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Computational mathematics



Experimentation

“The notion that these conjectures might have been reached by pure thought —

with no picture — is simply inconceivable. . .| had my programmer draw a very
big sample [Brownian] motion and proceeded to play with it" B. Mandelbrot,
19821

1Cited in Mathematics in the Age of the Turing Machine, Thomas Hales, ASL Lecture Notes
in Logic. 2013.



Experimentation
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Birch and Swinnerton-Dyer Conjecture

Il 1{ Mathematicians have always been fascinated by
F’ J ¥ the problem of describing all solutions in whole
numbers xy.z to algebraic equations like

Euclid gave the complete solution for that
equation, but for more complicated equations this
becomes extremely difficult. Indeed, in 1970 Yu.V.
Matiyasevich showed that Hilbert's tenth problem is unsolvable, i.e., there is no general method for
determining when such equations have a solution in whole numbers. But in special cases one can hope to say
something. When the solutions are the points of an abelian variety, the Birch and Swinnerton-Dyer
conjecture asserts that the size of the group of rational points is related to the behavior of an associated zeta
function €(s) near the point s=1. In particular this amazing conjecture asserts that if T(1) is equal to 0, then

there are an infinite number of rational points (solutions), and conversely, if T(1) is not equal to 0, then there is
only a finite number of such points.

This problem is: Unsolved



Four color theorem (K. Appel, W. Haken - 1976)

Every planar map is four colorable.

[A computer-checked proof of the four color theorem, G. Gonthier - 2003]



Ternary Goldbach conjecture is true (H. Helfgott - 2013)

Every odd integer greater than 5 is the sum of three primes.



Proofs

Ternary Goldbach conjecture is true (H. Helfgott - 2013)

Every odd integer greater than 5 is the sum of three primes.
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Proofs

Ternary Goldbach conjecture is true (H. Helfgott - 2013)

Every odd integer greater than 5 is the sum of three primes.

@ @iy, By Cauchy-Schwarz, this is at most
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1] Tue, 14 May 2013 084722 UTG (7 K5)
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y a rigorous integration from 7 = —100000 to 7 = 100000 using VNODE-LP [Ned06]
which runs on the PROFIL/BIAS interval arithmetic package[Knii99).
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The L-functions and modular forms database (LMFDB)
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The LMFDB is an extensive database of
mathematical objects arising in Number Theory.

sample lists: L-functions, Elliptic curves, Tables of
zeros, Number fields
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¥ 2.1
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This project byg National , the UK Engineering and Physical Sciences Research Council, and the Simons Foundation.
Contact - Citation - Acknowledgments - Editorial Board - Source - SageMath version 9.7 - LMFDB Release 1.2.1



Computer-aided mathematics

e Effective results
e Efficient algorithms

e Smart implementations



Guess and then prove
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Guess and then prove

Guessing with Little Data*

f Manuel Kauers®, Christoph Kontschan”

“Institute for Algebra, Johannes Kepler University, Linz, A4040.
‘Austria, manuel.kaversajku.at
SRICAM, Austrian Academy of Sciences, Linz, A4040, Austria,
christoph koutschan @ricam ocaw.ac.at

Abstract

Reconstructing a hypothetical recurrence equation from the first terms
of an infinite sequence is a classical and well-known technique in experi.
mental mathematics. We propose a variation of this technique which can
succeed with fewer input terms.

1 Introduction

A simple but powerful technique which is has become an important tool in ex-
perimental mathematics takes as input the first few terms of an infinite sequence
and returns as output a plausible hypothesis for a recurrence equation that the
\ satisfy, or a plausible hypothe
ting function. The principle is known as antomated guessi
it somehow makes a guess how the infinite sequence continues beyond the finitely
many terms supplied as input. In certain situations where sufficient additional
information s available about the sequence at hand, antomated guessing can

for a differential cquation satis-

be combined with other techniques from computer algebra that confirm that

the guessed equation is correct. One of many successful applications of this
paradigm is the proof of the qTSPP conjecture [20]

BY G. POLYA

[How to solve it, G. Pélya, Princeton University Press, 1945]
[Guessing with little data, M. Kauers and K. Koutschan, Proceedings of ISSAC 2022]



Trusting computational mathematics ?



