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Computational mathematics



Experimentation

“The notion that these conjectures might have been reached by pure thought –
with no picture – is simply inconceivable. . . I had my programmer draw a very
big sample [Brownian] motion and proceeded to play with it” B. Mandelbrot,
19821

1Cited in Mathematics in the Age of the Turing Machine, Thomas Hales, ASL Lecture Notes
in Logic. 2013.
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Experimentation
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Proofs

Four color theorem (K. Appel, W. Haken - 1976)
Every planar map is four colorable.

[A computer-checked proof of the four color theorem, G. Gonthier - 2003]
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Proofs

Ternary Goldbach conjecture is true (H. Helfgott - 2013)
Every odd integer greater than 5 is the sum of three primes.
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Data
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Computer-aided mathematics

• Effective results

• Efficient algorithms

• Smart implementations
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Guess and then prove

[How to solve it, G. Pólya, Princeton University Press, 1945]
[Guessing with little data, M. Kauers and K. Koutschan, Proceedings of ISSAC 2022]
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Guess and then prove

[How to solve it, G. Pólya, Princeton University Press, 1945]
[Guessing with little data, M. Kauers and K. Koutschan, Proceedings of ISSAC 2022]
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Trusting computational mathematics ?



Reproducibility

• Commercial software

• Closed code

• Single implementations
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Reproducibility
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Reproducibility
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Cross-verification is not enough

In SymPy 1.7.1 2, compare

1 >>> simplify(hyper([n],[m],x).subs({m:-1, n:-1, x:1}))
2 2

with

1 >>> simplify(hyper([n],[m],x).subs(m, n)).subs({n:-1, x:1})
2 E

⇒ A posteriori verification techniques cannot apply.

Wolfram Language (Mathematica) exhibit the exact same phenomenon.

⇒ Cross-verification is not enough.

2Example suggested by F. Johansson.
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Proofs can go wrong

• This estimation is wrong (although the proof can be repaired).

[Formally Verified Approximations of Definite Integrals - A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]
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Proofs can go wrong

Testing reference implementations of rigorous quadratures on:

∫
0

1

|(x4 + 10x3 + 19x2 − 6x − 6)ex |dx ≃ 11.14731055005714

• Octave’s quad/quadgk: only 10/9 correct digits;

• INTLAB verifyquad: false answer without warning;

• VNODE-LP: cannot be used because of the absolute value.

INTLAB bug report (2016) ⇒ Removed support for the absolute value
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Mathematical functions on paper

√
x
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Mathematical functions for the computer

[Arb: efficient arbitrary-precision midpoint-radius interval arithmetic, Johansson, IEEE Trans. on Computers 2017]
15



Trusting computational mathematics



Program verification

Recipe:

• State expected properties on input

• State desired theorem on outcome

• Inspect of the code to prove implication

Ingredients:

• Appropriate specification language, expressive enough

• (Human insight)

• Automated proofs
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Example: in-place inversion of a permutation

• From a permutation array and a few extra slots:

2 4 5 1 3

• Compute the array of the inverse permutation:

4 1 5 2 3

Rules of the game:

• Overwritten data is lost.

• The number of extra slot does not depend on the permutation.

17



Program verification

Recipe:

• State expected properties on input

• State desired theorem on outcome

• Inspect of the code to prove implication

• Interpret symbolic data

Ingredients:

• Appropriate specification language, expressive enough

• Automated proofs

• (Human insight)

• Libraries of verified theorems
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Program verification for mathematics

Recipe:

• State expected properties on input

• State desired theorem on outcome

• Inspect of the code to prove implication

• Interpret symbolic data

Ingredients:

• Appropriate specification language, expressive enough

• Automated proofs

• (Human insight)

• Libraries of verified theorems
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Example: computing rigorous quadratures

∫
0

1

|(x4 + 10x3 + 19x2 − 6x − 6)ex |dx ≃ 11.14731055005714

• Trade floating point numbers for intervals.

