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Overview

I. Network control theory and its application to neural systems
II. Examiming cognitive and neurobiological correlates of control energy

III. Extension: multiplex network control
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"T'he network control model

final desired
state

™ Xy

X2

Network control theory 1s a mathematical framework that determines which
perturbations can drive the whole system to a desired state. It 1s typically applied to the
study of the power grid, mechanical systems, air tratfic control systems, & robotics.
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A network control model for the bramn

The model stipulates how activity flows along structural connections.

e

x(t+1) = Ax(t) + Brux(t)
7 T T

State of brain Weighted adjacency Control energy
regions over time matrix

Kim et al. (2018) Nature Physics; Kim et al. 2020 In Press arXiv:1902.03309 Compl @
m e ( ) Nature Physics; Kim e n Press arXiv o pg)jystems, R




What are the inputs and outputs of NCT?

’ Signal u, Network control theory
State ) e \\ , Inputs:
*  Mapping of network
\ / \ / \..'f\\ *  Model of dynamics
@ Ls:
Network A . ulpu >
ij e  Design of
perturbation

Tang et al. Reviews of Modern Physics 2018
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Input: A map ol the network

Diffusion tractography

Tract tracing
Flectron microscopy

Oh et al. (2014) Nature, Yan*, Vertes* et al. (2017) Natu Compl .
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Input: A model of the dynamics
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Input: A model of the dynamics

* Linear, tme-mvariant models

d
Ex(t) = Ax(t) + Bu(t)

_ Neural
= * Linear, ime-varying models /
. g d
= . = AEmin
% dtx(t) = A(t)x(t) + B(t)u(t) AEmin\
S y(t) = C(£)x(t). AE i

* Nonlinear models

d
X0 = Fx(®), u(0),1)
y(t) = h(x(t) ).

: ()¢ : C Comple
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Input: A model of the dynamics
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What are the inputs and outputs of NCT?

’ Signal u, Network control theory
Stit: X; / \\ , [npl\letsz . . . /
* apping ol networ
/ \/ \‘\\ *  Model of dynamics /
Outputs:

e  Design of
perturbation e

Network Ai’. -

Tang et al. Reviews of Modern Physics 2018
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Outputs of NCT

* Controlled response: the system’s response to
some controlling input u(t) from some nitial X3 Uncontrolled trajectory
state xy. == Controlled trajectory

* Controllability: A system 1s controllable if

. . : XT /« N, A
there 1s a control input that brings our system
from any mitial state to any final state i finite
time. Xo

* Achieving desired state transitions through
minimum energy control: Designing the e g
control mput u(t) to mmimize the control X1 X0 ,f “ /”’;
energy E (and possibly other factors) to drive
the desired response.

Betzel et al. (2016) Scr Reports




Quantitying ease and dithculty of state transitions

4 Initial state

Target state

X3 Uncontrolled trajectory
== Controlled trajectory
XT e
/% ) f 1007
’ N\ . ’c([‘%
X2

Given the model of network dynamics, we
can define a cost function that penalizes
control energy required and distance of x(t)
from the target state

T
min/ (x7 —x)T (%7 — X) 4+ pukux
0

" \ . )\ )

distance energy

Betzel et al. (2016) Scr Reports; Gu et al. (2017) Neurormage, Stiso et al. (2019) Cell Reports %




II. Examining cognitive and neurobiological correlates of

control energy




Relating control energy and cognitive effort

Does a brain state associated with higher cognitive effort require more control imput to
reach and to maintain?
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Relating control energy and cognitive effort
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Relating control energy and cognitive effort
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Relating control energy and cognitive effort

Do task-associated brain state transitions become less costly over the course of habit

learning?
00000 00000 00000 00000
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Relating control energy and cognitive effort

Do task-associated brain state transitions become less costly over the course of habit

learning?
u
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Relating control energy and cognitive effort
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Relating control energy and cognitive effort

Similarity Factor
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Is the monkey performing increasingly similar
patterns the longer she engages in

the task?
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Relating control energy and cognitive effort

Cluster Label Entropy
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Is the monkey choosing to explore many
different saccade patterns across trials or
does she continuously exploit a select few?