Reproducibility

e Commercial software
e Closed code

e Single implementations



Reproducibility
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Reproducibility

Citation - Feedback - Hide Menu

a
@E/Q The L-functions and modular forms database (LMFDB)

Introduction A database Hall of fame
Overview  Random 5

The LMFDB is an extensive database of Riemann zeta function

Universe  Knowledge ke < "
2 0 mathematical objects arising in Number Theory. Ramanujan A function and its L-function
[ B €277 and its L-function
“ -1 sample lists: L-functions, Elliptic curves, Tables of Gauss elliptic curve and its L-function

Rational Al T ———————— Grand Canyon L-function
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Integral points

These were computed rigorously, using independent implementations in Magma and SageMath which were compared as a consistency check.
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Cross-verification is not enough

In SymPy 1.7.1 2, compare

1  >>> simplify(hyper([n], [m],x).subs({m:-1, n:-1, x:1}))

with

1 >>> simplify(hyper([n], [m],x).subs(m, n)).subs({n:-1, x:1})

2Example suggested by F. Johansson.

akil,
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Cross-verification is not enough

In SymPy 1.7.1 2, compare

1  >>> simplify(hyper([n], [m],x).subs({m:-1, n:-1, x:1}))

with

1 >>> simplify(hyper([n], [m],x).subs(m, n)).subs({n:-1, x:1})
E
= A posteriori verification techniques cannot apply.
Wolfram Language (Mathematica) exhibit the exact same phenomenon.

= Cross-verification is not enough.

2Example suggested by F. Johansson.
akil,



Proofs can go wrong
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Proofs can go wrong

MAJOR ARCS FOR GOLDBACH'S PROBLEM 35

By Cauchy-Schwarz, this is at most

1 2 1
1A D(s,x) 1 1 [itie \
1 AP L e
o R 7y IR\ IO R
By @12,

—3+ico | 1i(s 1|2 —3+i0%0 100 o |

[T < | [

—1ico | L(s,X) 1o | S

2

. /w |3 1og (72 + §) +4.1396 + log|* |
Jooo 1+72
< V2rlogq + V226.844,
where we compute the last integral numerica.llvﬂ

4By a rigorous integration from T = —100000 to 7 = 100000 using VNODE-LP [Ned08],
which runs on the PROFIL/BIAS interval arithmetic package[Knii99].
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Proofs can go wrong

MAJOR ARCS FOR GOLDBACH'S PROBLEM 35

By Cauchy-Schwarz, this is at most
1 /7%“00 ‘L’(mx) 1
2m Jo1ico | L(s,X) s

By (£12),
2 — 3+ico
Jds| < /
~1-iso

/,;a,m ‘L,(S‘X) 1
—iico | L(s,X) s
. /w |3 1og (72 + §) +4.1396 + log|* |
Jooo 1+72
< V2rlogq + V226,844,

where we compute the last integral numerica.llvﬂ

2 1 it ,
s\ [ KGs(s)sas
T J—J—ico

log g 2

s

lds]

4By a rigorous integration from T = —100000 to 7 = 100000 using VNODE-LP [Ned08],
which runs on the PROFIL/BIAS interval arithmetic package[Knii99].

e This estimation is wrong (although the proof can be repaired).

[Formally Verified Approximations of Definite Integrals - A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]
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Proofs can go wrong

Testing reference implementations of rigorous quadratures on:

1
/ |(x* 4 10x> + 19x* — 6x — 6)e*|dx ~ 11.14731055005714
0

'3}



Proofs can go wrong

Testing reference implementations of rigorous quadratures on:

1
/ |(x* 4 10x> + 19x* — 6x — 6)e*|dx ~ 11.14731055005714
0

e Octave's quad/quadgk: only 10/9 correct digits;
e INTLAB verifyquad: false answer without warning;

e VNODE-LP: cannot be used because of the absolute value.

'3}



Proofs can go wrong

Testing reference implementations of rigorous quadratures on:

1
/ |(x* 4 10x> + 19x* — 6x — 6)e*|dx ~ 11.14731055005714
0

e Octave's quad/quadgk: only 10/9 correct digits;
e INTLAB verifyquad: false answer without warning;

e VNODE-LP: cannot be used because of the absolute value.

