiate: add the two formulas (Herbrand instances)
H(s)⇒ M(s),G (s)⇒ H(s)

▶ A ground (SAT/SMT) solver will deduce unsatisfiability.

10

Example

Is this syllogism correct?

All humans are mortal
All Greeks are humans
Then all Greeks are mortal

Translate to FOL
∀x .H(x)⇒ M(x)
∀x .G (x)⇒ H(x)
∀x .G (x)⇒ M(x)

Artistotle
384–322 BC

▶ Checking the validity of this formula((
∀x .H(x)⇒ M(x)

)
∧
(
∀x .G (x)⇒ H(x)

))
⇒ ∀x .G (x)⇒ M(x)

▶ Checking the unsatisfiability of
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬∀x .G (x)⇒ M(x)

▶ Skolemize
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬(G (s)⇒ M(s))

▶ Instantiate: add the two formulas (Herbrand instances)
H(s)⇒ M(s),G (s)⇒ H(s)

▶ A ground (SAT/SMT) solver will deduce unsatisfiability.

10

Example

Is this syllogism correct?

All humans are mortal
All Greeks are humans
Then all Greeks are mortal

Translate to FOL
∀x .H(x)⇒ M(x)
∀x .G (x)⇒ H(x)
∀x .G (x)⇒ M(x)

Artistotle
384–322 BC

▶ Checking the validity of this formula((
∀x .H(x)⇒ M(x)

)
∧
(
∀x .G (x)⇒ H(x)

))
⇒ ∀x .G (x)⇒ M(x)

▶ Checking the unsatisfiability of
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬∀x .G (x)⇒ M(x)

▶ Skolemize
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬(G (s)⇒ M(s))

▶ Instantiate: add the two formulas (Herbrand instances)
H(s)⇒ M(s),G (s)⇒ H(s)

▶ A ground (SAT/SMT) solver will deduce unsatisfiability.

10

Example

Is this syllogism correct?

All humans are mortal
All Greeks are humans
Then all Greeks are mortal

Translate to FOL
∀x .H(x)⇒ M(x)
∀x .G (x)⇒ H(x)
∀x .G (x)⇒ M(x)

Artistotle
384–322 BC

▶ Checking the validity of this formula((
∀x .H(x)⇒ M(x)

)
∧
(
∀x .G (x)⇒ H(x)

))
⇒ ∀x .G (x)⇒ M(x)

▶ Checking the unsatisfiability of
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬∀x .G (x)⇒ M(x)

▶ Skolemize
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬(G (s)⇒ M(s))

▶ Instantiate: add the two formulas (Herbrand instances)
H(s)⇒ M(s),G (s)⇒ H(s)

▶ A ground (SAT/SMT) solver will deduce unsatisfiability.

11

From SAT to SMT,. . .

and then to quantified SMT

SMT formula

SMT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b + x))

]

To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧
[
¬pf (a)=f (b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x , px=0,¬pf (a)=f (b)

Theory reasoner: a ≤ b, b ≤ a+ x , x = 0, f (a) ̸= f (b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf (a)=f (b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

11

From SAT to SMT,. . .

and then to quantified SMT

SMT formula

SMT solver

SAT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b + x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf (a)=f (b) ∨ (pq(a) ∧ ¬pq(b+x))

]

Boolean model: pa≤b, pb≤a+x , px=0,¬pf (a)=f (b)

Theory reasoner: a ≤ b, b ≤ a+ x , x = 0, f (a) ̸= f (b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf (a)=f (b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

11

From SAT to SMT,. . .

and then to quantified SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b + x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf (a)=f (b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x , px=0,¬pf (a)=f (b)

Theory reasoner: a ≤ b, b ≤ a+ x , x = 0, f (a) ̸= f (b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf (a)=f (b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

11

From SAT to SMT,. . .

and then to quantified SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b + x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf (a)=f (b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x , px=0,¬pf (a)=f (b)

Theory reasoner: a ≤ b, b ≤ a+ x , x = 0, f (a) ̸= f (b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf (a)=f (b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

11

From SAT to SMT,. . .

and then to quantified SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b + x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf (a)=f (b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x , px=0,¬pf (a)=f (b)

Theory reasoner: a ≤ b, b ≤ a+ x , x = 0, f (a) ̸= f (b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf (a)=f (b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

11

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Ground SMT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b + x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf (a)=f (b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x , px=0,¬pf (a)=f (b)

Theory reasoner: a ≤ b, b ≤ a+ x , x = 0, f (a) ̸= f (b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf (a)=f (b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

11

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Ground SMT solver

Assignment

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b + x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf (a)=f (b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x , px=0,¬pf (a)=f (b)

