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Introduction to HolPy

• Development started in October 2018.

• Implemented in Python, with user interface in JavaScript.

• Based on higher-order logic (similar to Isabelle/HOL, HOL Light, etc).

• Python API for writing proof automation.

• Free hand to try out new designs for user interfaces.



User interface for HolPy (topic for another time …)



Python API for proof automation

• Allow users to extend proof automation by writing Python code 
(correctness still guaranteed by checking proof terms).

• Define Python classes for conversions, macros, tactics, etc.

• Support multiple styles for constructing proofs (top-down or bottom-
up, functional or imperative).



Python API example

Case analysis on input term

Apply existing theorem

Apply existing conversions



Verification of definite integrals: motivation

• Symbolic computation: relatively limited language compared to full 
mathematics.

• Nevertheless, has wide application area:

• Goal: let users perform computations step-by-step in a familiar
CAS-like setting, with results checkable by conversion to lower-level 
logical systems.

➢ Mathematical proofs

➢ Calculations in science and engineering



Potential applications in verifying …



Basic idea

• Users specify steps of computation and possible parameters.

• Computer suggests choices, applies steps and show results to the user.

computation steps
parameters

search for choices
apply steps

display results to user



Example: integration by parts

Existing computation

Query for expressions 
𝑢 and 𝑣.

User selects “integration 
by parts” from the menu



Example: trigonometric identity

User selects subexpression

Computer provides choices

Existing computation

User selects “apply identity”



Proof reconstruction

• From a sequence of computation steps, automatically reconstruct proofs in 
higher-order logic. This is possible since all necessary information is already 
available.

• Main tasks:
• Proofs for simplification/rewriting of expressions.

• Proofs for inequality checking.

• Applying integration theorems, checking side conditions
such as continuity, integrability, …

• Implemented in Python using the API for proof automation.

• Underlying mathematical library: still under construction.



Summary: overall architecture

Computation steps

User interface

Custom language of 
mathematical expressions 
and computation rules

User performs computation by 
choosing actions from a menu

Proof reconstruction

Analysis library

Proof automation written in 
Python to reconstruct proofs 
from computation steps

Theorems in mathematical 
analysis the proofs depend on 
(currently incomplete)



Example #1

• An easy-to-make mistake:

• Correct version: ???

cos2 𝑥 ≠ cos 𝑥



Example #2

• A problem that is difficult even for Mathematica:



Limitations

The above work is limited in the following ways:

• Extensibility: all functions and identities satisfied by them are hard-
coded.

• Reusability: calculations are independent from each other, no reuse 
of results.

• Range of application: definite integrals on finite intervals only.



Extensions

The first major extension we made is to introduce a system for 
managing definitions, identities, and proofs:

More and more like regular ITP systems…

➢ Define new functions and state identities.

➢ Manage conditions of identities.

➢ Proof by induction.



New rules

We also added rules for dealing with:

Currently: 27 rules to choose from in the menu.

➢ Improper integrals and limits.

➢ Indefinite integrals, and working with the “+ 𝐶”.

➢ Series expansion and evaluations.

➢ Swapping integral and derivative, integral and sums.



Examples

• We tried our tool on examples from 
the book “Inside Interesting Integrals”.

• Over 50 integrals from the book are 
performed, covering topics like:
• Partial fraction decomposition.

• Differentiating under integral sign.

• Use of power series in integration.

• Gamma and Beta functions.

• The following are not included:
• Complex numbers and contour integrals.



Example #3

Using power series of log function (from Section 5.2):

(expand power series)

(exchange integral and sum)

(evaluate integral term by term)

(evaluate series)



Example #4

Exchanging derivative and integral (from Section 3.4):

(exchange deriv. and integral)

(indefinite integral with +𝐶)

(solving for value of 𝐶)



Example #5:

Reasoning about the Γ-function (Section 4.1).

(integration by parts with ∞)

(proof by induction)

(substitution, fold definition)



Summary

• “Interactive Theorem Prover” designed specially for symbolic 
computation.

• User interface displays formulas in             form.

• CAS-like automation to help users with simple tasks.

• Generate higher-order logic proofs that can be checked 
independently (currently implemented only for simple cases).



Summary: division of labor



Summary: relation with CAS

• Permits more manual control of the computation.

• Many components of computer algebra systems are used here, 
currently only with simple implementations:

• Need proof-generating versions of these procedures!

➢ Simplification and normalization.

➢ Pattern matching.

➢ Checking conditions.

➢ Taking limits.

➢ Solving equations.



Future work

• Extensions:

• Application to verifying symbolic computation that appear in 
mathematical proofs, engineering, machine learning algorithms …

• Applications in education?

• We can try to build tools that are immediately useful, without 
achieving full rigor in the ITP sense.

➢ Linear algebra

➢ Complex analysis

➢ Probability



Future work

• To achieve full rigor, we need:

• Integration within an interactive theorem prover:

• Available as open source, and we welcome contributions!

➢ Proof reconstruction for all CAS-procedures.

➢ Library of mathematical theorems covering the foundational rules.

➢ Switch between general-purpose and symbolic computation modes.

(similar to math texts).

https://github.com/bzhan/holpy ⋅ https://gitee.com/bhzhan/holpy

https://github.com/bzhan/holpy
https://gitee.com/bhzhan/holpy
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