INTLAB bug report (2016) = Removed support for the absolute value

'3}



Mathematical functions on paper
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Mathematical functions for the computer

arb_sqrt(arb_t z, const arb_t x, slong prec)

{
mag_t rx, zr;
int inexact;
if (mag_is zero(arb_radref(x)))
{
arb_sqrt_arf(z, arb_midref(x), prec);
¥
else if (arf_is_special(arb_midref(x)) ||
arf_sgn(arb_nidref (x)) < 0 || mag_is_inf(arb_radref(x)))
{
65 1f (arf_is pos_inf(arb_midref(x)) & mag is finite(arb_radref(x}))
arb_sqrt_arf(z, arb_midref(x), prec);
else
68 arb_indeterninate (z);
1
else h mid and rad are non values, nid > @
7 {
72 slong acc;
74 acc = _fmpz_sub_small (ARF_EXPREF(arb_nidref(x)), MAG_EXPREF(arb_radref(x)));
75 FLINT_MIN(acc, prec);
76 prec = FLINT_MIN(prec, acc + NAG BITS);
7 prec = FLINT_MAX(prec, 2);
if (acc < @)
arb_indeterninate(z);
}
else if (acc <= 20)
84 {
85
mag_init(t);
88 mag_init(u);

arb_get_mag_lower (t, x);

if (mag_is_zero(t) && arb_contains_negative(x))

{

[Arb: efficient arbitrary-precision midpoint-radius interval arithmetic, Johansson, IEEE Trans. on Computers 2017]
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Trusting computational mathematics




Program verification

Recipe:

e State expected properties on input
e State desired theorem on outcome

e Inspect of the code to prove implication

Ingredients:

e Appropriate specification language, expressive enough
e (Human insight)

e Automated proofs

16



Example: in-place inversion of a permutation

e From a permutation array and a few extra slots:

2falslafs] | ||

e Compute the array of the inverse permutation:

[4frsf2fs] | [ ]

Rules of the game:

o Overwritten data is lost.

e The number of extra slot does not depend on the permutation.

17



Program verification

Recipe:

e State expected properties on input
e State desired theorem on outcome

e Inspect of the code to prove implication

Ingredients:

e Appropriate specification language, expressive enough
e Automated proofs

e (Human insight)

18



Program verification

Recipe:

e State expected properties on input
e State desired theorem on outcome
e Inspect of the code to prove implication

e Interpret symbolic data

Ingredients:

e Appropriate specification language, expressive enough

e Automated proofs

(Human insight)

e Libraries of verified theorems

18



Example: computing rigorous quadratures

1
/ |(x* + 10x® 4 19x? — 6x — 6)e*|dx ~ 11.14731055005714
0
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Example: computing rigorous quadratures

1
/ |(x* + 10x® 4 19x? — 6x — 6)e*|dx ~ 11.14731055005714
0

e Trade floating point numbers for intervals.

e Implement interval extensions for mathematical functions.

19



Abstract syntax trees for univariate expressions
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X ™
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Abstract syntax trees for univariate expressions
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Abstract syntax trees for univariate expressions

—+

N

cos VA

SN

X ™

el : R —R X+ cos (x X ) + /X
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Abstract syntax trees for univariate expressions

—+

N

cos VA

SN

X ™

[elr, : R =Ry X+ cos (x X ) + /X
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Abstract syntax trees for univariate expressions

—+

N

cos VA

X X

N

X ™

[elr, : R =Ry X+ cos (x X ) + /X

[e]n I —1
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Abstract syntax trees for univariate expressions

—+

N

cos VA

X X

N

X ™

[elr, : R =Ry X+ cos (x X ) + /X

[els I -1 x — cos(x X w) + /x

20



Abstract syntax trees for univariate expressions

—+

N

cos VA

X X

N

X ™

[elr, : R = RL X+ cos (x X ) + /X

[eli, :I.—1I. x — cos(x X w) + /x

20



Abstract syntax trees for univariate expressions

—+

N

cos VA

X X

N

X ™

[elr, : R = RL X+ cos (x X ) + /X
leli, :I.—1I. x 5 cos (x X ) + /%
Correctness theorem of interval extensions:

Veec&, Viel,, Vxei, [elr, (x)€[e], (i)

20



Formally verified approximations

1
/ [(x* + 10x® + 19x* — 6x — 6)e*|dx ~ 11.14731055005714
0

/b f(x)dx € [m,M] 7

21



Formally verified approximations

1
/ |(x* 4 10x> + 19x* — 6x — 6)e*|dx ~ 11.14731055005714
0

[en]r
/ [er]rdx € [m, M] ?
[

ealr
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Formally verified approximations