Theory reasoner: a ≤ b, b ≤ a+ x , x = 0, f (a) ̸= f (b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf (a)=f (b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

11

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Ground SMT solver

Assignment

Instantiation
module

Instance

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b + x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf (a)=f (b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x , px=0,¬pf (a)=f (b)

Theory reasoner: a ≤ b, b ≤ a+ x , x = 0, f (a) ̸= f (b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf (a)=f (b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

11

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

SAT solver

Boolean Model

Theory
reasoner

Conflict clause

Ground SMT solver

Assignment

Instantiation
module

Instance

Model UNSAT (proof/core)

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b + x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf (a)=f (b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x , px=0,¬pf (a)=f (b)

Theory reasoner: a ≤ b, b ≤ a+ x , x = 0, f (a) ̸= f (b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf (a)=f (b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

11

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver
Ground SMT solver

Assignment

Instantiation
module

Instance

Model UNSAT (proof/core)

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b + x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf (a)=f (b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x , px=0,¬pf (a)=f (b)

Theory reasoner: a ≤ b, b ≤ a+ x , x = 0, f (a) ̸= f (b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf (a)=f (b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

11

From SAT to SMT,. . . and then to quantified SMT

SMT formula

SMT solver

Model UNSAT (proof/core)

Assignment

Instantiation
module

Instance

Ground
SMT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b + x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf (a)=f (b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x , px=0,¬pf (a)=f (b)

Theory reasoner: a ≤ b, b ≤ a+ x , x = 0, f (a) ̸= f (b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf (a)=f (b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

11

From SAT to SMT,. . . and then to quantified SMT

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b + x))

]
To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧

[
¬pf (a)=f (b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x , px=0,¬pf (a)=f (b)

Theory reasoner: a ≤ b, b ≤ a+ x , x = 0, f (a) ̸= f (b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf (a)=f (b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals

12

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x .S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

12

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]

To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧
[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x .S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

12

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]

Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x .S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

12

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x .S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

12

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x .S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

12

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x .S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

12

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x .S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

12

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x .S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

12

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x .S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?

13

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x)) ⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀x Q(x) ⇒ Q(a), this grounds the problem

13

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x)) ⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀x Q(x) ⇒ Q(a), this grounds the problem

13

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x)) ⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀x Q(x) ⇒ Q(a), this grounds the problem

13

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x)) ⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀x Q(x) ⇒ Q(a), this grounds the problem

13

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x)) ⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀x Q(x) ⇒ Q(a), this grounds the problem

13

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x)) ⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀x Q(x) ⇒ Q(a), this grounds the problem

14

Instance in an SMT context

∀x̄ φ(x̄)⇒ φσ

where σ is a ground substitution for variables x̄
E.g. ∀x̄ φ(x̄) is ∀x . S(x) ≡ R(x), σ is x 7→ a, φσ is S(a) ≡ R(a)

Remarks
▶ Above formula is a FOL tautology. E.g. (∀x . S(x) ≡ R(x)) ⇒ (S(a) ≡ R(a))

▶ ∀x̄ φ(x̄) gets abstracted as a propositional variable in the SAT solver, that has a meaning only for
the instantiation module

▶ φσ gets abstracted as a Boolean combination of propositional variables. . .

▶ . . . that have meaning at the level of the ground theory reasoner

▶ φσ gets “activated”/relevant only in the models where p∀x̄ φ(x̄) is true.

We might refer to φσ as the instance, but remember: all is fine at the level of the SAT
solver/ground SMT solver

15

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

16

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

17

Instantiation techniques
The framework

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Ground SMT solver enumerates assignments E ∪ Q

E set of ground literals

Q set of quantified clauses

Instantiation module generates instances of Q that will further feed E

classic Herbrand Theorem: instantiate with all possible terms in language

18

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

19

E-matching/Trigger-based instantiation (e) [Detlefs05, deMoura07]

Search for relevant instances according to a set of triggers and E -matching

▶ E = {¬P(a),¬P(b),P(c),¬R(b)} and Q = {∀x . P(x) ∨ R(x)}
▶ Assume trigger P(x)

▶ Find substitution σ for x such P(x) is a know term (in E)

▶ Three suitable substitutions: x 7→ a, x 7→ b, or x 7→ c
E.g. E |= P(x)[x/a] = P(a) and P(a) ∈ E

▶ Formally

e(E , ∀x̄ . φ) 1. Select a set of triggers {t̄1, . . . t̄n} for ∀x̄ . φ
2. For each i = 1, . . . , n, select a set of substitutions Si s.t

for each σ ∈ Si , E |= t̄iσ = ḡi for some tuple ḡi ∈ TE .

