
Finding counterexamples via reinforcement learning

Adam Zsolt Wagner (Worcester Polytechnic Institute)

IPAM Machine Assisted Proofs Workshop

February 14, 2023

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Talk overview

Main idea: RL algorithms have managed to reach superhuman level play in
Atari games, Go, Chess, starting from only the rules and learning
everything else by themselves.

Can we teach neural networks to reach superhuman level play in the
“game” of constructing graphs without 4-cycles, with as many edges as
possible?

Can this same algorithm be used to try to learn to disprove any conjecture,
by only inputting the statement and letting the algorithm figure out the
rest?

I am not an expert in ML.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Talk overview

Main idea: RL algorithms have managed to reach superhuman level play in
Atari games, Go, Chess, starting from only the rules and learning
everything else by themselves.

Can we teach neural networks to reach superhuman level play in the
“game” of constructing graphs without 4-cycles, with as many edges as
possible?

Can this same algorithm be used to try to learn to disprove any conjecture,
by only inputting the statement and letting the algorithm figure out the
rest?

I am not an expert in ML.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Talk overview

Main idea: RL algorithms have managed to reach superhuman level play in
Atari games, Go, Chess, starting from only the rules and learning
everything else by themselves.

Can we teach neural networks to reach superhuman level play in the
“game” of constructing graphs without 4-cycles, with as many edges as
possible?

Can this same algorithm be used to try to learn to disprove any conjecture,
by only inputting the statement and letting the algorithm figure out the
rest?

I am not an expert in ML.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Talk overview

Main idea: RL algorithms have managed to reach superhuman level play in
Atari games, Go, Chess, starting from only the rules and learning
everything else by themselves.

Can we teach neural networks to reach superhuman level play in the
“game” of constructing graphs without 4-cycles, with as many edges as
possible?

Can this same algorithm be used to try to learn to disprove any conjecture,
by only inputting the statement and letting the algorithm figure out the
rest?

I am not an expert in ML.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Reinforcement learning

An agent (player) plays a game many times.

It knows what buttons it is allowed to press, but doesn’t know what
each button does.

Throughout the game, we give it rewards based on how well it did.

The agent gathers experience:

given a state and action (button press) I did, what was the resulting next
state?
Given a state and action (button press), how much reward did I receive?

Agent tries to improve his total score (sum of all rewards) through
some optimization algorithm.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Reinforcement learning

An agent (player) plays a game many times.

It knows what buttons it is allowed to press, but doesn’t know what
each button does.

Throughout the game, we give it rewards based on how well it did.

The agent gathers experience:

given a state and action (button press) I did, what was the resulting next
state?
Given a state and action (button press), how much reward did I receive?

Agent tries to improve his total score (sum of all rewards) through
some optimization algorithm.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Reinforcement learning

An agent (player) plays a game many times.

It knows what buttons it is allowed to press, but doesn’t know what
each button does.

Throughout the game, we give it rewards based on how well it did.

The agent gathers experience:

given a state and action (button press) I did, what was the resulting next
state?
Given a state and action (button press), how much reward did I receive?

Agent tries to improve his total score (sum of all rewards) through
some optimization algorithm.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Reinforcement learning

An agent (player) plays a game many times.

It knows what buttons it is allowed to press, but doesn’t know what
each button does.

Throughout the game, we give it rewards based on how well it did.

The agent gathers experience:

given a state and action (button press) I did, what was the resulting next
state?
Given a state and action (button press), how much reward did I receive?

Agent tries to improve his total score (sum of all rewards) through
some optimization algorithm.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Reinforcement learning

An agent (player) plays a game many times.

It knows what buttons it is allowed to press, but doesn’t know what
each button does.

Throughout the game, we give it rewards based on how well it did.

The agent gathers experience:

given a state and action (button press) I did, what was the resulting next
state?

Given a state and action (button press), how much reward did I receive?

Agent tries to improve his total score (sum of all rewards) through
some optimization algorithm.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Reinforcement learning

An agent (player) plays a game many times.