1
/ [(x* + 10x> + 19x* — 6x — 6)e*|dx ~ 11.14731055005714
0

[ep]r
/ il
[

ealr

23



Formally verified approximations

1
/ [(x* + 10x> + 19x* — 6x — 6)e*|dx ~ 11.14731055005714
0

[ep]r [ep]r
/ [er]rdx € / e
[ [

ealr eall
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Formally verified approximations

1
/ [(x* + 10x> + 19x* — 6x — 6)e*|dx ~ 11.14731055005714
0

[ep]r [ep]r
/ [ef]rdx € / [er]idx C [m, M]
[ [

ealr eall

[Formally Verified Approximations of Definite Integrals, A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]
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Formally verified approximations

Verified computation, using rigorous polynomial approximations:

[en]r [en]
/ [er]rax € / [er] 1 dx C [m, M]
[ea]

[ealr
[Formally Verified Approximations of Definite Integrals, A. Mahboubi, G. Melquiond, Th. Sibut-Pinote, JAR 2018]
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Benefits




Formally verified computational mathematics
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Formally verified computational mathematics

Computer Algebra
Semantics

Correctness
theorem

Program verification

Code
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Formally verified computational mathematics

Computer Algebra
Semantics

Correctness
theorem

Program verification

Code

Execution
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Homological algebra

=2 % HODGE THEORY FOR TROPICAL VARIETIES
FIGURE 2. The zero-th page of the tropical spectral sequence ,C3* over F”.

@ AT s @ ATSRF) @ ANTeFE)
50 e 6124y

@ NTERF () > D NTIRF (1) @ ATIeF ()
o i s1=iph

@ NT9e @ NTIeF() @ NT6F (1)
iz Apt sicd

‘where
LCot = g O E) = @) NTUFr b
e
and the differentials in page zero, which are of bidegree (0, 1), are given by Proposition 5.15.
We call this the tropical spectral sequence. The zero-th page of this spectral sequence is gi

in Figure 2. The dashed arrows correspond to the maps of the first page. The explicit form
of all these maps appear later in this section.

Before introducing the second spectral sequence, let us consider the 2p-th row ST3% of the

Steenbrink spectral sequence. This row can be decomposed into a double complex as follows.
We define the double complex ,St** by

161pra—t

b @ sex, H™0) ifaz0andb<p,
" 0 otherwise,

[Tropical Hodge theory and applications,

ieu Piquerez’' PhD - 2021]
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Diagram chasing as invisible mathematics

7. TROPICAL CLEMENS-SCHMID SEQUENCE 337

for any k > 1. By HL. we also know that we have an isomorphism
0 HY(C*) - H'(D*) - 0.

Gluing all these short exact sequences, we almost get the long exact sequences of the
In fact, we directly get the long exact sequence in which all the degrees are odd

theorem
with k in the statement of the theorem is even. To sce this, note that for a

integers. i
positive even integer k. we have

s H 5 YK®) » H*(C
)

H YD) — HFH(R) — H R () -
[

HOAKY) — HHC) S HY(D®) — HA(RY) —
—_— e

» HEY(R®) = HY LK) — HYH(C®) 5 HYN(D®) — H*Y(R) — HFH(K*) —
e e
which is exactly the above exact sequences, combined together.

For the other exact sequence in the theorem, i.c.. when all the degrees are even, we can
apply a similar argument as above to treats all the other cases and reduce to proving the
exactness of the following six-term sequence
2) 0 H2(C*) — H(D*) 4= HO(R*)

‘The exactness of the beginning of this sequence is a consequence of (7.1) and the injectivity

of L H™3(C*) = H°(D*). By a symmetric argument, we infer the exactness of the end of
the sequence. 1t thus remains to describe the central map d°. and to prove the exactness of
the sequence at other places, i.c., to show that Im(d~!) = ker(d") and Im(d°) = ker(d"

&, gO(K*) 2 HO(C*) — HA(D*) 0.

The end of the proof is essentially a diagram chasing. The definition of d? is given by the

diagram depicted in Figure

ieu Piquerez’' PhD - 2021]

[Tropical Hodge theory and applications, Mattl
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Diagram chasing as invisible mathematics

0 0
0 1 ! 0
T
o el L .
Pe——c'=0

0 ! ‘il l 0

ot —— b 0

o wl el

0——0

FIGURE 6. Definition of d” in the six-term exact sequence (7.2)

0
p— & r
b
0 ~ D% 0
P—
0 , , 0
@"=0— 1" =0 0

FIGURE 7. Proof of the inclusion ker(d°) < In(d™!).

coeyele ' e O such that Lallﬁ’

uy ). In particular, there exists a coboundary Jept

art, we consider the clement ¥/ — /. and every green
arcow i cloar. Finally, we construct a coeyelo  in 7 such that doel(r) = cl(a”)

such that LY/

FIGURE 8. Proof of the inclusion ker(d') € Im(d®).