3. Return
⋃n

i=1 Si

19

E-matching/Trigger-based instantiation (e) [Detlefs05, deMoura07]

Search for relevant instances according to a set of triggers and E -matching

▶ E = {¬P(a),¬P(b),P(c),¬R(b)} and Q = {∀x . P(x) ∨ R(x)}
▶ Assume trigger P(x)

▶ Find substitution σ for x such P(x) is a know term (in E)

▶ Three suitable substitutions: x 7→ a, x 7→ b, or x 7→ c
E.g. E |= P(x)[x/a] = P(a) and P(a) ∈ E

▶ Formally

e(E , ∀x̄ . φ) 1. Select a set of triggers {t̄1, . . . t̄n} for ∀x̄ . φ
2. For each i = 1, . . . , n, select a set of substitutions Si s.t

for each σ ∈ Si , E |= t̄iσ = ḡi for some tuple ḡi ∈ TE .

3. Return
⋃n

i=1 Si

20

E-matching/Trigger-based instantiation

Ideal for expanding definitions/rewriting rules

▶ Example

∀x∀y . sister(x , y) ≡
(female(x) ∧mother(x) = mother(y) ∧ father(x) = father(y))

sister(Eliane,Elöıse)

sister(Elöıse,Elisabeth)

¬sister(Eliane,Elisabeth)
▶ Choosing instantiation trigger sister(x , y) suffices for SMT solver to prove

unsatisfiability

Remarks

▶ Decision procedure for, e.g., expressive arrays, lists [Dross16]

▶ Mostly efficient (see later evaluation)

▶ But can easily blow or miss the right instances

▶ Requires triggers (human or auto-generated)

21

E-matching/Trigger-based instantiation, prospects
Machine learning for instance filtering

▶ Instantiation method issue: number of useless generated instances

▶ It often occurs that > 99% of 100k generated instances are useless

An opportunity for machine learning

separate the wheat from the chaff: select the useful instances

▶ We investigated XGBoost to filter instances [Blanchette19]

▶ Trained on successful proofs (good instance ← survives pruning of proof)

21

E-matching/Trigger-based instantiation, prospects
Machine learning for instance filtering

▶ Instantiation method issue: number of useless generated instances

▶ It often occurs that > 99% of 100k generated instances are useless

An opportunity for machine learning

separate the wheat from the chaff: select the useful instances

▶ We investigated XGBoost to filter instances [Blanchette19]

▶ Trained on successful proofs (good instance ← survives pruning of proof)

21

E-matching/Trigger-based instantiation, prospects
Machine learning for instance filtering

▶ Instantiation method issue: number of useless generated instances

▶ It often occurs that > 99% of 100k generated instances are useless

An opportunity for machine learning

separate the wheat from the chaff: select the useful instances

▶ We investigated XGBoost to filter instances [Blanchette19]

▶ Trained on successful proofs (good instance ← survives pruning of proof)

21

E-matching/Trigger-based instantiation, prospects
Machine learning for instance filtering

▶ Instantiation method issue: number of useless generated instances

▶ It often occurs that > 99% of 100k generated instances are useless

An opportunity for machine learning

separate the wheat from the chaff: select the useful instances

▶ We investigated XGBoost to filter instances [Blanchette19]

▶ Trained on successful proofs (good instance ← survives pruning of proof)

22

ML for instance filtering: experimental results

30 s 60 s 120 s 180 s
veriT 2896 2913 2923 2929
veriT(M) 2907 2917 2925 2936
veriT(M2) 2916 2927 2935 2944
veriT(M+M2) 2936 2959 2969 2975
veriT + portfolio 3181 3215 3228 3234
veriT(M+M2) + portfolio 3190 3247 3312 3322
Vampire smtcomp mode 3154 3165 3175 3197
CVC4 portfolio 3311 3345 3393 3404

Results on the benchmarks in the UF category of the SMT-LIB

▶ veriT: vanilla

▶ veriT(M): veriT with instance selection trained with veriT successes

▶ veriT(M2): veriT with instance selection trained with veriT(M) successes

▶ veriT(M+M2): portfolio of above two

▶ veriT(M+M2) + portfolio of several strategies, with instance selection

23

ML for instance filtering: number of instances on test + training set

veriT on UF SMT-LIB benchmarks (with vs. without filtering)

24

ML for instance filtering: number of instances on test set only

veriT on UF SMT-LIB benchmarks (with vs. without filtering)

25

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

26

Conflict-based instantiation (c) [Reynolds14]

Search for one instance of one quantified formula in Q that is unsatisfiable together
with E

