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Motivation

▶ Formal proofs should not be mostly about proving easy things

▶ Automated theorem provers (ATPs) should prove the easy things for you

▶ ATP proofs can be replayed: confidence is not compromised

▶ E.g. Sledgehammer

▶ Proof obligations often use quantifiers
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SMT = SAT + expressiveness

▶ SAT solvers

¬
[
(p ⇒ q)⇒

[
(¬p ⇒ q)⇒ q

]]
▶ Congruence closure (uninterpreted symbols + equality)

a = b ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b))

]
▶ and with arithmetic

a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b + x))

]
▶ . . .

▶ What about quantifiers?
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Quantifiers in SMT

/ Full first-order logic is undecidable

, First-order logic is semi-decidable
refutationally complete procedures terminate on UNSAT

, If finite model property, then decidable

/ Presburger with even one unary predicate is not even semi-decidable [Halper91]

, Pragmatic approaches are quite successful

Why does the pragmatic SMT approach work?

▶ Verification problems are big and shallow

▶ SMT appropriate for long, mostly ground, uninterpreted function reasoning

Working hypothesis

Quantifier handling for pure FOL will work most of the time sufficiently for SMT
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Herbrand

Unlike superposition-based FOL provers, SMT solvers essentially based on instantiation

1908-1931

Herbrand instance of a Skolem formula ∀x̄φ(x̄): any ground formula
φ(t̄), where t̄ are terms in the language

Theorem (Herbrand)

A finite set of Skolem formulas is unsatisfiable if and only if there
exists a finite unsatisfiable set of Herbrand instances

Caveats

▶ there should be at least one constant available for every sort

▶ holds for pure FOL, might not in presence of theories
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Example

Is this syllogism correct?

All humans are mortal
All Greeks are humans
Then all Greeks are mortal

Translate to FOL
∀x .H(x)⇒ M(x)
∀x .G (x)⇒ H(x)
∀x .G (x)⇒ M(x)

Artistotle
384–322 BC

▶ Checking the validity of this formula((
∀x .H(x)⇒ M(x)

)
∧
(
∀x .G (x)⇒ H(x)

))
⇒ ∀x .G (x)⇒ M(x)

▶ Checking the unsatisfiability of
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬∀x .G (x)⇒ M(x)

▶ Skolemize
∀x .H(x)⇒ M(x),∀x .G (x)⇒ H(x),¬(G (s)⇒ M(s))

▶ Instantiate: add the two formulas (Herbrand instances)
H(s)⇒ M(s),G (s)⇒ H(s)

▶ A ground (SAT/SMT) solver will deduce unsatisfiability.
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From SAT to SMT,. . .

and then to quantified SMT

SMT formula

SMT solver

Input: a ≤ b ∧ b ≤ a+ x ∧ x = 0 ∧
[
f (a) ̸= f (b) ∨ (q(a) ∧ ¬q(b + x))

]

To SAT solver: pa≤b ∧ pb≤a+x ∧ px=0 ∧
[
¬pf (a)=f (b) ∨ (pq(a) ∧ ¬pq(b+x))

]
Boolean model: pa≤b, pb≤a+x , px=0,¬pf (a)=f (b)

Theory reasoner: a ≤ b, b ≤ a+ x , x = 0, f (a) ̸= f (b) unsatisfiable

New clause: ¬pa≤b ∨ ¬pb≤a+x ∨ ¬px=0 ∨ pf (a)=f (b)

Conflict clauses are negation of unsatisfiable conjunctive sets of literals
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Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Theory reasoner: fine! . . . but does not understand ∀x .S(x) ≡ R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

New clause:¬pa=b,¬pS(b) ∨ pR(a) ∨ ¬p ∀x . S(x)≡R(x)

. . . too complicated to find/generate

What is the right formula to generate?
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Together with ∀x Q(x) ⇒ Q(a), this grounds the problem



13

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x)) ⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀x Q(x) ⇒ Q(a), this grounds the problem



13

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x)) ⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀x Q(x) ⇒ Q(a), this grounds the problem



13

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x)) ⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀x Q(x) ⇒ Q(a), this grounds the problem



13

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x)) ⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀x Q(x) ⇒ Q(a), this grounds the problem



13

Instance?

