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Supervised learning

» Suppose that there is some subset S of R” and some function
f: S — R¥ which we can compute but do not know
‘explicitly’.

» We are given various data points v € S, as well as their
images f(v).

» Machine learning algorithms provide a function F: R” — R¥
that is an approximation to f, at least at the given points v.

» This is essentially ‘non-linear regression’.

» BUT unlike unlike linear regression we do not get an ‘explicit’
output function F, but merely the ability to compute F(w)
for other inputs w € R”.
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Example
n = the number of pixels of an input picture
v € R" is the input picture (in grey-scale)
—1 if vis a picture of a cat
f(v)=41 ifvisa picture of a dog

0 otherwise
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The branches of knot theory

Knot theory is divided into three quite distinct subfields:
» hyperbolic knot theory
» gauge/Floer theory
> quantum topology
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Finding connections between these fields

Each field has plenty of knot invariants:

Hyperbolic invariants: 3/4-dimensional invariants:
> Volume P signature
» Cusp shape and volume » Heegaard Floer homology
P Length spectrum » Instanton Floer homology
» Trace field ... > s, 7,6, T, ...

Goal: Find new connections between these invariants



Knot signature

The 3/4-dimensional invariant that we focused on was the
signature.

This is defined by starting with a Seifert surface S for the knot K.
The symmetrised Seifert form for S is the bilinear form
Hl(S) X Hl(S) — 7
(ﬁl,gg) — lk(gl,gz_) + lk(gz,g_l'_)
where E;r is the push-off of £, in the positive normal direction from
S.

The signature o(K) is the signature of this bilinear form.
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Connections with dimension 4

View R3 as the boundary of Ri = {(x1, X2, x3,x4) : xa > 0}.

The 4-ball genus of a knot K is the minimal genus of a
(topological locally-flat) surface in R* with boundary equal to K.

Theorem: [Murasugi 1965] ga(K) > |o(K)|/2.
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Goal: can we predict the signature from hyperbolic invariants?

In other words, is there a function
f: {hyperbolic knot invariants}(C R") — R that outputs a knot's
signature (or at least a good approximation to it)?

>

>

Using snappy, we created a sample set of 2,700,000 hyperbolic
knots.

This was the Regina census of 1,700,000 knots with < 16
crossings plus 1,000,000 randomly chosen knots with < 80
crossings.

We randomly divided them into two groups: a training set and
a test set.

We trained a neural network to predict the signature from the
hyperbolic invariants.

We then tested this network using the test set.

The network could predict the signature with impressive
accuracy.



Saliency

The main hyperbolic invariants that were used to predict signature:

Im({Meridional translation)
Longitudinal translation
Re(Meridional translation)

é Im(Short geodesic)
§ Injectivity radius
:; Cusp volume
aé’ Symmetry group
§ Torsion degree
§' Re(Short geodesic)
Volume

Chern-Simons

Adjoint torsion degree

0 02 04 06 08 10
Normalized attribution score



Hyperbolic structures

A hyperbolic structure on a knot complement is a complete
finite-volume Riemannian metric of constant curvature —1.

By Mostow rigidity, if such a metric exists, it is a unique up to
isometry.

Thurston's theorem: The complement of a non-trivial knot K has a
hyperbolic structure if and only if K is not a torus knot or a
satellite knot.

e

satellite knot torus knot




Cusp geometry

Any knot complement has an end of the form T2 x [1,00).

When the knot is hyperbolic, this has a canonical geometry and is
called a cusp.

Let H3 be upper-half space {(x,y,z): z > 0}. Let H be the
horoball {z > 1}.

Then the cusp is formed H/(group of Euclidean translations).

{y,2)z=1}




The cusp boundary

The boundary of the cusp is a Euclidean torus C/A for a lattice A.
We normalise A so that the longitude X is real and positive, and
the meridian p has positive imaginary part.
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The cusp boundary

The boundary of the cusp is a Euclidean torus C/A for a lattice A.
We normalise A so that the longitude X is real and positive, and
the meridian p has positive imaginary part.

