Electron microscopy images

Electron microscopy images

Segmentation

Electron microscopy images

Cell types "Names" Neurotransmitter types Size/number of synaptic connections Recordings/effects of activation/inactivation Transcriptomic C. elegans

~300 neurons

1986

Y

Drosophila adult ~20,000 neurons 2020

Drosophila Drosophila Mouse larva adult ~20,000 neurons ~75,000,000 neurons ~2,000 neurons 2020 ~2010-2023 ~200,000 neurons 2021 ~120,000 neurons 2023 200µm

left optic lobe

central brain

right optic lobe

?

C. elegans

~300 neurons

1986

Cell types "Names" Neurotransmitter types Size/number of synaptic connections Recordings/effects of activation/inactivation Transcriptomic

"Names" Neurotransmitter types Size/number of synaptic connections Recordings/effects of activation/inactivation Transcriptomic

N

2020

neuprint.janelia.org

N

N

N

Disconnected

Connected

Disconnected

N = 21739p = 0.0075

Postsynaptic neuron (receiver)

Disconnected

Number/size of connections

Number/size of connections

N = 21739p = 0.0075 $p(\geq 5) = 0.0014$

Acetylcholine (excitatory)

Glutamate (probably inhibitory)

Acetylcholine (excitatory)

GABA (inhibitory)

Glutamate (probably inhibitory)

Predicted neurotransmitter

S

Number/size of connections

Number/size of connections

Cell types Neurotransmitter types Size/number of synaptic contacts

Graphical analysis 1) Cell types 2) Hierarchy 3) Null models

	Computed network statistics		
Connected components	strongly connected components	Figure 1d	
	weak connected components	Figure 1e	
Path length analysis	directed shortest path lengths	Figure 1d	
	undirected shortest path lengths	Figure 1e	
Percolation analysis	vertex percolation	Figures 1f, g; S1f	
	edge percolation	Figure S1a	
Rich-club analysis	total-degree rich club	Figure 1h	
	in-degree rich club	Figure S1g	
	out-degree rich club	Figure S1g	
Small-word analysis	clustering coefficient	Table 2	
	small-wordness	Equation 1	
2-neuron motifs	reciprocity	Table 2; Figures 5c; S5c	
	connection strength	Figures 2a, d; 5f, S6a	
	neurotransmitter types	Figures 2c, e, f; 5d, e; S5	
3-neuron motifs	motif frequencies	Figures 3a; 6a, d; S7a	
	motif strength	Figures 3b; 6c; S7b	
	neurotransmitter types	Figures 3c, d, e	
Large-scale connectivity	degree distribution	Figure 1c	
	cell categories	Figure 4	
Spectral analysis	forward random walk	Figure S1d	
	reversed random walk	Figure S1e	
Neuropil subgraphs	internal/external connection weights	Figure S4	
	2-neuron motifs	Figures 5, S5, S6	
	3-neuron motifs	Figures 6, S7	

	Neuron lists available on Codex		# of neurons
2-neuron motifs	reciprocal connection participants	$^{\alpha} \odot ^{\beta}$	77,607
3-neuron motifs	feedforward loop participants	$\beta \stackrel{\alpha}{\bullet \bullet \bullet} \gamma$	113,978
	3-unicycle participants	$\beta \bullet \bullet \gamma$	66,835
N-neuron motifs	highly reciprocal neurons		2,183
	neuropil-specific highly reciprocal neurons (NSRNs)		704
Rich-club analysis	rich-club neurons		40,218
	broadcasters		676
	integrators		638
Spectral analysis	attractors		3,469
	repellers	-0+0	3,469

Lin et al. 2023

TOOLS AND RESOURCES

Automatic discovery of cell types and microcircuitry from neural connectomics

Eric Jonas¹*, Konrad Kording^{2,3,4}

Jonas & Kording 2015

6

(cc)

Connectivity matrix

Jonas & Kording 2015

Jonas & Kording 2015

2) Hierarchy

Schlegel et al. 2021

2) Hierarchy

Schlegel et al. 2021

Cell type 1 Cell type 2

Cell type 1 Cell type 2

Random?