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Input: a = b ∧ S(b) ∧ ¬Q(a) ∧ ¬R(a) ∧
[
∀x Q(x) ∨ ∀x . S(x) ≡ R(x)

]
To SAT solver: pa=b ∧ pS(b) ∧ ¬pQ(a) ∧ ¬pR(a) ∧

[
p ∀x Q(x) ∨ p ∀x . S(x)≡R(x)

]
Boolean model: pa=b, pS(b),¬pQ(a),¬pR(a), p ∀x . S(x)≡R(x)

Instantiation module: there is something to do with ∀x . S(x) ≡ R(x)

What is the right formula to generate?

S(a) ≡ R(a) is not right

We want S(a) ≡ R(a) whenever p ∀x . S(x)≡R(x) is in the Boolean model

(∀x . S(x) ≡ R(x)) ⇒ (S(a) ≡ R(a)) would do

¬p∀x . S(x)≡R(x) ∨
(
pS(a) ≡ pR(a)

)
at the propositional level

Together with ∀x Q(x) ⇒ Q(a), this grounds the problem



14

Instance in an SMT context

∀x̄ φ(x̄)⇒ φσ

where σ is a ground substitution for variables x̄
E.g. ∀x̄ φ(x̄) is ∀x . S(x) ≡ R(x), σ is x 7→ a, φσ is S(a) ≡ R(a)

Remarks
▶ Above formula is a FOL tautology. E.g. (∀x . S(x) ≡ R(x)) ⇒ (S(a) ≡ R(a))

▶ ∀x̄ φ(x̄) gets abstracted as a propositional variable in the SAT solver, that has a meaning only for
the instantiation module

▶ φσ gets abstracted as a Boolean combination of propositional variables. . .

▶ . . . that have meaning at the level of the ground theory reasoner

▶ φσ gets “activated”/relevant only in the models where p∀x̄ φ(x̄) is true.

We might refer to φσ as the instance, but remember: all is fine at the level of the SAT
solver/ground SMT solver
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Instantiation techniques
The framework

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

Ground SMT solver enumerates assignments E ∪ Q

E set of ground literals

Q set of quantified clauses

Instantiation module generates instances of Q that will further feed E

classic Herbrand Theorem: instantiate with all possible terms in language
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E-matching/Trigger-based instantiation (e) [Detlefs05, deMoura07]

Search for relevant instances according to a set of triggers and E -matching

▶ E = {¬P(a),¬P(b),P(c),¬R(b)} and Q = {∀x . P(x) ∨ R(x)}
▶ Assume trigger P(x)

▶ Find substitution σ for x such P(x) is a know term (in E )

▶ Three suitable substitutions: x 7→ a, x 7→ b, or x 7→ c
E.g. E |= P(x)[x/a] = P(a) and P(a) ∈ E

▶ Formally

e(E , ∀x̄ . φ) 1. Select a set of triggers {t̄1, . . . t̄n} for ∀x̄ . φ
2. For each i = 1, . . . , n, select a set of substitutions Si s.t

for each σ ∈ Si , E |= t̄iσ = ḡi for some tuple ḡi ∈ TE .

3. Return
⋃n

i=1 Si
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E-matching/Trigger-based instantiation

Ideal for expanding definitions/rewriting rules

▶ Example

∀x∀y . sister(x , y) ≡
(female(x) ∧mother(x) = mother(y) ∧ father(x) = father(y))

sister(Eliane,Elöıse)

sister(Elöıse,Elisabeth)

¬sister(Eliane,Elisabeth)
▶ Choosing instantiation trigger sister(x , y) suffices for SMT solver to prove

unsatisfiability

Remarks

▶ Decision procedure for, e.g., expressive arrays, lists [Dross16]

▶ Mostly efficient (see later evaluation)

▶ But can easily blow or miss the right instances

▶ Requires triggers (human or auto-generated)
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E-matching/Trigger-based instantiation, prospects
Machine learning for instance filtering