It knows what buttons it is allowed to press, but doesn’t know what
each button does.

Throughout the game, we give it rewards based on how well it did.

The agent gathers experience:

given a state and action (button press) I did, what was the resulting next
state?
Given a state and action (button press), how much reward did I receive?

Agent tries to improve his total score (sum of all rewards) through
some optimization algorithm.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Reinforcement learning

An agent (player) plays a game many times.

It knows what buttons it is allowed to press, but doesn’t know what
each button does.

Throughout the game, we give it rewards based on how well it did.

The agent gathers experience:

given a state and action (button press) I did, what was the resulting next
state?
Given a state and action (button press), how much reward did I receive?

Agent tries to improve his total score (sum of all rewards) through
some optimization algorithm.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Plan

Goal: find counterexamples to open conjectures via RL

Try to avoid using human insights as much as possible

Would like a general setup: use the same program for every problem,
only change reward function

Throw this setup at 100 open conjectures and hope for the best.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Plan

Goal: find counterexamples to open conjectures via RL

Try to avoid using human insights as much as possible

Would like a general setup: use the same program for every problem,
only change reward function

Throw this setup at 100 open conjectures and hope for the best.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Plan

Goal: find counterexamples to open conjectures via RL

Try to avoid using human insights as much as possible

Would like a general setup: use the same program for every problem,
only change reward function

Throw this setup at 100 open conjectures and hope for the best.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Plan

Goal: find counterexamples to open conjectures via RL

Try to avoid using human insights as much as possible

Would like a general setup: use the same program for every problem,
only change reward function

Throw this setup at 100 open conjectures and hope for the best.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 1

Conjecture

For any graph G , we have λ1(G ) + µ(G ) ≥
√
n − 1 + 1.

Refuted in 2010, but smallest counterexample found has 600 vertices.

Game: offer edges one by one, agent can accept/reject each. A game lasts
n(n−1)

2 turns.

Reward: λ1 + µ (minimize).

Run a reinforcement learning algorithm for n = 19:

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 1

Conjecture

For any graph G , we have λ1(G ) + µ(G ) ≥
√
n − 1 + 1.

Refuted in 2010, but smallest counterexample found has 600 vertices.

Game: offer edges one by one, agent can accept/reject each. A game lasts
n(n−1)

2 turns.

Reward: λ1 + µ (minimize).

Run a reinforcement learning algorithm for n = 19:

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 1

Conjecture

For any graph G , we have λ1(G ) + µ(G ) ≥
√
n − 1 + 1.

Refuted in 2010, but smallest counterexample found has 600 vertices.

Game: offer edges one by one, agent can accept/reject each. A game lasts
n(n−1)

2 turns.

Reward: λ1 + µ (minimize).

Run a reinforcement learning algorithm for n = 19:

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 1

Conjecture

For any graph G , we have λ1(G ) + µ(G ) ≥
√
n − 1 + 1.

Refuted in 2010, but smallest counterexample found has 600 vertices.

Game: offer edges one by one, agent can accept/reject each. A game lasts
n(n−1)

2 turns.

Reward: λ1 + µ (minimize).

Run a reinforcement learning algorithm for n = 19:

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 1

Conjecture

For any graph, λ1 + µ ≥
√
n − 1 + 1.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 1

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 1

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 1

This was the dream scenario: there is an obvious way to phrase the
conjecture as a game, there is an obvious choice for the score function,
we plug these into the RL program and it spits out a counterexample.

When this happens, there is not much to talk about. But often it is
not that simple.

We will see 5 more examples. In each of them we will succeed in
refuting an open conjecture, but each example will illustrate a unique
thing that could “go wrong” and how to overcome it.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 1

This was the dream scenario: there is an obvious way to phrase the
conjecture as a game, there is an obvious choice for the score function,
we plug these into the RL program and it spits out a counterexample.

When this happens, there is not much to talk about. But often it is
not that simple.

