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Abstract

´ To	help	set	the	mathematical	stage	for	the	workshop,	I	will	briefly	present	some	
fundamental	ideas	in	networks	and	network	dynamics.	I	will	discuss	various	types	of	
networks	(such	as	directed	networks,	multilayer	networks,	and	so	on),	with	an	aim	
towards	trying	to	convey	what	we	do	and	don't	know	how	to	do.	In	this	vein,	I	will	also	
comment	about	dynamics	on	networks,	dynamics	of	networks,	and	networks	that	
coevolve	with	dynamics.	

´I	plan	to	use	roughly	half	of	the	allotted	time	for	my	
presentation	slides,	and	I	expect	active	discussions	and	
audience	questions	for	the	other	half.	

´Springboarding from	these	discussions,	we	should	try	
to	set	the	stage	for	formulating	interesting	and	
concrete	projects	at	the	conclusion	of	the	workshop.



Interrupt me with 
questions!
This	is	supposed	to	be	a	discussion	to	help	set	the	stage	
for	the	workshop.



Two Flavors of Issues when Generalizing Network 
Representations and Data Structures

´ 1.	There	are	many	different	ways	to	generalize	some	approach	or	quantity	
(betweenness	centrality,	clustering	coefficient,	etc.)	and	many	different	choices	to	
make	in	the	process,	so	we	need	to	think	about	which	way	to	do	it	and	what	is	most	
appropriate	for	a	given	problem.
´ Example:	Given	a	weighted	network	(with	larger	weights	encoding	stronger	relationships),	

how	do	we	want	to	measure	the	distances	of	a	walk	on	the	network?

´ 2.	When	generalizing,	we	lose	some	convenient	feature	(e.g.,	a	important	theorem	no	
longer	applies)	and	then	we	need	to	figure	out	— through	development	of	theory	
and/or	methods	— how	to	get	the	generalization	to	work.
´ Example:	The	adjacency	matrix	of	a	directed	network	is	generically	asymmetric,	so	the	

leading	eigenvalue	is	no	longer	guaranteed	to	be	real,	and	spectral	methods	that	rely	on	
having	a	real	leading	eigenvalue	or	leading	eigenvector	need	to	be	adjusted.



Graphs: The Simplest Networks

• Remark: In much networks literature, it is common to use the 
word “networks” in a way that does not automatically include 
dynamics. This is different in some other traditions.
• Adjacency matrix A
• Aij = 1 if there is a connection between nodes i and j
• Aij = 0 if no connection

• We can generalize these representations to account for edge 
directions, edge weights, multiple relationships, changes with 
time, and other complications.
• Some things that we like:
• Generative models of random graphs, local clustering coefficient, 

centrality measures (to measure importance of nodes and edges), 
community structure and other mesoscale properties, etc.
• How do we generalize them for more complicated network 

representations?



Graph Laplacian Matrices

´ Bailey	K.	Fosdick,	Daniel	B.	Larremore,	Joel	Nishimura,	&	Johan	Ugander [2018],	
“Configuring	Random	Graph	Models	with	Fixed	Degree	Sequences”,	SIAM	Review,	Vol.	
60,	No.	2:	315–355

Configuration-Model Random Graphs

• Naoki	Masuda,	MAP,	&	Renaud	Lambiotte [2017],	“Random	Walks	and	Diffusion	on	
Networks”,	Physics	Reports,	Vol.	716–717:	1–58	
• Combinatorial	graph	Laplacian:	L	=	D	– A
• Random-walk	normalized	Laplacian:	D–1L

• Spectral	clustering:	Use	eigenvalues	and	eigenvectors	of	a	Laplacian	or	related	matrix	
(e.g.,	a	modularity	matrix)

• Fix	degree	sequence	and	connect	stubs	
(i.e.,	ends	of	edges)	to	each	other	
uniformly	at	random
• Or	fix	a	degree	distribution	and	draw	a	

degree	sequence	from	it
• Self-edges	and	multi-edges?
• Null	model	in	community	detection



Weighted Networks
´ Note:	Technically,	these	are	edge-weighted	networks,	which	is	what	people	usually	

mean	when	they	say	“weighted	networks”.	One	can	also	think	about	node	weights.
´ Weights	versus	“distances”

´ In	a	weight	matrix (i.e.,	weighted	adjacency	matrix),	larger	values	indicate	stronger	
connections

´ In	a	distance	matrix,	larger	values	indicate	weaker	connections
´ Data	may	arise	most	naturally	as	costs	(i.e.,	“distances”)	or	as	weights

´ If	you	are	given	weights,	how	do	you	measure	distances,	such	as	for	walks	on	
networks	and	anything	(e.g.,	centrality	measures	like	betweenness)	that	use	them?

