How connectomes can help us understand navigational attractor dynamics

Vivek Jayaraman

hhmi janelia Analysis Research Campus

IPAM, UCLA Workshop: Mathematical Approaches for Connectome Analysis

February 12th, 2024

shadow

-1

Isaacson et al. (2022)

Thermal place learning

* tracking by Ctrax (Branson et al. 2009)

Ofstad, Zuker & Reiser, (2011)

NeuroPixels project (Janelia, imec, Allen Institute, UCL)

Janelia GENIE team

50,000 simultaneously-recorded neurons

Internal representations for flexible navigation

Internal representations for flexible navigation

Barry & Burgess, Curr. Biol. (2014)

Jeff Taube & James Ranck et al.

These representations are generated within densely recurrent brain networks

conjunctive coding

mixed selectivity

Stopfer*, Jayaraman* & Laurent (2003)

How do these representations arise?

conjunctive coding

mixed selectivity

manifolds

Stopfer*, Jayaraman* & Laurent (2003)

Fly "Hemi-Brain" Connectome Project

Google

volume imaged = 16x10⁶ µm³

Central Complex & Mushroom Body of a female fly highlighted Reslice of TransformedCombinedStacks_Sec19_20_21_22_23_24_25_26_27_28_29_30_31_32_3...

Xu et al. (2017); Scheffer et al. (2020)

Neurons come in different types

Dickson lab

Cell types matter

Knowledge of cell type

presynaptic neuron

The central complex: internal-representation-driven flexibility

Adapted from M.A. Frye & M.H. Dickinson (2003)

Seelig*, Chiappe*, Lott* et al. (2010)

A compass that updates with self-motion

Population activity dynamics lie on a ring

Brad Hulse

Ring attractor networks: theory-rich area

Ben-Yishai et al. (1995); Skaggs, McNaughton et al. (1995); Zhang (1996); Hansel and Sompolinsky (1998); Xie, Hahnloser & Seung (2002); Wu and Amari (2005) ; Wimmer, Compte et al. (2014); Noorman et al. (2022); ...

Looking at the connectome with a theory-inspired lens

D.B. Turner-Evans*, S. Wegener* et al. (2017), J. Green et al. (Maimon lab) (2017), D.B. Turner-Evans et al. (2020)

Phase-shifted population updates the compass

Video credits: Philip Hubbard & Shin-ya Takemura

Scheffer et al. (2020); Hulse et al. (2021)

D.B. Turner-Evans*, S. Wegener* et al. (2017)

A conjunctive encoding of heading & velocity

D.B. Turner-Evans*, **S. Wegener*** et al. (2017)

Self-motion input must be combined with localizing sensory input

Most "sensory" neurons individually synapse onto all compass neurons

Input neurons synapse onto each other

~All-to-all inhibition within type

Stimulus selection/ noise suppression

Postsynaptic ring neurons

A hierarchy of sensory inputs to the compass

Postsynaptic ring neurons

Each input "ring" neuron connects to all compass neurons

Visual feature input to the compass

J.D. Seelig & V. Jayaraman (2013), Y. Sun et al. (2017), H.M. Shiozaki & H. Kazama (2017), J.J. Omoto et al. (2017), B.J. Hardcastle et al. (2021)

Sample visual receptive fields

J.D. Seelig & V. Jayaraman (2013), Y. Sun et al. (2017), H.M. Shiozaki & H. Kazama (2017), J.J. Omoto et al. (2017), B.J. Hardcastle et al. (2021)

But these synapses are plastic

S.S. Kim et al. (2019), Y. Fisher et al. (2019,2022), C. Dan et al. (2021,2022); See also: A. Cope et al. (2017), J. Green & G. Maimon (2018)

Mapping visual scenes onto the compass

S.S. Kim et al. (2019), Y. Fisher et al. (2019,2022), C. Dan et al. (2021,2022); See also: A. Cope et al. (2017), J. Green & G. Maimon (2018)

Hannah Haberkern

A heading vector for goal-driven navigation

Wehner et al.

A heading vector for goal-driven navigation

Heading activity bump is formatted as a cosine

of syns

0 10 20 30 40

 $\Delta 7$ postsynaptic neuron

See also: Lyu et al. (2022) B.K. Hulse*, H. Haberkern*, R. Franconville*, **D.B. Turner-Evans*** et al. (2021)

Anatomical phase shifts in the fan-shaped body (FB)

See also: Stone et al. (2017) (Heinze & Webb labs) **B.K. Hulse***, H. Haberkern*, R. Franconville*, D.B. Turner-Evans* et al. (2021)

A circuit motif for coordinate transformations

A circuit motif for coordinate transformations

Stone et al., Current Bio. (2017) Shiozaki, et al., Neuron (2020) Currier et al., eLife (2020)

Self-motion input

See also: C. Lyu et al. (2022); J. Lu et al. (2022)

= 180° phase shift!

A 4-vector basis set for arbitrary vector computation

See also: Lyu et al. (2022); Lu et al. (2022)

Setting context for goal-driven behavior with a variety of "tangential" neurons

See also: Stone et al. (2017); Sun et al. (2020); Goulard et al. (2021); Pires et al. (2024); Matheson et al. (2021)

Dan, Hulse, Kappagantula, Jayaraman & Hermundstad, (2021, 2022)

Phase shifts enable rapid learning of goal-heading-driven behavior

See also: Stone et al. (2017); Sun et al. (2020); Goulard et al. (2021); Pires et al. (2024); Westeinde et al. (2024)

Dan, Hulse, Kappagantula, Jayaraman & Hermundstad, (2021, 2022) **B.K. Hulse***, H. Haberkern*, R. Franconville*, D.B. Turner-Evans* et al. (2021)

postsynaptic neuron

Knowledge of cell type /connectivity

"mixed selectivity" "conjunctive coding"

postsynaptic neuron

postsynaptic neuron

Hulse*, Haberkern*, Franconville*, **Turner-Evans*** et al. (2021)

Brad Hulse

(¹/₂ Hermundstad lab)

Shivam Chitnis

Pavithraa Seenivasan

(¹/₂ Reiser lab)

The lab

Kristin Henderson

Deepika Gupta (½ Shroff lab)

Britz et al. (2021)

Chad Sauvola

Angel Stanoev (½ Romani lab)

Chuntao Dan

Lab coordinator Dianne Pereira

Past members & collaborators

Johannes Seelig (MPI GL, CAESAR)

Eugenia Chiappe (Grp Ldr, Champalimaud)

> Stephanie Wegener (DFG, Germany)

Sung Soo Kim* (Asst. Prof., UCSB)

Dan Turner-Evans (Asst. Prof., UCSC)

Romain Franconville

Hannah Haberkern (Group Leader, U. Würzburg)

Ann Hermundstad Marcella Noorman* Yipei Guo

Sandro Romani* Larry Abbott*

> Gerry Rubin + Tanya Wolff

Aljoscha Nern

Michael Reiser +lab Yoshi Aso +

lab

Janelia **Experimental Technology** Scientific Computing Quantitative Genomics

Visiting scientists

Dennis Goldschmidt

Carlos Ribeiro

Aisha Hamid

Syed Mubarak

FlyCore FlyLight

GENIE

FlyEM

Project Pipeline Support

> Project **Technical** Resources

Dreher Design Studio

at this workshop

Josh Dudman Luke Coddington

Chie Satou Misha Ahrens Hari Shroff **Kristin Branson** +lab **Aquatics**

MCN-NET (Carmen Morrow)

+

Many, many more!