▶ E = {¬P(a),¬P(b),P(c),¬R(b)} and Q = {∀x . P(x) ∨ R(x)}

▶ Since E , P(b) ∨ R(b) |= ⊥, this strategy returns x 7→ b

▶ Formally

c(E , ∀x̄ . φ) Either return σ where E |= ¬φσ, or return ∅

26

Conflict-based instantiation (c) [Reynolds14]

Search for one instance of one quantified formula in Q that is unsatisfiable together
with E

▶ E = {¬P(a),¬P(b),P(c),¬R(b)} and Q = {∀x . P(x) ∨ R(x)}

▶ Since E , P(b) ∨ R(b) |= ⊥, this strategy returns x 7→ b

▶ Formally

c(E , ∀x̄ . φ) Either return σ where E |= ¬φσ, or return ∅

27

c: solving the problem

E ∧ ψσ |= ⊥, for some ∀x̄ ψ ∈ Q

f (a) = f (b) ∧ g(b) ̸= h(c) |= (f (x) = f (z) ∧ h(y) ̸= g(z))σ

▶ Each literal in the right hand side restricts σ
▶ f (x) = f (z): either x = z or x = a ∧ z = b or x = b ∧ z = a

▶ h(y) ̸= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c , z 7→ b}

27

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

f (a) = f (b) ∧ g(b) ̸= h(c) |= (f (x) = f (z) ∧ h(y) ̸= g(z))σ

▶ Each literal in the right hand side restricts σ
▶ f (x) = f (z): either x = z or x = a ∧ z = b or x = b ∧ z = a

▶ h(y) ̸= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c , z 7→ b}

27

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f (a) = f (b), g(b) ̸= h(c)}, Q = {∀xyz . f (x) = f (z) → h(y) = g(z)}

f (a) = f (b) ∧ g(b) ̸= h(c) |= (f (x) = f (z) ∧ h(y) ̸= g(z))σ

▶ Each literal in the right hand side restricts σ
▶ f (x) = f (z): either x = z or x = a ∧ z = b or x = b ∧ z = a

▶ h(y) ̸= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c , z 7→ b}

27

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f (a) = f (b), g(b) ̸= h(c)}, Q = {∀xyz . f (x) = f (z) → h(y) = g(z)}

f (a) = f (b) ∧ g(b) ̸= h(c) |= (f (x) = f (z) ∧ h(y) ̸= g(z))σ

▶ Each literal in the right hand side restricts σ
▶ f (x) = f (z): either x = z or x = a ∧ z = b or x = b ∧ z = a

▶ h(y) ̸= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c , z 7→ b}

27

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f (a) = f (b), g(b) ̸= h(c)}, Q = {∀xyz . f (x) = f (z) → h(y) = g(z)}

f (a) = f (b) ∧ g(b) ̸= h(c) |= (f (x) = f (z) ∧ h(y) ̸= g(z))σ

▶ Each literal in the right hand side restricts σ

▶ f (x) = f (z): either x = z or x = a ∧ z = b or x = b ∧ z = a

▶ h(y) ̸= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c , z 7→ b}

27

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f (a) = f (b), g(b) ̸= h(c)}, Q = {∀xyz . f (x) = f (z) → h(y) = g(z)}

f (a) = f (b) ∧ g(b) ̸= h(c) |= (f (x) = f (z) ∧ h(y) ̸= g(z))σ

▶ Each literal in the right hand side restricts σ
▶ f (x) = f (z): either x = z or x = a ∧ z = b or x = b ∧ z = a

▶ h(y) ̸= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c , z 7→ b}

27

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f (a) = f (b), g(b) ̸= h(c)}, Q = {∀xyz . f (x) = f (z) → h(y) = g(z)}

f (a) = f (b) ∧ g(b) ̸= h(c) |= (f (x) = f (z) ∧ h(y) ̸= g(z))σ

▶ Each literal in the right hand side restricts σ
▶ f (x) = f (z): either x = z or x = a ∧ z = b or x = b ∧ z = a

▶ h(y) ̸= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c , z 7→ b}

27

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f (a) = f (b), g(b) ̸= h(c)}, Q = {∀xyz . f (x) = f (z) → h(y) = g(z)}

f (a) = f (b) ∧ g(b) ̸= h(c) |= (f (x) = f (z) ∧ h(y) ̸= g(z))σ

▶ Each literal in the right hand side restricts σ
▶ f (x) = f (z): either x = z or x = a ∧ z = b or x = b ∧ z = a