R2=0.104 o
p=5.88x10* " @

Cluster Label Entropy (CLE)

Szymula®, Brynildsen™, Fotiadis* et al. (in revision)
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The biological basis of control energy

Does control energy reflect glucose utihization in the brain?

C : Compls
He et al. (2022) Scr Adv .%gy%ems.



A

LI-Glu

The biological basis of control energy
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Summary

- Engaging mindful attention requires more control mput into
cognitive-control associated regions than reacting naturally to

cues (Zhou et al., PNAS 2023)

- Control energy for state transitions decreases over the course of
repeated task trials (Szymula, Brynildsen, Fotiadis et al.)
« Changes 1 behavior associated with habit learning are correlated with
control energy
- Regional glucose hypometabolism in TLE 1s associated with
greater control energy requirements (He et al., Scr Adv 2022)
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III. A multlayer network control framework for modeling
Interactions between neural activity and gene expression




Control of multilayer networks

Multilayer networks model multiple types of interactions between components of a
system.

Multiplex social
interactions

/.. R :
- { Mating layer e

5 __./:& Social layer <«

Interconnected
socio-spatial
interactions

Spatial layer <«

: ¢ ; Compls
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dDMN
Salience

e Sensorimotor
Visuospatial

Multlayer networks model multiple types of interactions between components of a

system.
A

Control of multilayer networks
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Applying NCT to mulalayer networks

Given access to only one layer, how can we drive a multilayered system to a desired
state?
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Applying NCT to mulalayer networks

Given access to only one layer, how can we drive a multilayered system to a desired
state?

Addressing this question 1s relevant to considering:
* How the brain transitions between health and disease states in which disease
pathology impacts multiple layers
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Applying NCT to mulalayer networks

Given access to only one layer, how can we drive a multilayered system to a desired
state?

Addressing this question 1s relevant to considering:

e How the brain transitions between health and disease states in which disease

pathology impacts multiple layers
 How to target an intervention to impact multiple layers when only one layer 1s

accessible
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Applyimng NCT to multlayer networks

Given access to only one layer, how can we drive a multilayered system to a desired
state?
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Applyimng NCT to multlayer networks

Given access to only one layer, how can we drive a multilayered system to a desired

state?
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Applyimng NCT to multlayer networks

| Xir| =1 E(T)
Input layer

Interlayer Target layer
connections

Srivastava et al. (2021) arXiv .CO%NSL.
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Overview of functional data

3 sec
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Benisty et al. (2023) Nat Neuroscr
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Construction of the duplex network

Function layer Gene expression layer

Pearson’s r

Interregional correlations across ~ 7,000
genes
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Construction of the duplex network

Function layer Gene expression layer

Pearson’s r




Duplex network control in mouse

Control spectra
Function to gene: Gene to function:
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Duplex network control n mouse

sCMOS
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0.80+

Mean Control Energy
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o
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0.701

Duplex network control n mouse

Hypothesis: Less control input is required for the functional layer to control the gene expression
layer during rest as compared to active states
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Linking duplex network control with behavioral states

Relative cost of Connectivity
function to gene control: strength

[

N

Avg weighted degree
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diameter energy
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Open questions

 How can we examine changes in gene expression across time, and their relation to

changes 1 neural activity?

Which genes matter?

And more...
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Network control theory protocol
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Confirmatory Results A Follow this preprint

Using network control theory to study the dynamics of the structural
connectome

2 Linden Parkes, ) Jason Z.Kim, {2 Jennifer Stiso, (2} Julia K. Brynildsen, {2} Matthew Cieslak, =) Sydney Covitz,
Raquel E. Gur, ©2 Ruben C. Gur, % Fabio Pasqualetti, "=/ Russell T. Shinohara, “) Dale Zhou,
Theodore D. Satterthwaite, ©2) Dani S. Bassett

doi: https://doi.org/10.1101/2023.08.23.554519

Comple )
Systems




Network control theory protocol

A | pathway A: model inputs
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connectome states
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