We will see 5 more examples. In each of them we will succeed in
refuting an open conjecture, but each example will illustrate a unique
thing that could “go wrong” and how to overcome it.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 1

This was the dream scenario: there is an obvious way to phrase the
conjecture as a game, there is an obvious choice for the score function,
we plug these into the RL program and it spits out a counterexample.

When this happens, there is not much to talk about. But often it is
not that simple.

We will see 5 more examples. In each of them we will succeed in
refuting an open conjecture, but each example will illustrate a unique
thing that could “go wrong” and how to overcome it.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 2 – What if we don’t succeed?

Conjecture (Auchiche–Hansen, 2016)

Let G be a connected graph with diameter D, proximity π and distance
spectrum ∂1 ≥ . . . ≥ ∂n. Then

π + ∂⌊ 2D
3 ⌋ > 0.

Reward: π + ∂⌊ 2D
3 ⌋ (minimize).

Run it for n = 30:

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 2 – What if we don’t succeed?

Conjecture (Auchiche–Hansen, 2016)

Let G be a connected graph with diameter D, proximity π and distance
spectrum ∂1 ≥ . . . ≥ ∂n. Then

π + ∂⌊ 2D
3 ⌋ > 0.

Reward: π + ∂⌊ 2D
3 ⌋ (minimize).

Run it for n = 30:

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 2

This is not quite a counterexample (π + ∂⌊ 2D
3 ⌋ ≈ 0.4), but it tells us very

clearly what counterexamples could look like.
Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 2

190 leaves

Figure: A counterexample to the conjecture

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 3 - Not just graphs

Question (Brualdi–Cao)

How large can the permanent of a 312-pattern avoiding 0-1 matrix be?

Figure: The pattern 312

per(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 3 - Not just graphs

Question (Brualdi–Cao)

How large can the permanent of a 312-pattern avoiding 0-1 matrix be?

Figure: This is also not allowed

More precisely: we are not allowed to have three ones (dark squares)
(xi , yi ) : i ∈ {1, 2, 3} such that y1 < y2 < y3 and x2 < x1 < x3.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 3

Conjecture (Brualdi–Cao, 2020)

The best you can do is Fibn+2 − 1.

Reward: per(A)− penalty(# of 312-s)

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 3

Conjecture (Brualdi–Cao, 2020)

The best you can do is Fibn+2 − 1.

Reward: per(A)− penalty(# of 312-s)

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 3

These are best possible for n ≤ 8 (computer proof). So the sequence
starts with 1, 2, 4, 8, 16, 32, 64,120.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 4 - Problems on trees

Conjecture (Collins, 1989)

Given a tree T , let p(T ) and q(T ) be the characteristic polynomials of
the adjacency and the distance matrices of T , respectively. The
coefficients of p and q are both unimodal, and their peaks are
asymptotically at the same place.

Bad idea: generate graphs, reward function = f1(G ) + f2(G ) where f1
measures how close to a tree G is, and f2 measures how far the peak
coefficients are.

Better: There is a bijection between trees and [n]n−2 (Prüfer code). The
game will last n − 2 turns, in each turn we can make n possible decisions.

Reward: distance of the peaks.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 4 - Problems on trees

Conjecture (Collins, 1989)

Given a tree T , let p(T ) and q(T ) be the characteristic polynomials of
the adjacency and the distance matrices of T , respectively. The
coefficients of p and q are both unimodal, and their peaks are
asymptotically at the same place.

Bad idea: generate graphs, reward function = f1(G ) + f2(G ) where f1
measures how close to a tree G is, and f2 measures how far the peak
coefficients are.

Better: There is a bijection between trees and [n]n−2 (Prüfer code). The
game will last n − 2 turns, in each turn we can make n possible decisions.

Reward: distance of the peaks.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 4 - Problems on trees

Conjecture (Collins, 1989)

Given a tree T , let p(T ) and q(T ) be the characteristic polynomials of
the adjacency and the distance matrices of T , respectively. The
coefficients of p and q are both unimodal, and their peaks are
asymptotically at the same place.