▶ Instantiation method issue: number of useless generated instances

▶ It often occurs that > 99% of 100k generated instances are useless

An opportunity for machine learning

separate the wheat from the chaff: select the useful instances

▶ We investigated XGBoost to filter instances [Blanchette19]

▶ Trained on successful proofs (good instance ← survives pruning of proof)
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ML for instance filtering: experimental results

30 s 60 s 120 s 180 s
veriT 2896 2913 2923 2929
veriT(M) 2907 2917 2925 2936
veriT(M2) 2916 2927 2935 2944
veriT(M+M2) 2936 2959 2969 2975
veriT + portfolio 3181 3215 3228 3234
veriT(M+M2) + portfolio 3190 3247 3312 3322
Vampire smtcomp mode 3154 3165 3175 3197
CVC4 portfolio 3311 3345 3393 3404

Results on the benchmarks in the UF category of the SMT-LIB

▶ veriT: vanilla

▶ veriT(M): veriT with instance selection trained with veriT successes

▶ veriT(M2): veriT with instance selection trained with veriT(M) successes

▶ veriT(M+M2): portfolio of above two

▶ veriT(M+M2) + portfolio of several strategies, with instance selection
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ML for instance filtering: number of instances on test + training set

veriT on UF SMT-LIB benchmarks (with vs. without filtering)
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ML for instance filtering: number of instances on test set only

veriT on UF SMT-LIB benchmarks (with vs. without filtering)
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Conflict-based instantiation (c) [Reynolds14]

Search for one instance of one quantified formula in Q that is unsatisfiable together
with E

▶ E = {¬P(a),¬P(b),P(c),¬R(b)} and Q = {∀x . P(x) ∨ R(x)}

▶ Since E , P(b) ∨ R(b) |= ⊥, this strategy returns x 7→ b

▶ Formally

c(E , ∀x̄ . φ) Either return σ where E |= ¬φσ, or return ∅
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c: solving the problem

E ∧ ψσ |= ⊥, for some ∀x̄ ψ ∈ Q

f (a) = f (b) ∧ g(b) ̸= h(c) |= (f (x) = f (z) ∧ h(y) ̸= g(z))σ

▶ Each literal in the right hand side restricts σ
▶ f (x) = f (z): either x = z or x = a ∧ z = b or x = b ∧ z = a

▶ h(y) ̸= g(z): y = c ∧ z = b

σ = {x 7→ b, y 7→ c, z 7→ b}
or

σ = {x 7→ a, y 7→ c , z 7→ b}
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c: solving the problem with E -ground (dis)unification

Given conjunctive sets of equality literals E and L, with E ground, find substitution σ
s.t. E |= Lσ

▶ Variant of classic (non-simultaneous) rigid E -unification
▶ NP-complete

▶ NP: solutions can be restricted to ground terms in E ∪ L
▶ NP-hard: reduction of 3-SAT

▶ CCFV: congruence closure with free variables [Barbosa17]

▶ sound, complete and terminating calculus for solving E -ground (dis)unification
▶ goal oriented
▶ efficient in practice

▶ Still, 60% of time in veriT
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c evaluation (1/2) [Reynolds14]

▶ Evaluation on SMT-LIB,
TPTP, Isabelle benchmarks

▶ Using conflict-based
instantiation (cvc4+ci),
require an order of magnitude
fewer instances to prove
unsatisfiability w.r.t.
E-matching alone
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c evaluation (2/2) [Barbosa17]
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veriT: + 800 out of 1 785 unsolved problems

CVC4:+ 200 out of 745 unsolved problems

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL” categories of SMT-LIB, which have 10 495 benchmarks annotated as unsatisfiable,

with 30s timeout.
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Conflicting instances, prospects

▶ Still, 60% of time in veriT

▶ CCFV is an NP-complete problem

▶ It can be encoded into SAT

▶ We expect careful encoding of CCFV into SAT will provide efficient procedure

▶ We are investigating a SAT-based algorithm for higher-order CCFV

▶ Conflicting instances only work for one instance

▶ Finding out a pair of instances that contradict a model?