´ Weighted	generalizations	of	ideas	like	local	clustering	coefficients:	How	should	you	
normalize?

´ Conceptual	trickiness	in	generalizations	of	random-graph	models:	shuffling	edges	
versus	redistributing	weights?
´ For	example,	in	generalizations	of	configuration	models	and	stochastic	block	models
´ Conceptually	harder	than	some	other	generalizations	(e.g.,	multilayer	networks)	that	are	

often	harder	for	other	things



Directed Networks
´ Fragkiskos D.	Malliaros &	Michalis	Vazirgianis [2013],	“Clustering	and	Community	

Detection	in	Directed	Networks:	A	Survey”,	Physics	Reports,	Vol.	533,	No.	4:	95–142
´ Graph	Laplacians:	out-degree	versus	in-degree

´ The	leading	eigenvalue	and	leading	eigenvector	are	no	longer	typically	guaranteed	to	be	
real,	so	spectral	approaches	need	to	be	generalized	to	account	for	that

´ Generalizing	ideas	like	local	clustering	coefficients	and	network	“motifs”	to	directed	
networks?

´ Null	models	for	community	detection	through	directed	generalization	of	configuration-
model	networks
´ Or	use	statistical-inference	methods,	such	as	with	degree-corrected	stochastic	block	models
´ Or	use	local	methods,	such	as	via	personalized	PageRank	(although	many	of	these	methods	want	a	

real	leading	eigenvalue)



Signed Networks 
´ Naoki	Masuda,	Zachary	M.	Boyd,	Diego	Garlaschelli,	&	Peter	J.	Mucha

[2023],	“Correlation	Networks:	Interdisciplinary	Approaches	Beyond	
Thresholding”,	arXiv:2311.09536

´ Positive	and	negative	edges
´ Examples:	Correlations,	excitatory	versus	inhibitory	dynamics,	etc.
´ Community	structure	and	random-graph	null	models

´ A	signed	generalization	of	configuration	models
´ Spectral	properties	of	adjacency	and	Laplacian	matrices?

´ Difficulties	in	generalizing	centrality	measures	(including	not	
usually	having	a	guarantee	of	a	real,	positive	leading	eigenvalue)

´ Schematic	from	Danielle	S.	Bassett,	Nicholas	F.	Wymbs,	MAP,	Peter	J.	
Mucha,	Jean	M.	Carlson,	&	Scott	T.	Grafton	[2011],	“Dynamic	
Reconfiguration	of	Human	Brain	Networks	During	Learning”,	
Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	
of	America,	Vol.	108,	No.	18:	7641–7646	
´ For	imaging	data:	Threshold	weights	to	obtain	an	unweighted	

network,	making	all	weights	positive	somehow,	or	using	signed	
weighted	networks?

´ This	paper	does	not	consider	signed-network	methods



Networks with Complex-Valued Weights

´ Lucas	Böttcher &	MAP	[2024],	“Complex	Networks	with	Complex	Weights”,	Physical	
Review	E,	in	press	(arXiv:	2212.06257)

´ Applications	include	quantum	walks	on	networks,	graph	signal	processing,	graph	
neural	networks,	transmission-line	networks,	coupled-oscillator	networks,	etc.

´ Hermitian	versus	non-Hermitian	matrices

´ Need	much	more	network	analysis	to	generalize	our	favorite	ideas	to	this	setting

´ Further	studies	using	ideas	like	pseudospectra	and	non-normal	matrices	should	be	
useful	(e.g.,	for	generalizing	ideas	like	eigenvector	centrality)
´ Lucas	wanted	me	to	ask	if	any	folks	at	the	workshop	have	some	ideas	to	share



Multilayer Networks
(note: different use of the term than in machine learning)

´ Mikko Kivelä,	Alex	Arenas,	Marc	Barthelemy,	James	P.	Gleeson,	Yamir Moreno,	&	MAP	
[2014],	“Multilayer	Networks”,	Journal	of	Complex	Networks,	Vol.	2,	No.	3:	203–271	