Bad idea: generate graphs, reward function = f1(G ) + f2(G ) where f1
measures how close to a tree G is, and f2 measures how far the peak
coefficients are.

Better: There is a bijection between trees and [n]n−2 (Prüfer code). The
game will last n − 2 turns, in each turn we can make n possible decisions.

Reward: distance of the peaks.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 4 - Problems on trees

Conjecture (Collins, 1989)

Given a tree T , let p(T ) and q(T ) be the characteristic polynomials of
the adjacency and the distance matrices of T , respectively. The
coefficients of p and q are both unimodal, and their peaks are
asymptotically at the same place.

Bad idea: generate graphs, reward function = f1(G ) + f2(G ) where f1
measures how close to a tree G is, and f2 measures how far the peak
coefficients are.

Better: There is a bijection between trees and [n]n−2 (Prüfer code). The
game will last n − 2 turns, in each turn we can make n possible decisions.

Reward: distance of the peaks.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 4 - Problems on trees

Figure: Best construction found for n = 48

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 5 - non-obvious reward function

To a graph on n vertices, we can associate several n × n matrices. One
example is the adjacency matrix.

Another example is the distance Laplacian DL(G ). Its (m,m) entry is∑n
i=1 d(vm, vi ) and its (i , j) entry for i ̸= j is −d(vi , vj).

The multiset of eigenvalues of DL(G ) is denoted by specDL(G ).

Say that a graph property P is preserved under DL(G )-cospectrality if
specDL(G ) = specDL(H) implies P(G ) = P(H).

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 5 - non-obvious reward function

To a graph on n vertices, we can associate several n × n matrices. One
example is the adjacency matrix.

Another example is the distance Laplacian DL(G ). Its (m,m) entry is∑n
i=1 d(vm, vi ) and its (i , j) entry for i ̸= j is −d(vi , vj).

The multiset of eigenvalues of DL(G ) is denoted by specDL(G ).

Say that a graph property P is preserved under DL(G )-cospectrality if
specDL(G ) = specDL(H) implies P(G ) = P(H).

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 5 - non-obvious reward function

To a graph on n vertices, we can associate several n × n matrices. One
example is the adjacency matrix.

Another example is the distance Laplacian DL(G ). Its (m,m) entry is∑n
i=1 d(vm, vi ) and its (i , j) entry for i ̸= j is −d(vi , vj).

The multiset of eigenvalues of DL(G ) is denoted by specDL(G ).

Say that a graph property P is preserved under DL(G )-cospectrality if
specDL(G ) = specDL(H) implies P(G ) = P(H).

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 5 - non-obvious reward function

To a graph on n vertices, we can associate several n × n matrices. One
example is the adjacency matrix.

Another example is the distance Laplacian DL(G ). Its (m,m) entry is∑n
i=1 d(vm, vi ) and its (i , j) entry for i ̸= j is −d(vi , vj).

The multiset of eigenvalues of DL(G ) is denoted by specDL(G ).

Say that a graph property P is preserved under DL(G )-cospectrality if
specDL(G ) = specDL(H) implies P(G ) = P(H).

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 5 - non-obvious reward function

Question (Hogben–Reinhart)

Is transmission regularity preserved under DL-cospectrality?

Task: find two graphs G and H such that they have the same
DL-eigenvalues, but G is transmission regular and H is not.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 5 - non-obvious reward function

Question (Hogben–Reinhart)

Is transmission regularity preserved under DL-cospectrality?

Task: find two graphs G and H such that they have the same
DL-eigenvalues, but G is transmission regular and H is not.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 5 - non-obvious reward function

A graph is transmission regular, if for each vertex, the sum of distances to
all other vertices is the same. So if

∑
w d(v ,w) =

∑
w d(u,w) for all

vertices u, v .

Task: find two graphs G and H such that they have the same
DL-eigenvalues, but G is transmission regular and H is not.