Cell type 1 Cell type 2

Random?

Right hemisphere

Olfactory projection neurons

Eichler et al. 2017

 $A = USV^T$

Adjacency matrix (unweighted)

$$A = USV^T$$

Adjacency matrix (unweighted) Degree-matched random matrices

$$A = USV^T$$

Adjacency matrix (unweighted)

$$A = USV^T$$

Degree-matched random matrices

Null models incorporating cell types, distance dependence, synaptic weights, neurotransmitters

Null models incorporating cell types, distance dependence, synaptic weights, neurotransmitters

Identifying structure beyond stochastic blockmodels

Null models incorporating cell types, distance dependence, synaptic weights, neurotransmitters

Identifying structure beyond stochastic blockmodels

Hulse et al. 2021

Null models incorporating cell types, distance dependence, synaptic weights, neurotransmitters

Identifying structure beyond stochastic blockmodels

Graphical analysis Cell types Hierarchy Null models

Dynamics

$$\tau_i \frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$

$$\tau_{i} \frac{dx_{i}(t)}{dt} = -x_{i}(t) + b_{i} + \sum_{j} W_{ij} f_{j}(x_{j}(t)) + I_{i}(t)$$

$$\tau_{i} \frac{dx_{i}(t)}{dt} = -x_{i}(t) + b_{i} + \sum_{j} W_{ij} f_{j}(x_{j}(t)) + I_{i}(t)$$

 b_i : Baseline activity level

$$\tau_i \frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$

 b_i : Baseline activity level

 W_{ij} : Interactions

$$\tau_i \frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$

 b_i : Baseline activity level

 W_{ij} : Interactions

 $f_i > 0$: Nonlinearity (e.g. voltage to firing rate mapping)

$$\tau_i \frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$

 b_i : Baseline activity level

 W_{ij} : Interactions

 $f_i > 0$: Nonlinearity (e.g. voltage to firing rate mapping)

 $I_i(t)$: External input

$$\tau_i \frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$

 b_i : Baseline activity level

 W_{ij} : Interactions

 $f_i > 0$: Nonlinearity (e.g. voltage to firing rate mapping)

 $I_i(t)$: External input

Assumptions: First-order, 1-d dynamics per neuron, additive interactions

$$\tau_i \frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$

$$\tau_i \frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$

 $W_{ij} \propto g_{ij} A_{ij}$

$$\tau_{i} \frac{dx_{i}(t)}{dt} = -x_{i}(t) + b_{i} + \sum_{j} W_{ij} f_{j}(x_{j}(t)) + I_{i}(t)$$

$$W_{ij} \propto g_{ij} A_{ij}$$

Global scale factor

$$\tau_i \frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$

$$W_{ij} \propto g_{ij} A_{ij}$$

Global scale factor

$$g_{ij} = \pm g$$

Excitatory/inhibitory

$$\tau_{i} \frac{dx_{i}(t)}{dt} = -x_{i}(t) + b_{i} + \sum_{j} W_{ij} f_{j}(x_{j}(t)) + I_{i}(t)$$

$$W_{ij} \propto g_{ij} A_{ij}$$

Global scale factor

$$g_{ij} = \pm g$$

Excitatory/inhibitory

$$g_{ij} = \pm g / \sum_j A_{ij}$$

Normalized by incoming weights

$$\tau_i \frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$

$$W_{ij} \propto g_{ij} A_{ij}$$

Global scale factor

 $g_{ij} = \pm g$

Excitatory/inhibitory

 $g_{ij} = \pm g / \sum_j A_{ij}$

$$g_{ij} = \pm g_{(\rm NT)} / \sum_j A_{ij}$$

Normalized by incoming weights

Neurotransmitter-specific gain

3D reconstruction

Graph

3D reconstruction Graph

Approaches:

Approaches:

1) Direction simulation with hand-chosen parameters (often)

Approaches:

- 1) Direction simulation with hand-chosen parameters (often)
- 2) Fit to perform a task and/or reproduce neural data (recorded $x_i(t)$)

1) Direction simulation with hand-chosen parameters (often)