▶ Maybe use superposition? Extend algorithm to find conflicts with several clauses?
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Model-based instantiation/MBQI (m) [Ge09]

Build a candidate model for E ∪ Q and instantiate with counter-examples from model
checking

▶ E = {¬P(a),¬P(b),P(c),¬R(b)} and Q = {∀x . P(x) ∨ R(x)}

▶ Ground solver provides a partial model. . .

▶ . . . extended to a full model s.t. PM = λx . ite(x = c , ⊤, ⊥) and RM = λx .⊥

▶ SinceM |= ¬ (P(a) ∨ R(a)), this strategy may return x 7→ a

▶ Formally

m(E , ∀x̄ . φ) 1. Construct a model M for E

2. Return x̄ 7→ t̄ where t̄ ∈ T (E) and M |= ¬φ[x̄/t̄],
or ∅ if none exists
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Why can’t we directly use Herbrand instantiation?

Theorem (Herbrand)

A finite set of Skolem formulas is unsatisfiable if and only if there exists a finite
unsatisfiable set of Herbrand instances

▶ The earliest theorem provers relied on Herbrand instantiation
▶ Instantiate with all possible terms in the language

▶ Enumerating all instances is unfeasible in practice!

▶ Enumerative instantiation was then discarded

Revisiting enumerative instantiation with benefits:

▶ strengthening of Herbrand theorem

▶ efficient implementation techniques
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Theorem (Strengthened Herbrand)

If R is a (possibly infinite) set of instances of Q closed under Q-instantiation w.r.t.
itself and if E ∪ R is satisfiable, then E ∪ Q is satisfiable.

Direct application to

SMT formula
Model

UNSAT

SMT solver
Instantiation

module

InstanceAssignment

Ground
SMT solver

▶ Ground solver enumerates assignments E ∪ Q

▶ Instantiation module generates instances of Q
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Theorem (Strengthened Herbrand)

If there exists an infinite sequence of finite satisfiable sets of ground literals Ei and of
finite sets of ground instances Qi of Q such that

▶ Qi =
{
φσ | ∀x̄ . φ ∈ Q, dom(σ) = {x̄} ∧ ran(σ) ⊆ T (Ei )

}
;

▶ E0 = E, Ei+1 |= Ei ∪ Qi ;

then E ∪ Q is satisfiable in the empty theory with equality
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Enumerative instantiation (u) [Reynolds18]

u(E , ∀x̄ . φ)
1. Choose an ordering ⪯ on tuples of ground terms
2. Return x̄ 7→ t̄ where t̄ is a minimal tuple of terms w.r.t ⪯,

such that t̄ ∈ T (E ) and E ̸|= φ[x̄/t̄], or ∅ if none exist

▶ E = {¬P(a),¬P(b),P(c),¬R(b)} and Q = {∀x . P(x) ∨ R(x)}

▶ u chooses an ordering on tuples of terms, e.g. a ≺ b ≺ c

▶ Since E ̸|= P(a) ∨ R(a), enumerative instantiation returns x 7→ a
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u as an alternative for m

▶ Enumerative instantiation plays a similar role to m

▶ It can also serve as a “completeness fallback” to c and e

▶ However, u has advantages over m for UNSAT problems

▶ And it is significantly simpler to implement
▶ no model building
▶ no model checking
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Example

E = {¬P(a), R(b), S(c)}
Q = {∀x . R(x) ∨ S(x), ∀x . ¬R(x) ∨ P(x), ∀x . ¬S(x) ∨ P(x)}

M =

 PM = λx .⊥,
RM = λx . ite(x = b, ⊤, ⊥),
SM = λx . ite(x = c , ⊤, ⊥)

 , a ≺ b ≺ c

φ x s.t. M |= ¬φ x s.t. E ̸|= φ m(E ,∀x . φ) u(E ,∀x . φ)
R(x) ∨ S(x) a a x 7→ a x 7→ a
¬R(x) ∨ P(x) b a, b, c x 7→ b x 7→ a
¬S(x) ∨ P(x) c a, b, c x 7→ c x 7→ a