RL has constructed two graphs. What should the reward function be?

Idea:
score(G ,H) = f1(G ,H) + f2(G ) + f3(H),

where

f1 measures how close the DL-spectrum of G and H is,

f2 measures how close G is to being transmission regular, and

f3 gives a penalty if H is transmission regular.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 5 - non-obvious reward function

A graph is transmission regular, if for each vertex, the sum of distances to
all other vertices is the same. So if

∑
w d(v ,w) =

∑
w d(u,w) for all

vertices u, v .

Task: find two graphs G and H such that they have the same
DL-eigenvalues, but G is transmission regular and H is not.

RL has constructed two graphs. What should the reward function be?

Idea:
score(G ,H) = f1(G ,H) + f2(G ) + f3(H),

where

f1 measures how close the DL-spectrum of G and H is,

f2 measures how close G is to being transmission regular, and

f3 gives a penalty if H is transmission regular.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 5

The graph on the left is transmission regular, whereas the graph on the
right is not. The characteristic polynomials of their distance Laplacians are
the same (x12 − 216x11 + 21188x10 − 1245904x9 + 48797440x8 − 1336652544x7 +

26129121472x6 − 364516883456x5 + 3556516628224x4 − 23113129559040x3 +

90045806284800x2 − 159318669312000x), so they are DL-cospectral.

So transmission regularity is not preserved under DL-cospectrality.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 5

The graph on the left is transmission regular, whereas the graph on the
right is not. The characteristic polynomials of their distance Laplacians are
the same (x12 − 216x11 + 21188x10 − 1245904x9 + 48797440x8 − 1336652544x7 +

26129121472x6 − 364516883456x5 + 3556516628224x4 − 23113129559040x3 +

90045806284800x2 − 159318669312000x), so they are DL-cospectral.

So transmission regularity is not preserved under DL-cospectrality.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 6 - Infinite problems?

Many interesting problems can not have finite counterexamples.

Conjecture (Erdős, 1962)

The function
K4(G ) + K4(Ḡ )

is asymptotically minimized by random graphs.

Thomason (1989): This is false!

Figure: Gwenaël Joret

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 6 - Infinite problems?

Many interesting problems can not have finite counterexamples.

Conjecture (Erdős, 1962)

The function
K4(G ) + K4(Ḡ )

is asymptotically minimized by random graphs.

Thomason (1989): This is false!

Figure: Gwenaël Joret

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 6 - Infinite problems?

How can we refute such conjectures using RL?

Find the best construction for n = 50, then generalize “by hand”.

Somehow reduce to a finite conjecture.

Solution: “blowing up”! Construct a finite graph G , so that G × Km is a
counterexample as m → ∞.

limm→∞
K4(G×Km)+K4(G×Km)

m4 depends only on G , and there is an easy
formula for it. This will be our reward function.

Run RL for n = 34 −→ find a counterexample.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 6 - Infinite problems?

How can we refute such conjectures using RL?

Find the best construction for n = 50, then generalize “by hand”.

Somehow reduce to a finite conjecture.

Solution: “blowing up”! Construct a finite graph G , so that G × Km is a
counterexample as m → ∞.

limm→∞
K4(G×Km)+K4(G×Km)

m4 depends only on G , and there is an easy
formula for it. This will be our reward function.

Run RL for n = 34 −→ find a counterexample.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Example 6

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Which RL algorithm to use?

Value-based methods

Learn a value function: “I know how good this chess position is for black”.

Policy-based methods

Do not learn a value function: “I have no idea how good this chess
position is for black, but I know the best move is c4”.

Mixed methods (“Actor-critic methods”)

Task: Find the best algorithm for our problems!

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Which RL algorithm to use?

Value-based methods

Learn a value function: “I know how good this chess position is for black”.

Policy-based methods

Do not learn a value function: “I have no idea how good this chess
position is for black, but I know the best move is c4”.

Mixed methods (“Actor-critic methods”)

Task: Find the best algorithm for our problems!