▶ h(y) ̸= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}

or
σ = {x 7→ a, y 7→ c , z 7→ b}

27

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f (a) = f (b), g(b) ̸= h(c)}, Q = {∀xyz . f (x) = f (z) → h(y) = g(z)}

f (a) = f (b) ∧ g(b) ̸= h(c) |= (f (x) = f (z) ∧ h(y) ̸= g(z))σ

▶ Each literal in the right hand side restricts σ
▶ f (x) = f (z): either x = z or x = a ∧ z = b or x = b ∧ z = a

▶ h(y) ̸= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c , z 7→ b}

27

c: solving the problem

E |= ¬ψσ, for some ∀x̄ ψ ∈ Q

E = {f (a) = f (b), g(b) ̸= h(c)}, Q = {∀xyz . f (x) = f (z) → h(y) = g(z)}

f (a) = f (b) ∧ g(b) ̸= h(c) |= (f (x) = f (z) ∧ h(y) ̸= g(z))σ

▶ Each literal in the right hand side restricts σ
▶ f (x) = f (z): either x = z or x = a ∧ z = b or x = b ∧ z = a

▶ h(y) ̸= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c , z 7→ b}

28

c: solving the problem with E -ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, find substitution σ
s.t. E |= Lσ

▶ Variant of classic (non-simultaneous) rigid E -unification
▶ NP-complete

▶ NP: solutions can be restricted to ground terms in E ∪ L
▶ NP-hard: reduction of 3-SAT

▶ CCFV: congruence closure with free variables [Barbosa17]

▶ sound, complete and terminating calculus for solving E -ground (dis)unification
▶ goal oriented
▶ efficient in practice

▶ Still, 60% of time in veriT

28

c: solving the problem with E -ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, find substitution σ
s.t. E |= Lσ

▶ Variant of classic (non-simultaneous) rigid E -unification

▶ NP-complete
▶ NP: solutions can be restricted to ground terms in E ∪ L
▶ NP-hard: reduction of 3-SAT

▶ CCFV: congruence closure with free variables [Barbosa17]

▶ sound, complete and terminating calculus for solving E -ground (dis)unification
▶ goal oriented
▶ efficient in practice

▶ Still, 60% of time in veriT

28

c: solving the problem with E -ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, find substitution σ
s.t. E |= Lσ

▶ Variant of classic (non-simultaneous) rigid E -unification
▶ NP-complete

▶ NP: solutions can be restricted to ground terms in E ∪ L
▶ NP-hard: reduction of 3-SAT

▶ CCFV: congruence closure with free variables [Barbosa17]

▶ sound, complete and terminating calculus for solving E -ground (dis)unification
▶ goal oriented
▶ efficient in practice

▶ Still, 60% of time in veriT

29

c evaluation (1/2) [Reynolds14]

▶ Evaluation on SMT-LIB,
TPTP, Isabelle benchmarks

▶ Using conflict-based
instantiation (cvc4+ci),
require an order of magnitude
fewer instances to prove
unsatisfiability w.r.t.
E-matching alone

30

c evaluation (2/2) [Barbosa17]

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

veriT: + 800 out of 1 785 unsolved problems

CVC4:+ 200 out of 745 unsolved problems

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks annotated as unsatisfiable,

with 30s timeout.

31

Conflicting instances, prospects

▶ Still, 60% of time in veriT

▶ CCFV is an NP-complete problem

▶ It can be encoded into SAT

▶ We expect careful encoding of CCFV into SAT will provide efficient procedure

▶ We are investigating a SAT-based algorithm for higher-order CCFV

▶ Conflicting instances only work for one instance

▶ Finding out a pair of instances that contradict a model?

▶ Maybe use superposition? Extend algorithm to find conflicts with several clauses?

32

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

33

Model-based instantiation/MBQI (m) [Ge09]

Build a candidate model for E ∪ Q and instantiate with counter-examples from model
checking

▶ E = {¬P(a),¬P(b),P(c),¬R(b)} and Q = {∀x . P(x) ∨ R(x)}

▶ Ground solver provides a partial model. . .

▶ . . . extended to a full model s.t. PM = λx . ite(x = c , ⊤, ⊥) and RM = λx .⊥

▶ SinceM |= ¬ (P(a) ∨ R(a)), this strategy may return x 7→ a

▶ Formally

m(E , ∀x̄ . φ) 1. Construct a model M for E

2. Return x̄ 7→ t̄ where t̄ ∈ T (E) and M |= ¬φ[x̄/t̄],
or ∅ if none exists

33

Model-based instantiation/MBQI (m) [Ge09]

Build a candidate model for E ∪ Q and instantiate with counter-examples from model
checking

▶ E = {¬P(a),¬P(b),P(c),¬R(b)} and Q = {∀x . P(x) ∨ R(x)}

▶ Ground solver provides a partial model. . .