´ Manlio De	Domenico	[2022],	Multilayer	Networks:	Analysis	and	Visualization,	Springer	
International	Publishing,	Cham,	Switzerland

´ Adjacency	tensor	versus	“flattening”	into	a	supra-adjacency	matrix
´ Intralayer	edges	versus	interlayer	edges:	Often	less	reliable	data	and	more	conceptual	

difficulties	with	the	latter	(what	do	the	\ mean?)
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Fig. 3.1. Example of (left) a multilayer network with unweighted intra-layer connections (solid
lines) and uniformly weighted inter-layer connections (dashed curves) and (right) its corresponding
adjacency matrix. (The adjacency matrix that corresponds to a multilayer network is sometimes
called a “supra-adjacency matrix” in the network-science literature [39].)

or an adjacency matrix to represent a multilayer network.) The generalization in [49]
consists of applying the function in (2.16) to the N |T |-node multilayer network:

r̂(C, t) =

N |T |X

i,j=1

✓
⇡i

⇥
�ij + t⇤ii(Mij � �ij)

⇤
� ⇡i⇢i|j

◆
�(ci, cj) , (3.1)

where C is now a multilayer partition (i.e., a partition of an N |T |-node multilayer
network), ⇤ is the N |T | ⇥N |T | diagonal matrix with the rates of the exponentially
distributed waiting times at each node of each layer on its diagonal, M (with en-
tries Mij := Aij/

P
j Aij) is the N |T | ⇥ N |T | transition matrix for the N |T |-node

multilayer network with adjacency matrix A, ⇡i is the corresponding stationary dis-
tribution (with the strength of a node and the total edge weight now computed from
the multilayer adjacency matrix A), and ⇢i|j is the probability of jumping from node
i to node j at stationarity in one step conditional on the structure of the network
within and between layers. The authors’ choice of ⇢i|j , which accounts for the “spar-
sity pattern”10 of inter-layer edges in the multilayer adjacency matrix, motivates the
multilayer modularity-maximization problem

max
C2C

N |T |X

i,j=1

Bij�(ci, cj) , (3.2)

which we can also write as maxC2C Q(C|B), where B is the multilayer modularity

matrix
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10The sparsity pattern of a matrix X is a matrix Y with entries Yij = 1 when Xij 6= 0 and
Yij = 0 when Xij = 0.

• Schematic of “flattened” representation (as a supra-adjacency matrix) from M. 
Bazzi, MAP, S. Williams, M. McDonald, D. J. Fenn, & S. D. Howison [2016] Multiscale 
Modeling and Simulation: A SIAM Interdisciplinary Journal, 14(1): 1–41 



Multilayer Networks
´ Tradeoffs	here	and	also	for	the	other	more	complicated	

representations:
´ Generalizing	methods	versus	losing	information?
´ Trustworthy	data	that	jibes	with	these	more	complicated	

representations?
´ E.g.,	interlayer	edge	weights

´ Multilayer	representation	of	time-dependent	networks
´ Much	state-of-the-art	research	is	in	trying	to	

generalize	familiar	network	concepts
´ Random-graph	models,	Laplacians,	walks,	centralities,	

clustering	coefficients,	etc.
´ E.g.,	eigenvector-based	centralities	(such	as	multilayer	
PageRank)	where	you	can	construct	things	in	a	way	to	still	
use	Perron–Frobenius theorem	and	guarantee	a	real	and	
positive	leading	eigenvalue

´ How	do	more	complicated	network	structures	affect	
dynamics	on	networks?

• Top	schematic	from	D.	S.	Bassett,	N.	F.	
Wymbs,	M.	Puck	Rombach,	MAP,	P.	J.	Mucha,	
&	S.	T.	Grafton	[2013],	PLoS Computational	
Biology,	Vol.	9,	No.	9:	e1003171	

• Bottom	schematic	from	P.	J.	Mucha,	Thomas	
Richardson,	Kevin	Macon,	MAP,	&	Jukka-
Pekka Onnela [2010],	Science,	Vol.	328,	No.	
5980:	876–878		



Polyadic (i.e., Higher-Order) Relationships

´ Christian	Bick,	Elizabeth	Gross,	Heather	A.	Harrington,	&	Michael	T.	Schaub	
[2023],	“What	Are	Higher-Order	Networks”,	SIAM	Review,	Vol.	65,	No.	3:	686–
731

´ Federico	Battiston,	Giulia	Cencetti,	Iacopo Iacopini,	Vito	Latora,	Maxime	
Lucas,	Alice	Patania,	Jean-Gabriel	Young,	&	Giovanni Petri [2020],	
“Networks	Beyond	Pairwise	Interactions:	Structure	and	Dynamics”,	Physics	
Reports,	Vol.	874:	1–92

´ Hypergraphs	and	simplicial	complexes
´ Generalizing	structural	measurements	and	analysis

´ E.g.,	generalizations	of	Laplacians	(e.g.,	Hodge	Laplacian)
´ How	do	polyadic	interactions	affect	dynamics?