▶ u instantiates uniformly so that less new terms are introduced

▶ m instantiates depending on how model was built

▶ u directly leads to E ∧ Q[x/a] |= ⊥
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Advanced u: restricting enumeration space

▶ Strengthened Herbrand Theorem allows restriction to T (E )

▶ Sort inference reduces instantiation space by computing more precise sort
information
▶ E ∪ Q = {a ̸= b, f (a) = c} ∪ {P(f (x))}

▶ a, b, c, x : τ
▶ f : τ → τ and P : τ → Bool

▶ This is equivalent to E s ∪ Qs = {a1 ̸= b1, f12(a1) = c2} ∪ {P2(f12(x1))}
▶ a1, b1, x1 : τ1
▶ c2 : τ2
▶ f12 : τ1 → τ2 and P : τ2 → Bool

▶ u would derive e.g. x 7→ c for E ∪ Q, while for E s ∪ Qs the instantiation x1 7→ c2 is
not well-sorted
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Advanced u: entailment checks

Two-layered method for checking whether E |= φ[x̄/t̄] holds

▶ cache of instances already derived

▶ on-the-fly rewriting of φ[x̄/t̄] modulo E
with extension to other theories through theory-specific rewriting
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Advanced u: term ordering
Instances are enumerated according to the order

(t1, . . . , tn) ≺ (s1, . . . , sn) if


maxni=1 ti ≺ maxni=1 si , or

maxni=1 ti = maxni=1 si and

(t1, . . . , tn) ≺lex (s1, . . . , sn)

for a given order ⪯ on ground terms.

If a ≺ b ≺ c , then

(a, a) ≺ (a, b) ≺ (b, a) ≺ (b, b) ≺ (a, c) ≺ (c , b) ≺ (c , c)

▶ instances with c considered only after considering all cases with a and b
▶ goal is to introduce new terms less often
▶ order on T (E ) fixed for finite set of terms t1 ≺ . . . ≺ tn

▶ instantiate in order with t1, . . . , tn
▶ then choose new non-congruent term t ∈ T (E ) and have tn ≺ t

▶ Still a lot of room for improvement (and ML?) [Janota21]
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Experimental evaluation (UNSAT)

CVC4 configurations on unsatisfiable benchmarks

6000 8000 10000 12000 14000 16000 18000 20000
10−1

100

101

102

C
PU

tim
e

(s
)

e+u
e;u
e+m
e;m
e
u
m

▶ 42 065 benchmarks: 14 731 TPTP + 27 334 SMT-LIB

▶ e+u: interleave e and u

▶ e;u: apply e first, then u if it fails

▶ All CVC4 configurations have c; as prefix
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Experimental evaluation (SAT)

Library # u e;u e+u e m e;m e+m

TPTP 14731 471 492 464 17 930 808 829
UF 7293 39 42 42 0 70 69 65

Theories 20041 3 3 3 3 350 267 267

Total 42065 513 537 509 20 1350 1144 1161



46

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References



47

Outline

Introduction

Quantifiers and SMT: the basics

Instantiation techniques
E-matching/trigger-based instantiation (e)
Conflict-based instantiation (c)
Model-based instantiation (m)
Enumerative instantiation (u)
Experimental evaluation

Conclusion

References



48

Conclusion

▶ Quantifiers in SMT: handled in an ad hoc manner

▶ Techniques presented here are pure FOL with equality
(i.e. not “Modulo Theories”)

▶ Reasonably effective nonetheless

Future works and perspectives

▶ New instantiation techniques (Vampire-like attitude, in SMT?)

▶ Machine learning

▶ More convergence with state-of-the-art FOL techniques from saturation theorem
proving

▶ Symbiosis with quantifier elimination for theory reasoning

▶ Convergence with FOL provers?

▶ Higher-order logic
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Advertisement: European research network on digital proofs

COST EU Action EuroProofNet

https://europroofnet.github.io/

EuroProofNet aims at boosting
the interoperability and usability of

proof systems

https://europroofnet.github.io/
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