▶ . . . extended to a full model s.t. PM = λx . ite(x = c , ⊤, ⊥) and RM = λx .⊥

▶ SinceM |= ¬ (P(a) ∨ R(a)), this strategy may return x 7→ a

▶ Formally

m(E , ∀x̄ . φ) 1. Construct a model M for E

2. Return x̄ 7→ t̄ where t̄ ∈ T (E) and M |= ¬φ[x̄/t̄],
or ∅ if none exists

34

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

35

Why can’t we directly use Herbrand instantiation?

Theorem (Herbrand)

A finite set of Skolem formulas is unsatisfiable if and only if there exists a finite
unsatisfiable set of Herbrand instances

▶ The earliest theorem provers relied on Herbrand instantiation
▶ Instantiate with all possible terms in the language

▶ Enumerating all instances is unfeasible in practice!

▶ Enumerative instantiation was then discarded

Revisiting enumerative instantiation with benefits:

▶ strengthening of Herbrand theorem

▶ efficient implementation techniques

35

Why can’t we directly use Herbrand instantiation?

Theorem (Herbrand)

A finite set of Skolem formulas is unsatisfiable if and only if there exists a finite
unsatisfiable set of Herbrand instances

▶ The earliest theorem provers relied on Herbrand instantiation
▶ Instantiate with all possible terms in the language

▶ Enumerating all instances is unfeasible in practice!

▶ Enumerative instantiation was then discarded

Revisiting enumerative instantiation with benefits:

▶ strengthening of Herbrand theorem

▶ efficient implementation techniques

35

Why can’t we directly use Herbrand instantiation?

Theorem (Herbrand)

A finite set of Skolem formulas is unsatisfiable if and only if there exists a finite
unsatisfiable set of Herbrand instances

▶ The earliest theorem provers relied on Herbrand instantiation
▶ Instantiate with all possible terms in the language

▶ Enumerating all instances is unfeasible in practice!

▶ Enumerative instantiation was then discarded

Revisiting enumerative instantiation with benefits:

▶ strengthening of Herbrand theorem

▶ efficient implementation techniques

36

Theorem (Strengthened Herbrand)

If R is a (possibly infinite) set of instances of Q closed under Q-instantiation w.r.t.
itself and if E ∪ R is satisfiable, then E ∪ Q is satisfiable.

Direct application to

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

▶ Ground solver enumerates assignments E ∪ Q

▶ Instantiation module generates instances of Q

36

Theorem (Strengthened Herbrand)

If there exists an infinite sequence of finite satisfiable sets of ground literals Ei and of
finite sets of ground instances Qi of Q such that

▶ Qi =
{
φσ | ∀x̄ . φ ∈ Q, dom(σ) = {x̄} ∧ ran(σ) ⊆ T (Ei)

}
;

▶ E0 = E, Ei+1 |= Ei ∪ Qi ;

then E ∪ Q is satisfiable in the empty theory with equality

Direct application to

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

▶ Ground solver enumerates assignments E ∪ Q

▶ Instantiation module generates instances of Q

36

Theorem (Strengthened Herbrand)

If there exists an infinite sequence of finite satisfiable sets of ground literals Ei and of
finite sets of ground instances Qi of Q such that

▶ Qi =
{
φσ | ∀x̄ . φ ∈ Q, dom(σ) = {x̄} ∧ ran(σ) ⊆ T (Ei)

}
;

▶ E0 = E, Ei+1 |= Ei ∪ Qi ;

then E ∪ Q is satisfiable in the empty theory with equality

Direct application to

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

▶ Ground solver enumerates assignments E ∪ Q

▶ Instantiation module generates instances of Q

37

Enumerative instantiation (u) [Reynolds18]

u(E , ∀x̄ . φ)
1. Choose an ordering ⪯ on tuples of ground terms
2. Return x̄ 7→ t̄ where t̄ is a minimal tuple of terms w.r.t ⪯,

such that t̄ ∈ T (E) and E ̸|= φ[x̄/t̄], or ∅ if none exist

▶ E = {¬P(a),¬P(b),P(c),¬R(b)} and Q = {∀x . P(x) ∨ R(x)}

▶ u chooses an ordering on tuples of terms, e.g. a ≺ b ≺ c

▶ Since E ̸|= P(a) ∨ R(a), enumerative instantiation returns x 7→ a

38

u as an alternative for m

▶ Enumerative instantiation plays a similar role to m

▶ It can also serve as a “completeness fallback” to c and e

▶ However, u has advantages over m for UNSAT problems

▶ And it is significantly simpler to implement
▶ no model building
▶ no model checking

39

Example

E = {¬P(a), R(b), S(c)}
Q = {∀x . R(x) ∨ S(x), ∀x . ¬R(x) ∨ P(x), ∀x . ¬S(x) ∨ P(x)}