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



What RL setup to use?

Would like a general setup: use the same program for every problem, only
change reward function.

Implementation matters just as much as the algorithm choice. Many
non-trivial decisions during implementation.

Do we offer the edges one after the other, starting with (1, 2), (1, 3),
. . . (n − 1, n)?

Or do we generate a graph vertex by vertex?

We could repeatedly ask the neural network to pick one edge to add,
out of all remaining edges?

Do we offer edges in random order? Do we offer multiple edges at a
time, is it beneficial to offer an edge again after it was rejected once?

What neural network architecture to use? Dense layers may not be the
best (doesn’t understand symmetry).

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



What RL setup to use?

Would like a general setup: use the same program for every problem, only
change reward function.

Implementation matters just as much as the algorithm choice. Many
non-trivial decisions during implementation.

Do we offer the edges one after the other, starting with (1, 2), (1, 3),
. . . (n − 1, n)?

Or do we generate a graph vertex by vertex?

We could repeatedly ask the neural network to pick one edge to add,
out of all remaining edges?

Do we offer edges in random order? Do we offer multiple edges at a
time, is it beneficial to offer an edge again after it was rejected once?

What neural network architecture to use? Dense layers may not be the
best (doesn’t understand symmetry).

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



What RL setup to use?

Would like a general setup: use the same program for every problem, only
change reward function.

Implementation matters just as much as the algorithm choice. Many
non-trivial decisions during implementation.

Do we offer the edges one after the other, starting with (1, 2), (1, 3),
. . . (n − 1, n)?

Or do we generate a graph vertex by vertex?

We could repeatedly ask the neural network to pick one edge to add,
out of all remaining edges?

Do we offer edges in random order? Do we offer multiple edges at a
time, is it beneficial to offer an edge again after it was rejected once?

What neural network architecture to use? Dense layers may not be the
best (doesn’t understand symmetry).

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Reasons an RL algorithm might not work

Sparse rewards problem: we give rewards only at the end of a game.

Credit assignment problem: which of my n(n−1)
2 moves was responsible

for getting a bad score?

Bad reward design

Explore-exploit dilemma

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Practical problems

What do we conclude if the algorithm produces this output?

Learning rate too high? Some other hyperparameter is wrong? Not
enough training? Coincidence? Maybe this algorithm is unsuited for this
specific problem, but good for others?

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Practical problems

What do we conclude if the algorithm produces this output?

Learning rate too high? Some other hyperparameter is wrong? Not
enough training? Coincidence? Maybe this algorithm is unsuited for this
specific problem, but good for others?

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Which RL algorithm to use?

More realistic goal: find an RL algorithm that works well enough.

Cross-entropy method:

Simplest possible policy-based method.

Not sensitive to hyperparameters =⇒ can use same exact program for
every problem.

Fast convergence, very stable.

This is the algorithm used in all the examples.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Which RL algorithm to use?

More realistic goal: find an RL algorithm that works well enough.

Cross-entropy method:

Simplest possible policy-based method.

Not sensitive to hyperparameters =⇒ can use same exact program for
every problem.

Fast convergence, very stable.

This is the algorithm used in all the examples.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Cross-entropy method

There is no value function: use the neural network to predict the policy
directly

Input to neural network: a partial graph/matrix/word. Output:
probability to take/reject next edge.

Input empty construction, sample first edge according to output. Then
input this new graph, sample second edge randomly. Repeat until
decisions were made for all edges.

Play 1000 games according to neural network

Keep the top 100 with the highest score, throw away the rest

For all (state, action) pairs in all top 100 games, adjust neural network
weights to make it more likely that for this state we will choose this
action.

Repeat.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Cross-entropy method

There is no value function: use the neural network to predict the policy
directly

Input to neural network: a partial graph/matrix/word. Output:
probability to take/reject next edge.

Input empty construction, sample first edge according to output. Then
input this new graph, sample second edge randomly. Repeat until
decisions were made for all edges.