• Implement interval extensions for mathematical functions.
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Abstract syntax trees for univariate expressions

+

cos

×

x π

√

x

[e]R

⊥

: R

⊥

→ R

⊥

x 7→ cos (x × π) +
√
x

[e]I

⊥

: I

⊥

→ I

⊥

x 7→ cos (x × π)+
√

x

Correctness theorem of interval extensions:

∀e ∈ E , ∀i ∈ I⊥, ∀x ∈ i , [e]R⊥(x) ∈ [e]I⊥(i )
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Formally verified approximations

∫
0

1

|(x4 + 10x3 + 19x2 − 6x − 6)ex |dx ≃ 11.14731055005714

∫ b

a

f (x)dx ∈ [m,M] ?
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Formally verified approximations

Verified computation, using rigorous polynomial approximations:

∫ [eb ]R

[ea]R

[ef ]Rdx ∈
∫ [eb ]TM

[ea]TM

[ef ]TMdx ⊆ [m,M]

[Formally Verified Approximations of Definite Integrals, A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]
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Benefits



Formally verified computational mathematics
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Formally verified computational mathematics
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Formally verified computational mathematics
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Homological algebra

[Tropical Hodge theory and applications, Matthieu Piquerez’ PhD - 2021]
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Diagram chasing as invisible mathematics

[Tropical Hodge theory and applications, Matthieu Piquerez’ PhD - 2021]
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Diagram chasing as invisible mathematics

[Tropical Hodge theory and applications, Matthieu Piquerez’ PhD - 2021]
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Diagram chasing as invisible mathematics

f

g

h

l

k

[Recently, Master theses of Markus Himmel (2020), Yannis Monbru (2022)]
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Diagram chasing as invisible mathematics

f is an epi:
∀g ,∀h, f ◦ g = f ◦ h ⇒ g = h

a b c
f

g

h

f ◦ g

f ◦ h

[Recently, Master theses of Markus Himmel (2020), Yannis Monbru (2022)]
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Formal(ized) abstract nonsense

∀

∧

clip

pb

G1 v0

v1

∧

com

pb

G2 v0

[e]A is a predicate on diagrams.

Duality theorem:
∀e,∀l , [e]A,l ⇒ [dual e]A,l

[Joint work in progress with Matthieu Piquerey] 30
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Plotting exp(−x2) with sagemath
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Plotting exp(−x2) with sagemath
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Plotting exp(−x2) with sagemath
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Plotting sin(x) for x ∈ [0, 3141]

-1

-0.8

-0.6

-0.4

-0.2

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	500 	1000 	1500 	2000 	2500 	3000

sin(x)

Gnuplot Sagemath

32



Plotting sin(x) for x ∈ [0, 3141]

-1

-0.8

-0.6

-0.4

-0.2

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	500 	1000 	1500 	2000 	2500 	3000

sin(x)

Gnuplot

Sagemath

32



Plotting sin(x) for x ∈ [0, 3141]

-1

-0.8

-0.6

-0.4

-0.2

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	500 	1000 	1500 	2000 	2500 	3000

sin(x)

Gnuplot Sagemath

32



Faithful plotting is hard

Issues:

• Sampling

• Accuracy

• Bugs

Desired properties:

• Correctness: blank pixels are not traversed by the function graph

• Completeness: filled pixels are traversed by the function graph

⇒ Formally verified plots: guarantee correctness and strive for completeness
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Generating formally verified plots

To obtain a verified plot for f (x) for x ∈ X :

• Partition X in (Xi )i=1...n

• Produce a list (ℓi )i=1...n of intervals

• Ensure (with a formal proof) that for every i = 1 . . . n:

∀x ∈ Xi , f (x) ∈ ℓi

• Fill the corresponding pixels.

Rigorous polynomial approximation make computations efficient enough.

[Plotting in a formally verified way, G. Melquiond, F-IDE 2021]

.
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Demo
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Conclusions



Doing mathematics by computer
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Doing mathematics by computer
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Agenda

• Blur the fronteer between environments for experimenting and for proving

• Expand the computational skills of proof assistants
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