M =

 PM = λx .⊥,
RM = λx . ite(x = b, ⊤, ⊥),
SM = λx . ite(x = c , ⊤, ⊥)

 , a ≺ b ≺ c

φ x s.t. M |= ¬φ x s.t. E ̸|= φ m(E ,∀x . φ) u(E ,∀x . φ)
R(x) ∨ S(x) a a x 7→ a x 7→ a
¬R(x) ∨ P(x) b a, b, c x 7→ b x 7→ a
¬S(x) ∨ P(x) c a, b, c x 7→ c x 7→ a

▶ u instantiates uniformly so that less new terms are introduced

▶ m instantiates depending on how model was built

▶ u directly leads to E ∧ Q[x/a] |= ⊥

40

Advanced u: restricting enumeration space

▶ Strengthened Herbrand Theorem allows restriction to T (E)

▶ Sort inference reduces instantiation space by computing more precise sort
information
▶ E ∪ Q = {a ̸= b, f (a) = c} ∪ {P(f (x))}

▶ a, b, c, x : τ
▶ f : τ → τ and P : τ → Bool

▶ This is equivalent to E s ∪ Qs = {a1 ̸= b1, f12(a1) = c2} ∪ {P2(f12(x1))}
▶ a1, b1, x1 : τ1
▶ c2 : τ2
▶ f12 : τ1 → τ2 and P : τ2 → Bool

▶ u would derive e.g. x 7→ c for E ∪ Q, while for E s ∪ Qs the instantiation x1 7→ c2 is
not well-sorted

41

Advanced u: entailment checks

Two-layered method for checking whether E |= φ[x̄/t̄] holds

▶ cache of instances already derived

▶ on-the-fly rewriting of φ[x̄/t̄] modulo E
with extension to other theories through theory-specific rewriting

42

Advanced u: term ordering
Instances are enumerated according to the order

(t1, . . . , tn) ≺ (s1, . . . , sn) if


maxni=1 ti ≺ maxni=1 si , or

maxni=1 ti = maxni=1 si and

(t1, . . . , tn) ≺lex (s1, . . . , sn)

for a given order ⪯ on ground terms.

If a ≺ b ≺ c , then

(a, a) ≺ (a, b) ≺ (b, a) ≺ (b, b) ≺ (a, c) ≺ (c , b) ≺ (c , c)

▶ instances with c considered only after considering all cases with a and b
▶ goal is to introduce new terms less often
▶ order on T (E) fixed for finite set of terms t1 ≺ . . . ≺ tn

▶ instantiate in order with t1, . . . , tn
▶ then choose new non-congruent term t ∈ T (E) and have tn ≺ t

▶ Still a lot of room for improvement (and ML?) [Janota21]

43

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

44

Experimental evaluation (UNSAT)

CVC4 configurations on unsatisfiable benchmarks

6000 8000 10000 12000 14000 16000 18000 20000
10−1

100

101

102

C
PU

tim
e

(s
)

e+u
e;u
e+m
e;m
e
u
m

▶ 42 065 benchmarks: 14 731 TPTP + 27 334 SMT-LIB

▶ e+u: interleave e and u

▶ e;u: apply e first, then u if it fails

▶ All CVC4 configurations have c; as prefix

45

Experimental evaluation (SAT)

Library # u e;u e+u e m e;m e+m

TPTP 14731 471 492 464 17 930 808 829
UF 7293 39 42 42 0 70 69 65

Theories 20041 3 3 3 3 350 267 267

Total 42065 513 537 509 20 1350 1144 1161

46

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

47

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

48

Conclusion

▶ Quantifiers in SMT: handled in an ad hoc manner

▶ Techniques presented here are pure FOL with equality
(i.e. not “Modulo Theories”)

▶ Reasonably effective nonetheless

Future works and perspectives

▶ New instantiation techniques (Vampire-like attitude, in SMT?)

▶ Machine learning

▶ More convergence with state-of-the-art FOL techniques from saturation theorem
proving

▶ Symbiosis with quantifier elimination for theory reasoning

▶ Convergence with FOL provers?

▶ Higher-order logic

49

Advertisement: European research network on digital proofs

COST EU Action EuroProofNet

https://europroofnet.github.io/

EuroProofNet aims at boosting
the interoperability and usability of

proof systems

https://europroofnet.github.io/

50

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

51

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References

52

References I

[Althaus09] Ernst Althaus, Evgeny Kruglov, and Christoph Weidenbach. Superposition modulo linear arithmetic
SUP(LA). In Silvio Ghilardi and Roberto Sebastiani, editors, Frontiers of Combining Systems
(FroCoS), volume 5749 of Lecture Notes in Computer Science, pages 84–99. Springer, 2009.