´Modeling	choice:	Simplicial	complexes	(which	require	downward	closure)	versus	
hypergraphs?

´ Topological	data	analysis	(TDA)
´ See	Moo	Chung’s	talk	this	afternoon	for	tutorial	on	TDA



Networks and Dynamics



Dynamics on Networks
´ MAP	&	J.	P	Gleeson	[2016],	“Dynamical	Systems	on	Networks:	A	Tutorial”,	Frontiers	in	Applied	

Dynamical	Systems:	Reviews	and	Tutorials,	Vol.	4,	Springer	International	Publishing,	Cham,	
Switzerland

´ Much	more	specific	topic:	Stephen	Coombes,	Mustafa	Sayli,	Rüdiger Thul,	Rachel	Nicks,	MAP,	&	
Yi	Ming	Lai	[2023],	“Oscillatory	Networks:	Insights	from	Piecewise-Linear	Modelling”,	SIAM	
Review,	in	press	(arXiv2308.09655)		
´ Includes	models	of	neuronal	dynamics	on	networks

´ How	does	network	structure	affect	dynamics	on	a	network?
´ Faster	synchronization	for	some	types	of	networks?	Slower	flow	of	something	on	some	networks?

´ Coupled	phase	oscillators	(e.g.,	Kuramotomodel):	

´ Better-developed	theory	for	autonomous	systems	than	for	nonautonomous systems
´ E.g.,	One	needs	to	generalize	ideas	like	stable	and	unstable	manifolds	for	nonautonomous systems

´ Deterministic	or	stochastic	dynamical	processes
´ Dynamics	on	combinatorial	networks	versus	dynamics	on	‘metric	networks’



Dynamics of Networks
´ Petter Holme &	Jari Saramäki [2012],	“Temporal	

Networks”,	Physics	Reports,	Vol.	519,	No.	3:	97–
125

´ Petter Holme [2015],	“Modern	Temporal	Network	
Theory:	A	Colloquium”,	European	Physical	Journal	
B,	Vol.	88,	No.	9:	234

´ Discrete	time	versus	continuous	time
´ Chopping	up	time	series?!?	(oy	vey)

´ Multilayer	representation	of	temporal	networks,	
with	e.g.	generalizing	eigenvector-based	
centralities	and	community-detection	methods



Adaptive (i.e., Coevolving) Networks

´ Rico	Berner,	Thilo Gross,	Christian	Kuehn,	Jürgen	Kurths,	&	Serhiy Yanchuk [2023],	
“Adaptive	Dynamical	Networks”,	Physics	Reports,	Vol.	1031:	1–59

´ Coupling	between	dynamics	on	networks	and	dynamics	of	networks
´ Adaptive	network	weights:

´ Adaptive	time	delays	(less	well-studied?):

´ Adaptive	natural	frequencies	fi

´ With	dynamical	systems	or	with	agent-based	models
´ Example:	‘Hebbian’	learning	in	coupled	oscillators	on	networks
´ It’s	often	hard	to	make	the	models	simple	enough	to	do	math.



Conclusions
´ There	are	many	different	ways	to	generalize	some	approach	or	quantity	
(betweenness	centrality,	clustering	coefficient,	etc.)	and	many	different	
choices	to	make	in	the	process,	so	we	need	to	think	about	which	way	to	
do	it	and	what	is	most	appropriate	for	a	given	problem.

´When	generalizing,	we	lose	some	convenient	feature	(e.g.,	such	as	losing	
the	guarantee	that	the	leading	eigenvalue	and	leading	eigenvector	are	
real)	and	then	we	need	to	figure	out	— through	development	of	theory	
and/or	methods	— how	to	get	the	generalization	to	work.

´ “Springboarding from these discussions, we should try to set 
the stage for formulating interesting and concrete projects at 
the conclusion of the workshop.”