Play 1000 games according to neural network

Keep the top 100 with the highest score, throw away the rest

For all (state, action) pairs in all top 100 games, adjust neural network
weights to make it more likely that for this state we will choose this
action.

Repeat.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Cross-entropy method

There is no value function: use the neural network to predict the policy
directly

Input to neural network: a partial graph/matrix/word. Output:
probability to take/reject next edge.

Input empty construction, sample first edge according to output. Then
input this new graph, sample second edge randomly. Repeat until
decisions were made for all edges.

Play 1000 games according to neural network

Keep the top 100 with the highest score, throw away the rest

For all (state, action) pairs in all top 100 games, adjust neural network
weights to make it more likely that for this state we will choose this
action.

Repeat.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Cross-entropy method

There is no value function: use the neural network to predict the policy
directly

Input to neural network: a partial graph/matrix/word. Output:
probability to take/reject next edge.

Input empty construction, sample first edge according to output. Then
input this new graph, sample second edge randomly. Repeat until
decisions were made for all edges.

Play 1000 games according to neural network

Keep the top 100 with the highest score, throw away the rest

For all (state, action) pairs in all top 100 games, adjust neural network
weights to make it more likely that for this state we will choose this
action.

Repeat.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Cross-entropy method

There is no value function: use the neural network to predict the policy
directly

Input to neural network: a partial graph/matrix/word. Output:
probability to take/reject next edge.

Input empty construction, sample first edge according to output. Then
input this new graph, sample second edge randomly. Repeat until
decisions were made for all edges.

Play 1000 games according to neural network

Keep the top 100 with the highest score, throw away the rest

For all (state, action) pairs in all top 100 games, adjust neural network
weights to make it more likely that for this state we will choose this
action.

Repeat.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Cross-entropy method

There is no value function: use the neural network to predict the policy
directly

Input to neural network: a partial graph/matrix/word. Output:
probability to take/reject next edge.

Input empty construction, sample first edge according to output. Then
input this new graph, sample second edge randomly. Repeat until
decisions were made for all edges.

Play 1000 games according to neural network

Keep the top 100 with the highest score, throw away the rest

For all (state, action) pairs in all top 100 games, adjust neural network
weights to make it more likely that for this state we will choose this
action.

Repeat.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Cross-entropy method

There is no value function: use the neural network to predict the policy
directly

Input to neural network: a partial graph/matrix/word. Output:
probability to take/reject next edge.

Input empty construction, sample first edge according to output. Then
input this new graph, sample second edge randomly. Repeat until
decisions were made for all edges.

Play 1000 games according to neural network

Keep the top 100 with the highest score, throw away the rest

For all (state, action) pairs in all top 100 games, adjust neural network
weights to make it more likely that for this state we will choose this
action.

Repeat.
Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Implementation details

Offer edges one by one: (1, 2), then (1, 3), . . ..

Input: adjacency matrix we have created so far, and a matrix
indicating which edge we consider now.

Each game lasts n(n−1)
2 steps (if we generate a graph).

The input is two vectors of length n(n− 1)/2 (or equivalent). The first
contains 1-s for each edge we have taken, and 0-s for each edge
rejected, or not considered yet. The second is all zeros, except for one
place, corresponding to the next edge offered.

Architecture: dense net, three layers of sizes 128, 64, 4.

Learn from top 10%, but keep the top 5% for the next iteration.

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Improvements to the method

Don’t do a generalist approach, focus on one conjecture only, and find the
best setup for this one problem!

Pick an architecture that takes the symmetries of the problem into
account (transformers, GNNs, canonicalizing the data)

We might know that the counterexample must have a specific
structure → use it to massively restrict the search space

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023



Future goals:

Improve or find a better RL algorithm for these purposes

Refute conjectures with a different RL algorithms, or with human +
RL collaboration

Find other ways to use ML in mathematics

Thank you!

Adam Wagner Finding counterexamples via reinforcement learning Feb 14, 2023