[/ -

Cusp torus for 61

The three main features that the machine learning algorithms used
to predict signature were A, Re(p) and Im(u).



Signature and cusp geometry
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Signature and cusp geometry
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Initial observation: the signs of the signature and Re(yu) are highly
correlated.
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The natural slope

» Pick a geodesic representative 1 for L > i
the meridian. \ — \
T

> Fire a geodesic ;- orthogonally
from it.

» Eventually, it will return to the meridian.

» In that time, it will have gone along one longitude and some
number s of meridians.

» Define the natural slope to be —s.

slope(K) = Re(A\/p).



Slope and signature

Signature

Regina dataset - up to 16 crossings

—

RN 20 1o [) 0 2

Signature

-5

-10

-15

Random knots
10 to 80 crossings
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Conjecture: There are constants ¢y and ¢; such that

lo(K) — coslope(K)| < ¢ vol(K).



Highly twisted knots

Theorem: Let K be a knot, and let Cy,..., C, be curves in the
complement that bound disjoint discs in S3. Suppose
KUCLU---U G, is hyperbolic. Let K(qi,...,q,) be the knot
obtained from K by adding g; full twists along each C;.



Highly twisted knots

Theorem: Let K be a knot, and let Cy,..., C, be curves in the
complement that bound disjoint discs in S3. Suppose
KUCLU---U G, is hyperbolic. Let K(qi,...,q,) be the knot
obtained from K by adding g; full twists along each C;. Let

¢ =1k(K, G;). Suppose l1,...,0n are even and {py1, ..., L, are
odd.
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Theorem: Let K be a knot, and let Cy,..., C, be curves in the
complement that bound disjoint discs in S3. Suppose
KUCLU---U G, is hyperbolic. Let K(qi,...,q,) be the knot
obtained from K by adding g; full twists along each C;. Let

¢ =1k(K, G;). Suppose l1,...,0n are even and {py1, ..., L, are
odd. Then there is a constant k such that if each |g;| >> 0,

slope(K(q1,...,qn)) + > _ £qi| < k

i=1

o(K(q1,---,qn)) + (;Z&?qi +% > - 1)qi>
i=1

i=m+1

<k

VO](K(qla .. '7qn)) < k.

So the conjectures are false!
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Theorems

Theorem 1: There is a constant ¢; such that

|o(K) — (1/2) slope(K)| < c1 vol(K) inj(K) 3.

Here, inj(K) is inf{inj,(S% — K) : x € (53 — K) — cusp}.
Theorem 2: o(K) and

(1/2) slope(K) + Z k(%)

v€0ddGeo

differ by at most cavol(K) for some constant cy.

Here, OddGeo is the set of geodesics with length at most 0.1 and
that have odd linking number with K, and k(7) is a correction
term defined in terms of the complex length of ~.



The machine knew all along!

Im(Meridional translation)
Longitudinal translation
Re(Meridional translation)
Im(Short geodesic)
Injectivity radius

Cusp volume

Symmetry group

Torsion degree

Re{Short geodesic)
Volume

Chern-Simons

X{z): Geometric invariants

Adijoint torsion degree
0 02 04 06 08 10
Normalized attribution score

Items 4 and 5 are the terms appearing in Theorems 1 and 2.
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Difficulties with this method

» Finding a formula for F currently requires human input
» What about inputs other than real numbers?
> ML tends to ignore outliers
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Further examples
The Jones polynomial Vi (t) € Z[t,t™!] of K is a mysterious
invariant.
Is it related to other invariants?

[Jejjalaa, Kar, Parrikar]: The Jones polynomial seems to encode
information about the hyperbolic volume

Volume

15 20 25 30

Prediction from Neural Network

But it seems hard to encapsulate this into a conjecture.

Many other connections found by [Craven, Hughes, Jejjala, Kar].