[Baaz01] Matthias Baaz, Uwe Egly, and Alexander Leitsch. Normal form transformations. In John Alan
Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 5,
pages 273–333. Elsevier Science B.V., 2001.

[Barbosa17] Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. Congruence closure with free variables. In
Axel Legay and Tiziana Margaria, editors, Tools and Algorithms for Construction and Analysis of
Systems (TACAS), volume 10206 of Lecture Notes in Computer Science, pages 214–230. Springer,
2017.

[Baumgartner14] Peter Baumgartner. Model evolution-based theorem proving. IEEE Intelligent Systems,
29(1):4–10, 2014.

[Blanchette19] Jasmin Christian Blanchette, Daniel El Ouraoui, Pascal Fontaine, and Cezary Kaliszyk. Machine
Learning for Instance Selection in SMT Solving. In AITP 2019 - 4th Conference on Artificial
Intelligence and Theorem Proving, Obergurgl, Austria, 2019.

[Bonacina17] Maria Paola Bonacina and David A. Plaisted. Semantically-guided goal-sensitive reasoning:
Inference system and completeness. J. Autom. Reasoning, 59(2):165–218, 2017.

53

References II

[deMoura07] Leonardo Mendonça de Moura and Nikolaj Bjørner. Efficient E-matching for SMT solvers. In
Frank Pfenning, editor, CADE, volume 4603 of LNCS, pages 183–198, 2007.

[Detlefs05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A Theorem Prover for Program
Checking. J. ACM, 52(3):365–473, 2005.

[Dross16] Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich. Adding decision procedures
to SMT solvers using axioms with triggers. J. Autom. Reasoning, 56(4):387–457, 2016.

[Fiori19] Alberto Fiori and Christoph Weidenbach. SCL Clause Learning from Simple Models. Automated
Deduction - CADE 27,, volume 11716 of Lecture Notes in Computer Science, pages 233–249.
Springer, 2019.

[Fontaine21] Pascal Fontaine and Hans-Jörg Schurr. Quantifier simplification by unification in SMT. In Boris
Konev and Giles Reger, editors, Frontiers of Combining Systems (FroCoS), volume 12941 of
Lecture Notes in Computer Science, pages 232–249. Springer, 2021.

[Ge09] Yeting Ge and Leonardo Mendonça de Moura. Complete instantiation for quantified formulas in
satisfiabiliby modulo theories. In Ahmed Bouajjani and Oded Maler, editors, Computer Aided
Verification (CAV), volume 5643 of Lecture Notes in Computer Science, pages 306–320. Springer,
2009.

[Halper91] Joseph Y. Halpern. Presburger arithmetic with unary predicates is Π1
1 complete. The Journal of

Symbolic Logic, 56(2):637–642, June 1991.

54

References III

[Janota21] Mikolás Janota, Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. Fair and adventurous
enumeration of quantifier instantiations. In Formal Methods in Computer Aided Design (FMCAD),
pages 256–260. IEEE, 2021.

[Korovin13] Konstantin Korovin. Inst-gen - A modular approach to instantiation-based automated reasoning. In
Andrei Voronkov and Christoph Weidenbach, editors, Programming Logics - Essays in Memory of
Harald Ganzinger, volume 7797 of Lecture Notes in Computer Science, pages 239–270. Springer,
2013.

[Nonnengart01] Andreas Nonnengart and Christoph Weidenbach. Computing small clause normal forms. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume I,
chapter 6, pages 335–367. Elsevier Science B.V., 2001.

[Reynolds18] Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. Revisiting enumerative instantiation. In
Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for Construction and Analysis of
Systems (TACAS), volume 10806 of Lecture Notes in Computer Science, pages 112–131. Springer,
2018.

[Reynolds14] Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura. Finding conflicting instances
of quantified formulas in SMT. In Formal Methods In Computer-Aided Design (FMCAD), pages
195–202. IEEE, 2014.

55

References IV

[Reynolds13] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstić, Morgan Deters, and Clark Barrett.
Quantifier Instantiation Techniques for Finite Model Finding in SMT. In MariaPaola Bonacina,
editor, Proc. Conference on Automated Deduction (CADE), volume 7898 of Lecture Notes in
Computer Science, pages 377–391. Springer, 2013.

[Voronkov14] Andrei Voronkov. AVATAR: the architecture for first-order theorem provers. In Armin Biere and
Roderick Bloem, editors, Computer Aided Verification (CAV), volume 8559 of Lecture Notes in
Computer Science, pages 696–710. Springer, 2014.