2) Fit to perform a task and/or reproduce neural data (recorded $x_i(t)$)

a) W fixed, other parameters trained (Turaga)

1) Direction simulation with hand-chosen parameters (often)

2) Fit to perform a task and/or reproduce neural data (recorded $x_i(t)$)

- a) W fixed, other parameters trained (Turaga)
- b) W is initial condition

1) Direction simulation with hand-chosen parameters (often)

- 2) Fit to perform a task and/or reproduce neural data (recorded $x_i(t)$)
 - a) W fixed, other parameters trained (Turaga)
 - b) W is initial condition
- 3) Analysis of fixed points/attractors (Curto)

1) Direction simulation with hand-chosen parameters (often)

- 2) Fit to perform a task and/or reproduce neural data (recorded $x_i(t)$)
 - a) W fixed, other parameters trained (Turaga)
 - b) W is initial condition
- 3) Analysis of fixed points/attractors (Curto)
- 4) Mean-field approaches/low-rank approximations (Solla)

1) Direction simulation with hand-chosen parameters (often)

- 2) Fit to perform a task and/or reproduce neural data (recorded $x_i(t)$)
 - a) W fixed, other parameters trained (Turaga)
 - b) W is initial condition
- 3) Analysis of fixed points/attractors (Curto)
- 4) Mean-field approaches/low-rank approximations (Solla)

- 1) Direction simulation with hand-chosen parameters (often)
- 2) Fit to perform a task and/or reproduce neural data (recorded $x_i(t)$)
 - a) W fixed, other parameters trained (Turaga)
 - b) W is initial condition
- 3) Analysis of fixed points/attractors (Curto)
- 4) Mean-field approaches/low-rank approximations (Solla)

$$\frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$
$$f_i(x) = \text{Softplus}(g_i x) \qquad f_i(x) = \int_{0}^{4} \int_{0}^{4}$$

Manuel Beiran

$$\frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$
$$f_i(x) = \text{Softplus}(g_i x) \qquad f_i(x) = \int_{0}^{4} \int_{0}^{4}$$

Manuel Beiran

$$\frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$
$$f_i(x) = \text{Softplus}(g_i x) \qquad f_i(x) = \int_{0}^{4} \int_{0}^{4}$$

Manuel Beiran

$$\frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$
$$f_i(x) = \text{Softplus}(g_i x) \qquad f_i(x) = \int_{0}^{4} \int_{0}^{4}$$

$$\frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$
$$f_i(x) = \text{Softplus}(g_i x) \qquad f_i(x) = \int_{0}^{4} \int_{0}^{4}$$

$$\frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$
$$f_i(x) = \text{Softplus}(g_i x) \quad f_i(x) = \int_{0}^{4} \int_{0}^{4}$$

$$\frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$
$$f_i(x) = \text{Softplus}(g_i x) \quad f_i(x) = \int_{0}^{4} \int_{0}^{4}$$

$$\frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$
$$f_i(x) = \text{Softplus}(g_i x) \qquad f_i(x) = \int_{0}^{4} \int_{0}^{4}$$

$$\frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$
$$f_i(x) = \text{Softplus}(g_i x) \quad f_i(x) = \int_{0}^{4} \int_{0}^{4}$$

"Student" networks: Same W, other parameters initialized randomly, trained through gradient descent to match subset of activity in teacher.

$$\frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$
$$f_i(x) = \text{Softplus}(g_i x) \qquad f_i(x) = \int_{0}^{4} \int_{0}^{4}$$

"Student" networks: Same W, other parameters initialized randomly, trained through gradient descent to match subset of activity in teacher.

$$\frac{dx_i(t)}{dt} = -x_i(t) + b_i + \sum_j W_{ij} f_j(x_j(t)) + I_i(t)$$
$$f_i(x) = \text{Softplus}(g_i x) \qquad f_i(x) = \int_{0}^{4} \int_{0}^{4}$$

"Student" networks: Same W, other parameters initialized randomly, trained through gradient descent to match subset of activity in teacher.

What are the right model classes?

What are the right benchmarks?

When can we be confident our models are sufficiently constrained?