
Verifying symbolic computation in the
HolPy theorem prover

Bohua Zhan

Institute of Software, Chinese Academy of Sciences

Outline

1. Introduction to HolPy
Joint with Zhenyan Ji, Wenfan Zhou, Chaozhu Xiang, Jie Hou, Wenhui Sun (ICFEM’19)

2. Verification of definite integrals
Joint with Runqing Xu, Liming Li (CADE’21)

3. Recent extensions
Joint with Yuheng Fan, Weiqiang Xiong

4. Discussion and future work

Demo!

Introduction to HolPy

• Development started in October 2018.

• Implemented in Python, with user interface in JavaScript.

• Based on higher-order logic (similar to Isabelle/HOL, HOL Light, etc).

• Python API for writing proof automation.

• Free hand to try out new designs for user interfaces.

User interface for HolPy (topic for another time …)

Python API for proof automation

• Allow users to extend proof automation by writing Python code
(correctness still guaranteed by checking proof terms).

• Define Python classes for conversions, macros, tactics, etc.

• Support multiple styles for constructing proofs (top-down or bottom-
up, functional or imperative).

Python API example

Case analysis on input term

Apply existing theorem

Apply existing conversions

Verification of definite integrals: motivation

• Symbolic computation: relatively limited language compared to full
mathematics.

• Nevertheless, has wide application area:

• Goal: let users perform computations step-by-step in a familiar
CAS-like setting, with results checkable by conversion to lower-level
logical systems.

➢ Mathematical proofs

➢ Calculations in science and engineering

Potential applications in verifying …

Basic idea

• Users specify steps of computation and possible parameters.

• Computer suggests choices, applies steps and show results to the user.

computation steps
parameters

search for choices
apply steps

display results to user

Example: integration by parts

Existing computation

Query for expressions
𝑢 and 𝑣.

User selects “integration
by parts” from the menu

Example: trigonometric identity

User selects subexpression

Computer provides choices

Existing computation

User selects “apply identity”

Proof reconstruction

• From a sequence of computation steps, automatically reconstruct proofs in
higher-order logic. This is possible since all necessary information is already
available.

• Main tasks:
• Proofs for simplification/rewriting of expressions.

• Proofs for inequality checking.

• Applying integration theorems, checking side conditions
such as continuity, integrability, …

• Implemented in Python using the API for proof automation.

• Underlying mathematical library: still under construction.

Summary: overall architecture

Computation steps

User interface

Custom language of
mathematical expressions
and computation rules

User performs computation by
choosing actions from a menu

Proof reconstruction

Analysis library

Proof automation written in
Python to reconstruct proofs
from computation steps

Theorems in mathematical
analysis the proofs depend on
(currently incomplete)

Example #1

• An easy-to-make mistake:

• Correct version: ???

cos2 𝑥 ≠ cos 𝑥

Example #2

• A problem that is difficult even for Mathematica:

Limitations

The above work is limited in the following ways:

• Extensibility: all functions and identities satisfied by them are hard-
coded.

• Reusability: calculations are independent from each other, no reuse
of results.

• Range of application: definite integrals on finite intervals only.

Extensions

The first major extension we made is to introduce a system for
managing definitions, identities, and proofs:

More and more like regular ITP systems…

➢ Define new functions and state identities.

➢ Manage conditions of identities.

➢ Proof by induction.

New rules

We also added rules for dealing with:

Currently: 27 rules to choose from in the menu.

➢ Improper integrals and limits.

➢ Indefinite integrals, and working with the “+ 𝐶”.

➢ Series expansion and evaluations.

➢ Swapping integral and derivative, integral and sums.

Examples

• We tried our tool on examples from
the book “Inside Interesting Integrals”.

• Over 50 integrals from the book are
performed, covering topics like:
• Partial fraction decomposition.

• Differentiating under integral sign.

• Use of power series in integration.

• Gamma and Beta functions.

• The following are not included:
• Complex numbers and contour integrals.

Example #3

Using power series of log function (from Section 5.2):

(expand power series)

(exchange integral and sum)

(evaluate integral term by term)

(evaluate series)

Example #4

Exchanging derivative and integral (from Section 3.4):

(exchange deriv. and integral)

(indefinite integral with +𝐶)

(solving for value of 𝐶)

Example #5:

Reasoning about the Γ-function (Section 4.1).

(integration by parts with ∞)

(proof by induction)

(substitution, fold definition)

Summary

• “Interactive Theorem Prover” designed specially for symbolic
computation.

• User interface displays formulas in form.

• CAS-like automation to help users with simple tasks.

• Generate higher-order logic proofs that can be checked
independently (currently implemented only for simple cases).

Summary: division of labor

Summary: relation with CAS

• Permits more manual control of the computation.

• Many components of computer algebra systems are used here,
currently only with simple implementations:

• Need proof-generating versions of these procedures!

➢ Simplification and normalization.

➢ Pattern matching.

➢ Checking conditions.

➢ Taking limits.

➢ Solving equations.

Future work

• Extensions:

• Application to verifying symbolic computation that appear in
mathematical proofs, engineering, machine learning algorithms …

• Applications in education?

• We can try to build tools that are immediately useful, without
achieving full rigor in the ITP sense.

➢ Linear algebra

➢ Complex analysis

➢ Probability

Future work

• To achieve full rigor, we need:

• Integration within an interactive theorem prover:

• Available as open source, and we welcome contributions!

➢ Proof reconstruction for all CAS-procedures.

➢ Library of mathematical theorems covering the foundational rules.

➢ Switch between general-purpose and symbolic computation modes.

(similar to math texts).

https://github.com/bzhan/holpy ⋅ https://gitee.com/bhzhan/holpy

https://github.com/bzhan/holpy
https://gitee.com/bhzhan/holpy

	幻灯片 1: Verifying symbolic computation in the HolPy theorem prover
	幻灯片 2: Outline
	幻灯片 3: Introduction to HolPy
	幻灯片 4: User interface for HolPy (topic for another time …)
	幻灯片 5: Python API for proof automation
	幻灯片 6: Python API example
	幻灯片 7: Verification of definite integrals: motivation
	幻灯片 8
	幻灯片 9: Basic idea
	幻灯片 10: Example: integration by parts
	幻灯片 11: Example: trigonometric identity
	幻灯片 12: Proof reconstruction
	幻灯片 13: Summary: overall architecture
	幻灯片 14: Example #1
	幻灯片 15: Example #2
	幻灯片 16: Limitations
	幻灯片 17: Extensions
	幻灯片 18: New rules
	幻灯片 19: Examples
	幻灯片 20: Example #3
	幻灯片 21: Example #4
	幻灯片 22: Example #5:
	幻灯片 23: Summary
	幻灯片 24: Summary: division of labor
	幻灯片 25: Summary: relation with CAS
	幻灯片 26: Future work
	幻灯片 27: Future work