[Tropical Hodge theory and applications, Matthieu Piquerez’ PhD - 2021]
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Diagram chasing as invisible mathematics
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f is a mono:
Vg,Vh, gof=hof=g=h
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Diagram chasing as invisible mathematics

f is a mono:
Vg,Vh, gof=hof=g=h

hof

[Recently, Master theses of Markus Himmel (2020), Yannis Monbru (2022)]

29



Diagram chasing as invisible mathematics

f is an epi:
Vg,Vh, fog=foh=g=nh

fog
/g\
f
e e ®

foh
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Formal(ized) abstract nonsense
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[Joint work in progress with Matthieu Piquerey] 30



Formal(ized) abstract nonsense

v
|
A
cIip/ \/\\
7N\ N
pb Vi com
/ N\ |
Gy Vo pb
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Go Vo

[€]a is a predicate on diagrams.

[Joint work in progress with Matthieu Piquerey] 30



Formal(ized) abstract nonsense

v
|
A
cIip/ \/\\
7N\ N
pb Vi com
/ N\ |
Gy Vo pb
/ N\
Go Vo

[€]a is a predicate on diagrams.

Duality theorem:
Ve,VI, [e]la, = [dual e]a,

[Joint work in progress with Matthieu Piquerey] 30



Plotting exp(—x?) with sagemath
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Plotting exp(—x?) with sagemath

0.8 1

0.6

0.4 1

0.2

T — T — T T — — T — T T — T
-1000 -500 500 1000

31



Plotting exp(—x?) with sagemath
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Plotting sin(x) for x € [0,3141]
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Plotting sin(x) for x € [0,3141]

Gnuplot
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Plotting sin(x) for x € [0,3141]
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Faithful plotting is hard

Issues:

e Sampling
e Accuracy

e Bugs

33



Faithful plotting is hard

Issues:

e Sampling
e Accuracy

e Bugs
Desired properties:

e Correctness: blank pixels are not traversed by the function graph

e Completeness: filled pixels are traversed by the function graph
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Faithful plotting is hard

Issues:

e Sampling
e Accuracy

e Bugs
Desired properties:

e Correctness: blank pixels are not traversed by the function graph

e Completeness: filled pixels are traversed by the function graph

= Formally verified plots: guarantee correctness and strive for completeness
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Generating formally verified plots

To obtain a verified plot for f(x) for x € X:

e Partition X in (Xi)i=1...n

Produce a list (¢;)i=1..., of intervals

Ensure (with a formal proof) that for every i =1...n:
Vx € X,', f(X) ct;

e Fill the corresponding pixels.

Rigorous polynomial approximation make computations efficient enough.

[Plotting in a formally verified way, G. Melquiond, F-IDE 2021]
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File Edit Options Buffers Tools

QOstate  COContext BWGoal K Retract @ Undo BNext ¥ Use bdGoto

Require Inport Re:

From Coquelicot Require Import Coquelicot.

Require Import Interval.Tact
Open Scope R_scope

Definition plotl := ltac:(plot
Definition plot2 := ltac:(plot
>Plot plot1
Plot plot2
~i--- demo.v Top L32

emacs@tepoztian

Coq ProofGeneral Holes Help

nterval.Plot

(fun x => exp (-x * x)) (-10000)

(Coa script(e-) H

flhHome  _CFind

*goals*

*responsex

@it

1%Command

A Prooftree
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nnnnnnnnnnnnnnnnnnnn

Verified plot of exp(—x?) for
x € [—10000, 10000]
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Verified plot of exp(—x?) for Verified plot of sin(x) for
x € [~10000, 10000] x € [0,3141]
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Conclusions




Doing mathematics by computer

Computer Algebra
Semantics

Correctness
theorem

Program verification

Code

Execution
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Doing mathematics by computer

High-Level Code

‘ Verified Refinements

Optimized Code

‘ Verified Compilation

Machine Code

Computer Algebra
Semantics

Execution
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e Blur the fronteer between environments for experimenting and for proving

e Expand the computational skills of proof assistants
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